1

Expanding Universe

November 20, 2002

- 1) Hubble's Law
- 2) Expanding Universe
- 3) Fate of the Universe

```
Final Exam will be held in Ruby Diamond
Auditorium
NOTE THIS!!!
not UPL
Dec. 11, 2002 10am-noon
```


Review of Particles and Telescopes

- Dark Matter
- Particle physics
 - atoms
 - quarks
 - table of particles
 - WIMPs
- Telescopes
 - refracting, reflecting
 - usable wavelengths
 - satellites and other methods

Measuring Distances

- Stereoscopic viewing
 - only "small" distances
- Standard candles
 - objects which have known luminosities
 - Cepheid variables
 - variation tells luminosity good to 65 million LY
 - Type Ia supernova
 - all have same luminosity
 - good to 8 billion LY
- Comparison to nearby galaxies

Galactic Redshifts

- Edwin Hubble (1889-1953) and colleagues
 - measured the spectra (light) of many galaxies
 - found nearly all galaxies are red-shifted
- Redshift

$$Z = \frac{\lambda_{\text{observed}} - \lambda_{rest}}{\lambda_{rest}}$$

From Ch. 4, z = v/c

Hubble's Law

- Hubble found the amount of redshift depended upon the distance
 - the farther away, the greater the redshift

 $v = H_0 \times d$

What is H_0 ?

Hubble's Law

- Holds for all galaxies with measured redshift and distance
- THEREFORE, measuring the redshift tells us the distance
 - redshifts up to 90% of the speed of light have been measured
 - ultraviolet wavelengths can be shifted into the visible
- H_0 is Hubble's constant = 22 km/(s MLY)
 - MLY = megalightyear

Consequences

- If everything is moving away from us and things farther are moving faster
- Then the Universe is expanding!

This doesn't mean what you are probably thinking

Expanding Universe

- Space is expanding not matter flying apart
- Examples:
 - dots
 - rubber band
 - raisin bread
 - ants on a balloon
- It does <u>not</u> mean we are at the center of the Universe
 - every part of the Universe sees everything moving away from it

Cosmological Redshift

- We now know 3 kinds of redshift
- Doppler shift
 - due to motion
- Gravitational shift
 - due to distortion of space-time by mass
- Cosmological shift
 - due to stretching of space
 - not due to relative motion
 - as space stretches, the wavelength stretches and becomes longer

Looking Back in Time

- Remember it takes time for light to reach us
 - travels at 300,000 km/s
 - So we see things as they were some time ago
- The farther away, the further back in time we are looking
 - 1 billion LY means looking 1 billion years back in time
- So the greater the redshift, the further back in time
 - redshift of 0.1 is 1.4 billion lightyears which means we are looking 1.4 billion years into the past

Thinking Back in Time

- If all galaxies are moving away from each, then in the past all galaxies were closer to each other
- Going all the way back, it would mean that everything started out at the same point
 - then began expanding
- This starting point is called the Big Bang
- We can calculate the age of the Universe using Hubble's Law

Big Bang

- At the beginning of our Universe, all matter was together in a very compact form
 - matter was nothing like it is now
 - very "hot"
- Then space started expanding
 - things "cooled"
 - eventually normal matter formed
- Big Bang model makes a number of testable predictions

Glow of the Universe

 The early Universe was hot and dense

- but so dense the light kept getting absorbed
- Eventually the Universe cooled enough to form hydrogen atoms
 - blackbody radiation could now travel freely
 - called "recombination of the Universe"
- Light from this time should be all around us

Cosmic Microwave Background (CMB)

- This light should be cosmologically redshifted
 - into microwave region
- CMB was first seen in 1960s
 - twenty years after prediction
- COBE mapped the CMB
 - measured the spectrum
 - wonderful match between theory and data
 - we will come back to this

Composition of Light Elements

- Big Bang model predicts the percentage of light elements
 - hydrogen, deuterium (heavy hydrogen), helium, lithium, beryllium, boron
 - elements formed before recombination
 - percentages depend upon density and temperature of early Universe
- Observed percentages agree with Big Bang model predictions

Fate of the Universe

- The Universe is expanding
- But gravity should be pulling it back in
- So what should the Universe's fate be:
 - Continue expanding forever
 - Have expansion keep getting slower forever

Expansion stops and eventually Universe collapses

upon itself

- These possibilities are called
 - open universe
 - flat universe
 - closed universe

Enough Matter?

- The amount of matter in the Universe helps determine its fate
 - if there is enough mass, gravity wins
 - given $H_0 = 22 \text{ km/(s MLY)}$, critical mass density is $8 \times 10^{-27} \text{ kg/m}^3$
- \blacksquare define Ω_{MASS} as the actual density of mass in the Universe divided by the critical

density

- ullet Ω_{MASS} < 1 is an open universe
- Ω_{MASS} = 1 is a flat universe

4

Enough Matter?

- Visible matter
 - only 2% of critical density
 - $\Omega_{MASS} = 0.02$
- Dark matter in galaxies
 - about 10 times as much
 - $\Omega_{MASS} = 0.2$
- Dark matter between galaxies
 - raises total to 30% of critical density
 - $\Omega_{MASS} = 0.3$
- We do not observe enough matter to cause the Universe to be closed
- But it's not the end of the story

Is the Expansion Slowing Down?

- Use Type 1a supernovae
 - a standard candle
 - use brightness to determine distance
 - use redshift to determine distance
 - compare distances
 - data lies below prediction
- Answer: The rate of expansion is speeding up!

