Neutron Stars, Black Holes, Pulsars and More

October 30, 2002

1) Star Clusters
2) Type II Supernova
3) Neutron Stars
4) Black Holes
5) More Gravity
Announcements

■ Extra Credit
 ■ there is an extra credit assignment available on the course website
 ■ due Fri. Nov. 1 at 5pm

■ Grades
 ■ scores from the first exam and first 7 quizzes are available through Blackboard
 ■ do not pay any attention to “Total Score”

■ Exam #2 is next week Weds. Nov. 6, 2002
Review

- Stellar lifetime
- Red Giant
- White Dwarf
- Binary Systems
 - Nova
 - Supernova
- More massive stars
Clusters of stars formed at the same time of the same materials. Studying them tells us about the life of stars. Plot where stars fall on H-R diagram. Looking at many clusters tells us how stars leave main sequence.
Neutrino Cooling

- Many of the fusion reactions produce neutrinos
 - especially with carbon burning and above
- Neutrinos immediately escape the star
 - carry away energy
 - do not provide additional heat/pressure to star
- Star shrinks in size
 - speeds up nuclear fusion
 - higher density/pressure
 - “snowballs” - star is collapsing
Beginning to Collapse

- Pressure and temperature rise as core collapses
- Photodisintegration
 - light begins to break apart nuclei
 - more energy loss
- Neutrino cooling is occurring
- Electrons and protons combine to make neutrons
 - $p + e \rightarrow n$
- Sources of energy to provide pressure are disappearing
 - core continues to collapse to very dense matter
Type II Supernova

- Core collapses
- Density skyrocket(s)
 - nuclei get so close together the nuclear force repels them
- Core bounces
 - particles falling inward sent back outward
 - up to 30,000 km/s
- Type II supernova

One heck of an explosion
Supernova and Nucleosynthesis

- Normal fusion only makes up to iron
 - but there are many heavier elements
- In dense cores of massive stars, free neutrons are available
 - these neutrons combine with iron and other nuclei to form heavier nuclei
 - very heavy nuclei can be built up
 - more nucleosynthesis
- Heavy nuclei are spread out into the Universe in supernovae explosions
A Neutron Star Is Born

- After the supernova explosion, a very dense core is left behind
- Degenerate
 - now neutron degenerate
- Nuclei are incredibly dense
 - as closely packed as inside of nucleus
 - 1 billion times density of Sun
 - as if the Earth were condensed to the size of Doak Campbell Stadium
- Called a neutron star
 - somewhat similar to white dwarf
X-ray Binary

- When a neutron star is part of a binary system
- When the other star fills its Roche limit
 - starts feeding matter to neutron star
- The neutron star has an accretion disk
 - heated by matter falling onto it
- The accretion disk heats enough to glow in the x-ray part of the spectrum
Spinning Neutron Stars

- Neutrons stars spins very quickly
 - get angular momentum from its collapse
 - period is a couple of hours
 - our Sun takes 27 days to rotate
- Very strong magnetic fields
 - very strong magnetosphere
 surrounds neutron star
- Escaping charged particles follow magnetic field lines
 - creates beams of particles & electromagnetic radiation
Pulsars

- When the rotation and magnetic fields don’t line up, beams of particles and light swing around the neutron star
 - we observe “pulses” of EM radiation
- Like a beam of a lighthouse
 - regular pattern
 - May see one or two beams
- Called pulsars
Black Holes

- If the neutron star is more than 3 solar masses, it will become a black hole
 - neutron degeneracy can no longer support the star
- Black holes have very interesting attributes
- We need to learn a bit more gravity...
General Theory of Relativity

- Developed by Einstein to handle gravity
 - Special Relativity didn’t account for gravity
- Mass is a distortion of space-time
 - We live in 4 dimensional space
 - 3 space dimensions + time
 - Mass distorts this space
- Effects
 - Bending light
 - Time dilation
 - Gravity waves
 - More...
A New Way of Thinking

- Imagine a flat rubber sheet (or foam pad)
- Objects moving across the sheet move in a straight line (Newton again!)
- Now place a heavy object on the sheet
 - the sheet distorts
- Now objects moving across the sheet will curve due to the distorted space
Interesting Effects

- Because space is distorted, even light will bend
 - must follow path across the sheet
- Time is also distorted
 - time appears to run slower closer to mass
- Gravitational red-shift
 - light from a massive object will be red-shifted
 - can’t tell difference between Doppler shift and gravitational shift
 - due to time being distorted
 - “light’s clock” runs differently than our clock
- Gravity waves
 - collapsing masses send ripples through space time
 - various experiments are searching for gravity waves
Gravitational Lensing

- Bending of light by gravity
 - observed by measuring location of stars during solar eclipse
 - light passing near the Sun was bent, stars appeared farther apart
 - first demonstration of general relativity
Gravity and Black Holes

- Escape velocity - velocity necessary to escape gravitation pull of an object
 - Earth - 11 km/s
 - Sun - 618 km/s
 - as mass goes up or radius goes down, escape velocity increases

- Anything moving at less than escape velocity will eventually be pulled back to object

- What happens when escape velocity is greater than the speed of light?
If mass is large/dense enough, there is some radius at which escape velocity is larger than speed of light

- not even light can escape the object
- event horizon
- Schwartschild radius
 - maximum radius a black hole can be
 - for 1 M_{Sun}, it’s about 3 km
 - for 2 M_{Sun}, it’s about 6 km

- Anything within the event horizon is lost forever
- But remember, gravity outside the event horizon is the same as for a star of that mass
Black Holes

- From the viewpoint of general relativity, a black hole is an infinitely deep hole in space-time called a singularity.

- Properties of black holes:
 - mass - all the material which is inside the event horizon
 - angular momentum - from material which fell in
 - charge

ALL OTHER INFORMATION IS LOST!
Falling Into A Black Hole

- Imagine a clock falling into black hole
- Appears to run slower - longer between ticks
- Appears to slow down its fall
- Gets “redder”
 - longer wavelength
 - Gets harder to see
- Tidal forces tear it apart
- At event horizon
 - length between ticks is infinite, wavelength is infinite, appears to stop (but we can’t see it anyway
- To the clock it just keeps ticking away normally until torn apart or enters the singularity
Observing Black Holes

- Impossible to "see" directly
- Gravitational lensing is small
- Easiest to see if lots of material around
 - binary system
- Cygnus X-1
 - large visible star (B class)
 - invisible partner
 - strong x-ray emitter
 - mass of partner must be at least 8 solar masses and very small
- Colliding black holes?
- Black hole at center of galaxy?
Cepheid Variables

- Large stars which vary size/temperature
 - changes luminosity
- Have a very specific period
- Period is related to luminosity
 - Once you know the period, you know the luminosity, and you know the distance
 - a yardstick of the Universe