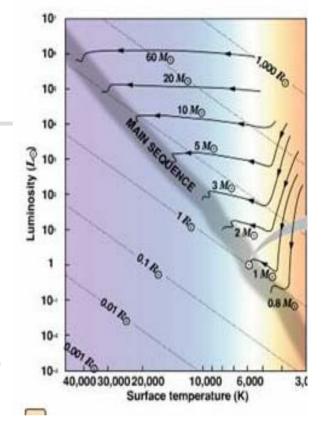


A Star Becomes a Star

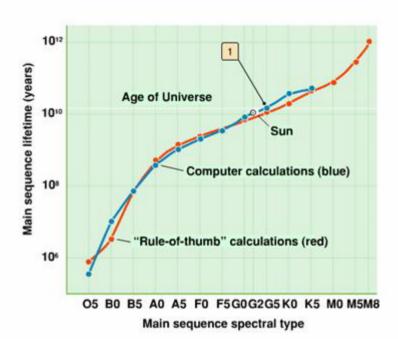
October 28, 2002



- 1) Stellar lifetime
- 2) Red Giant
- 3) White Dwarf
- 4) Supernova
- 5) More massive stars

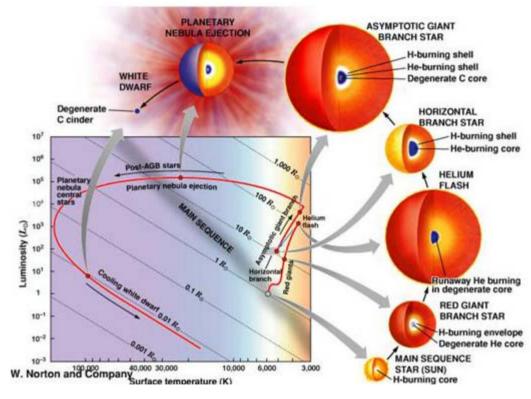
Review

- Solar winds/sunspots
- Gases and Dust
- Molecular clouds
- Protostars/Birth of a Star
- Stellar Lifetime


amount of hydrogen
$$\tau_{MS} = 1 \times 10^{10} \text{ (years) } \times \frac{\text{(solar mass)}}{\text{rate of hydrogen burning}}$$
(luminosity)

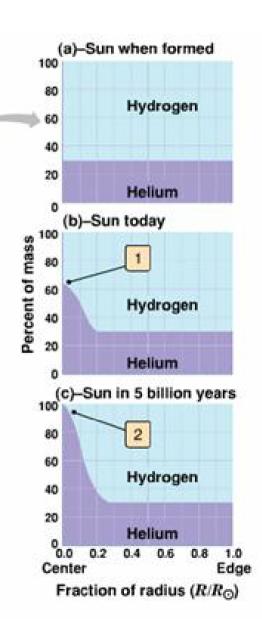
How Luminous, How Long?

- Most luminous stars live shortest lives
 - also, largest (most massive) stars
- Less luminous stars live longer
 - less massive stars
 - no star less than 0.8 solar masses has ever burned all its hydrogen


Luminosity & Temperature

- Luminosity depends on
 - surface temperature
 - Size
 - can increase luminosity by increasing surface temperature or size
- Temperature
 - surface temperature
 - internal temperature
 - hydrogen burning occurs at 10 million K

Life of Less Massive Stars


- We will start with stars lower mass stars
 - higher mass stars come later
- Low mass stars follow a pattern
 - protostar
 - main sequence star
 - red giant
 - white dwarf
 - black dwarf

Other interesting things might happen along the way

Hydrogen → Helium

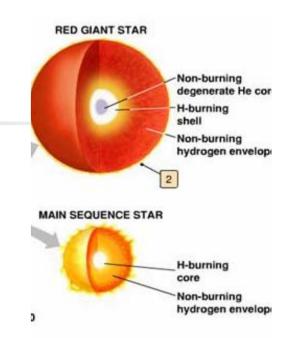
- Fusion in the core turns hydrogen into helium
- Originally hydrogen and helium evenly spread through stars interior
- Core changes
 - hydrogen burned up
 - helium builds up
- Eventually, core is mostly helium
 - helium doesn't burn well

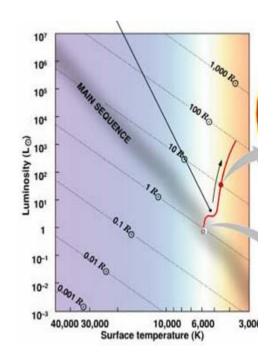
Degenerate Gas

- Helium core becomes degenerate
- Degenerate
 - two electrons can't be in the same state
 - Quantum Mechanics
 - so there is a limit on how closely electrons can be packed together
 - this is why a gas becomes degenerate
- You can not "squeeze" a degenerate gas into a more compact form

