Stellar Formation

October 23, 2002

1) Solar Wind/Sunspots
2) Interstellar Medium
3) Protostars
4) A Star is Born
Review

- Stellar compositions
- H-R diagram/main sequence
- Nuclear fusion
- The Sun
 - Interior
 - Surface/atmosphere
 - Neutrinos
 - Magnetic fields
Solar Magnetic Fields

- The Sun’s magnetic field is very complicated
- It has magnetic “tubes” through which particles travel
 - like a water hose
 - each end of the tube is connected to the Sun’s surface
- Coronal holes
 - where magnetic field points outward and particles escape
- Magnetic field is constantly changing
 - partially due to Sun’s rotation
 - occasionally flips direction
Solar Wind

- Particles escape the Sun through coronal holes
 - travel outward from the Sun
 - responsible for comet’s tail and for blowing away primary atmospheres of inner planets
 - pushes interstellar dust out of the Solar System

- Solar wind changes as Sun rotates

- Effects Earth
 - satellites
 - Aurora Borealis
Sunspots

- Sunspots are cooler parts of the solar surface
 - most visible solar "structure"
- Caused by magnetic field loops
 - found in pairs
 - shift around with field
- Sunspot cycle
 - Sunspots follow an 11-year period
 - magnetic field changes over 11 years and then flips over
Variations in the Sunspot Cycle

- The sunspot cycle varies
 - sometimes more intense than others
 - some long periods with almost no sunspots
 - Maunder minimum - 1645-1715
 - cooler than normal in Europe
Interstellar Gases/Dust

- **Composition**
 - 90% hydrogen, 10% helium, 0.1% other
 - **VERY low density** – 1 atom/cm³
 - air is 2.5×10^{19} molecules/cm³

- **Interstellar dust**
 - very small particles of “heavy” materials

- **Interstellar clouds**
 - large collections of interstellar gas
 - about $\frac{1}{2}$ the interstellar gas occupies 2% of the volume

- **Intercloud gas**
 - remaining 50% of gas spread over 98% of the Universe
Dust and Light

- **Light absorption**
 - dust absorbs light
 - efficient at absorbing short wavelength light
 - lets longer wavelengths through
 - light passing through dust becomes “redder”
 - less blue
 - also, atoms and molecules absorb specific wavelengths through excitation
 - create spectral lines

- “glows” in the infrared – blackbody radiation
 - wavelength depends upon temperature
 - far-infrared to \times
Hot Intercloud Gas

- Some gases are very hot
 - some million Kelvin temperatures
 - we are in a bubble of hot gas
 - most around 8,000 K

- Atoms in warm regions are ionized

- H II regions
 - ionized hydrogen recombines and gives off photons in the hydrogen spectrum
 - ex. “Great Nebula” and 30 Doradus
 - home to formation of hot (O class) stars
Molecular Clouds

- **Molecular clouds**
 - cooler (~100 K) and denser (100x) than hot interstellar gas
 - surrounding dust absorbs energetic light
 - atoms and molecules can form

- **Giant molecular clouds**
 - 100s to 1000s of lightyears across
 - 4,000 of them in our Galaxy

- **Birthplace of Stars**
Cloud Collapse

- Pressure, angular momentum and magnetic fields keep a cloud large
- Gravity wants to pull it in
- In dense molecular clouds gravity eventually wins
 - some areas denser than others
 - cloud cores form around these
- Cloud cores collapse
 - inner region collapses giving up support for outer region
 - outer regions collapse inward
 - form an accretion disk and a protostar! (remember Chapter 5?)
A ProtoStar Shrinks

- Pressure and gravity must balance
 - starts off very large (100s x radius of our Sun)
- But the situation is changing
 - additional mass is being pulled in by gravity
 - energy is being radiated away
 - infrared
- These cause the protostar to shrink
- As it shrinks, it gets denser = higher pressure
- As pressure rises, so does temperature
 - more collisions
Protostar Ignition

- When a protostar gets hot enough, fusion begins
 - requires 0.08 solar mass to ignite
- Brown dwarf
 - cloud core with less than 0.08 solar mass
 - does not burn hydrogen
 - emits light from heat
 - blackbody radiation
 - gravitational energy converted to heat
- between gas giant and star
Getting on the Main Sequence

- The H-R diagram tells us what happens to a star.
- The mass determines how the star behaves.
 - More mass, faster ignition:
 - ~10 million years as a protostar for the Sun.
 - but we don’t fully understand what determines the mass of a star.
The Pleiades

- Stars often form in clusters
 - from same molecular cloud
 - stars in clusters were formed at the same time with same material
- Great for comparisons
- The Pleiades
 - the Seven Daughters
 - in the constellation Taurus
 - visible in the northern hemisphere in the winter
Stellar Adulthood

- A star spends a lot of time on the main sequence
- Main sequence stars burn hydrogen
 - keep burning until it runs out of hydrogen
- Stellar lifetime depends upon
 - amount of hydrogen
 - bigger star means more hydrogen
 - rate of burning
 - bigger star is hotter \(\Rightarrow\) hydrogen burns faster
- Larger stars have shorter lifetimes
 - rate of burning wins over amount of hydrogen
Calculating Lifetime

\[\tau_{MS} = 1 \times 10^{10} \text{ (years)} \times \frac{\text{amount of hydrogen}}{\text{rate of hydrogen burning}} \]

- \(\tau_{MS} \) = star lifetime in years
- Amount of fuel is listing in solar masses (M)
- Rate of burning is measured from star's luminosity (L)

- Our Sun has M = 1, L = 1
 - \(\tau_{\text{Sun}} = 1.0 \times 10^{10} \text{ years (10 billion years)} \)

- O5 star
 - Mass is 60 times our Sun
 - Luminosity is 794,000 times our Sun

\[\tau_{MS} = 1 \times 10^{10} \times \frac{60}{794,000} = 8 \times 10^{5} \text{ years} \]