Hydrogen Shell Burning

Degenerate
helium core


Hydrogenburning shell


Nonburning
envelope

- Helium core becomes degenerate
 - doesn't burn
 - shrinks in size more compact form of matter
- Hydrogen continues to burn in shell surrounding core
- Star grows more luminous (why?)
 - increased gravity from denser core
 - balance requires increased pressure
 - increased pressure means hydrogen burns faster
 - more hydrogen burning means more light/energy
- The star has entered the next part of its life

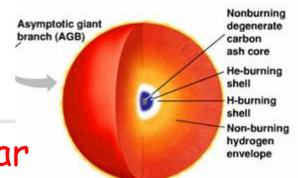
A Red Giant Is Born

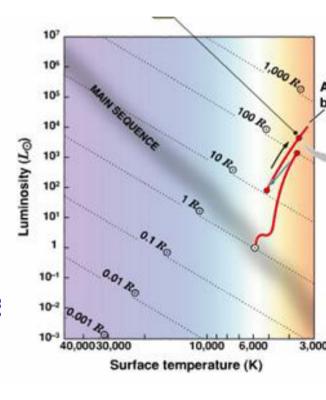
- More hydrogen burning causes the star to expand
 - up to 1000 times its original size
 - surface temperature drops
 - luminosity increases dramatically
- Hydrogen is still rapidly burning in a shell around the helium core
 - generating lots of energy

Helium Burning

4He 4He 23

- Helium starts to burn at 100 million K
- Triple alpha process
 - three He atoms combine to form carbon
- Core temperature
 - as helium gets added to star's core
 - gravity increases
 - temperature increases
 - pressure does not increase (degenerate)
- Once degenerate helium begins to burn, it "snowballs" VERY rapidly

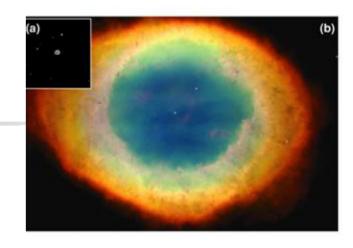

Helium Flash

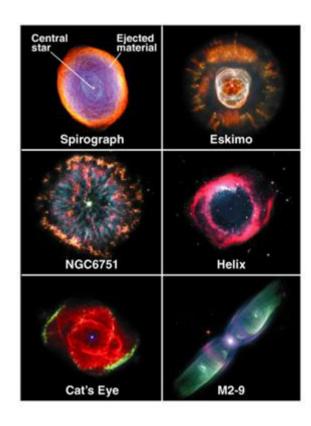

- The degenerate helium core begins to burn
 - ignites and burns within hours!
- Eventually the temperature rises to the point where the core "explodes"
 - helium/carbon pushed outwards into overlying layers
 - explosion not visible on surface
- Temperature high enough for helium to continue to burn
 - burns for 100,000 years or so

AGB Star

Asymptotic Giant Branch (AGB) star

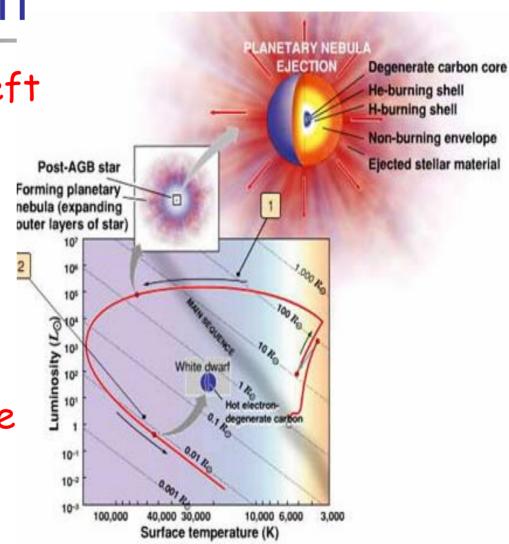
- Burns helium in core, hydrogen in shell
- Eventually,
 - Helium becomes depleted
 - Carbon core forms
- Giants lose mass
 - outer surface of giant stars feel less gravity
 - farther away than before
 - gases can escape the star's surface

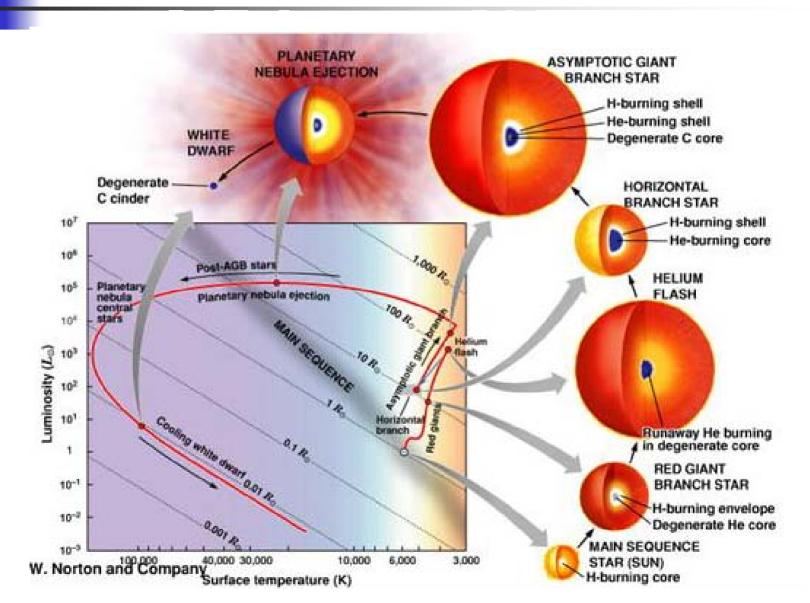




Planetary Nebula

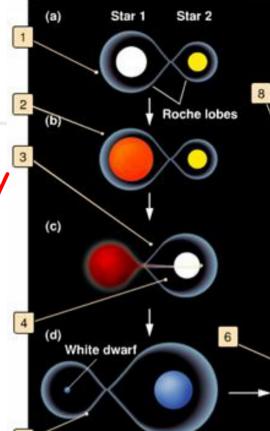
- Ejection of material "snowballs"
 - less pressure from above to hold onto lower layers
- Gases form cloud around star
 - Planetary Nebula
- Surface starts to disappear
 - 50,000 years
- Core is left behind



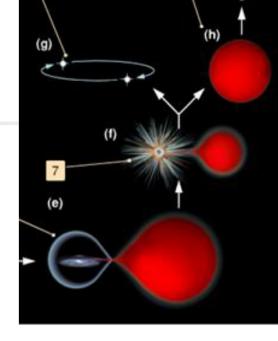

A White Dwarf

 Eventually all that is left is a core of spent gas

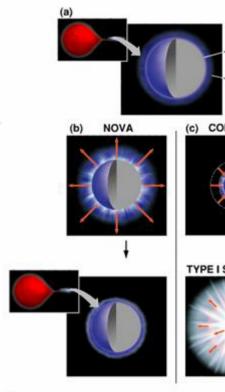
- All low mass stars become white dwarfs
 - helium based
 - too light to ignite helium
 - carbon based
- Glow from temperature
 - blackbody radiation
- Shrinks to size of the Earth



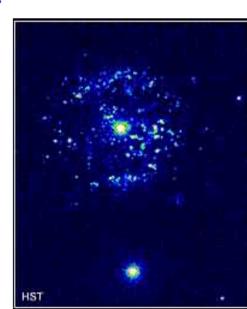
Main Sequence → White Dwarf


Binary Star Systems

- Interesting things happen in binary star systems
 - larger star becomes a giant first
- Roche limit
 - each star has an area in which any particle is within its gravitation pull
- Once the larger star grows into the second star's Roche limit, it transfers mass
 - the second star begins to get more massive

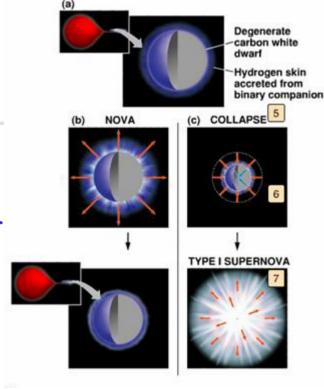


- Bigger star becomes a white dwarf
- Smaller star eventually becomes a red giant
- Once smaller star fills its Roche limit, it transfers mass to the white dwarf
 - if both are low mass, two white dwarfs are formed
 - if more mass is present, more interesting stuff happens...



- Hydrogen is added to the surface of a white dwarf
 - gains a lot of energy "falling into" small, dense white dwarf
 - heats up
 - collects in shell on outside of white dwarf
- Once 10 million K is reached, hydrogen ignites
- Uncontrolled burn/explosion
- Huge amounts of light/energy/particles are released

Novae

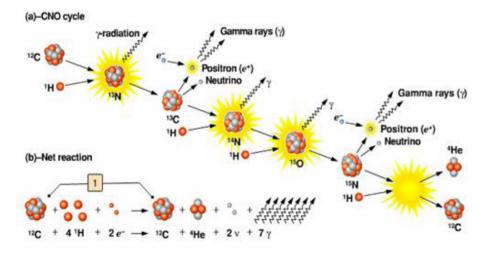

- After explosion, hydrogen can still be added to white dwarf from red giant
- Process can repeat itself
 - a given nova may explode every 10-10,000 years
 - there are some observed recurring novae
- There are about 50 novae each year in the Milky Way
 - we see only a few
 - due to interstellar dust

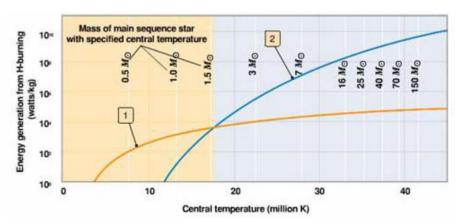
Type Ia Supernova

- Chandrasekhar limit
 - a white dwarf must be less than 1.4 solar masses
- If a white dwarf reaches the Chandrasekhar limit, it starts burning carbon
- The whole dwarf burns in seconds!
- More energy released than the whole 10 billion years on main sequence!
- Glows very brightly for weeks/months and fades away

Type Ia supernovae occur about once a century in the Milky Way

Have a luminosity 10 billion times our Sun


Hotter Stars


- More massive stars are hotter
- Hotter stars burn faster
- Gravity is stronger
- More interesting stuff happens...
 - more supernovae
 - neutron stars
 - black holes
 - variable stars

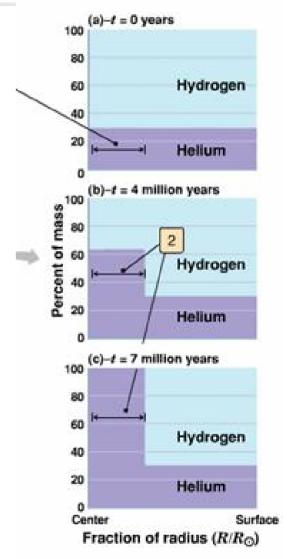
-

CNO Cycle – More Burning

- Carbon-Nitrogen-Oxygen (CNO)
 - $^{12}C + 4 ^{1}H \rightarrow ^{12}C + ^{4}He$
 - occurs if carbon and hydrogen are together and hot enough
 - needs 1.5 solar masses

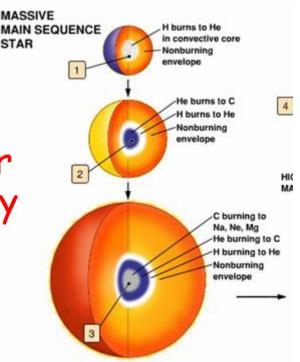
Nucleosynthesis

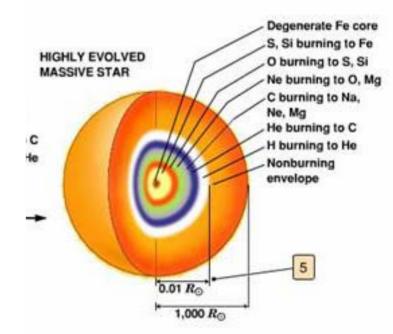
- If temperatures get high enough, additional fusion reactions are available
 - $H \rightarrow He \rightarrow C \rightarrow Ne \rightarrow O \rightarrow Si \rightarrow Fe$
- Hotter stars produce heavier elements
- Each fusion stage produces energy
 - each stage goes faster than previous
- Iron does not burn
 - needs energy into reaction rather than giving up energy


Nucleosynthesis

 Some typical times and temperatures of reactions

Stage	9 solar masses	Temperature (K)
H burning	20 million years	$(3-10)\times10^7$
He burning	2 million years	(1-7.5)×10 ⁸
C burning	380 years	$(0.8-1.4)\times10^9$
Ne burning	1.1 years	(1.4-1.7)×10 ⁹
O burning	8 months	(1.8-2.8)×10 ⁹
Si burning	4 days	(2.8-4)×10 ⁹




- Core burns differently
- Convection stirs core
 - mixes elements
- Converts all of core to helium
 - not degenerate core
- Then starts burning helium
- Hydrogen burning shell appears

- During its life, a massive star burns each step progressively outward
- Shells form
- Innermost shells burning heavier elements
 - Fe
 - Si
 - O
 - Ne
 - C
 - He
 - H

