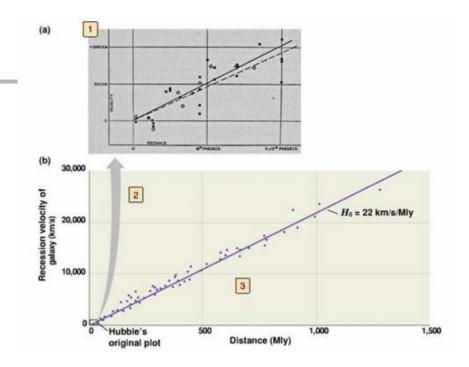
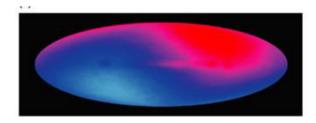


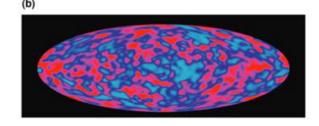
Fate of the Universe

November 25, 2002

- 1) Fate of the Universe
- 2) Shape of the Universe
- 3) Large Scale Structure

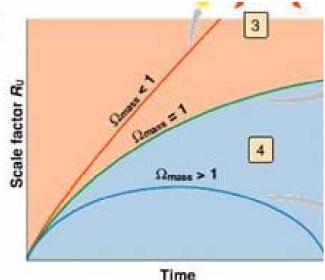

```
Final Exam will be held in Ruby Diamond
Auditorium
NOTE THIS!!!
not UPL
Dec. 11, 2002 10am-noon
```




- Hubble's Law
 - redshift

$$v = H_0 \times d$$

- Expanding Universe
 - examples
 - Big Bang
 - age of the Universe
 - cosmic microwave background
- Fate of the Universe

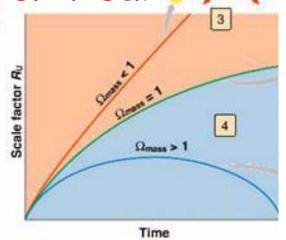

Fate of the Universe

- The Universe is expanding
- But gravity should be pulling it back in
- So what should the Universe's fate be:
 - Continue expanding forever
 - Have expansion keep getting slower forever

Expansion stops and eventually Universe collapses

upon itself

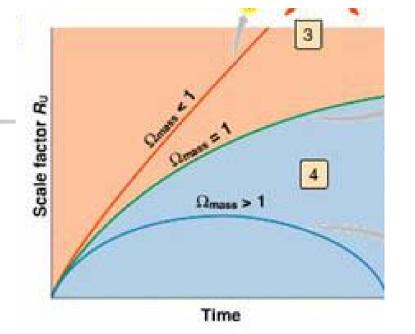
- These possibilities are called
 - open universe
 - flat universe
 - closed universe



Enough Matter?

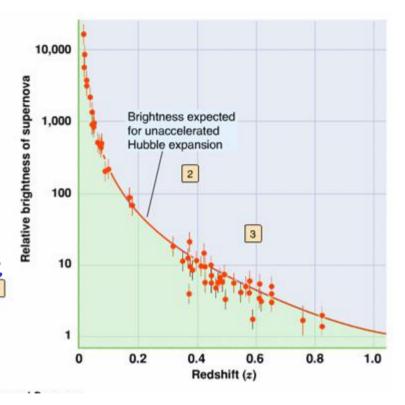
- The amount of matter in the Universe helps determine its fate
 - if there is enough mass, gravity wins
 - given $H_0 = 22 \text{ km/(s MLY)}$, critical mass density is $8 \times 10^{-27} \text{ kg/m}^3$
- lacktriangle define Ω_{MASS} as the actual density of mass in the Universe divided by the critical

density


- lacksquare Ω_{MASS} < 1 is an open universe
- Ω_{MASS} = 1 is a flat universe

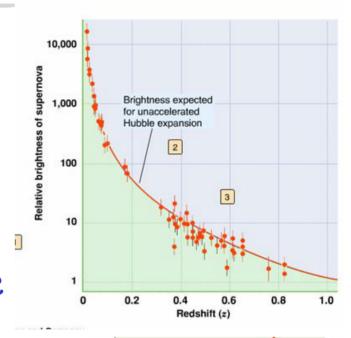
4

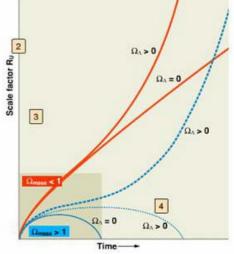
Enough Matter?


- Visible matter
 - only 2% of critical density
 - $\Omega_{MASS} = 0.02$
- Dark matter in galaxies
 - about 10 times as much
 - $\Omega_{MASS} = 0.2$
- Dark matter between galaxies
 - raises total to 30% of critical density
 - $\Omega_{MASS} = 0.3$
- We do not observe enough matter to cause the Universe to be closed
- But it's not the end of the story

Is the Expansion Slowing Down?

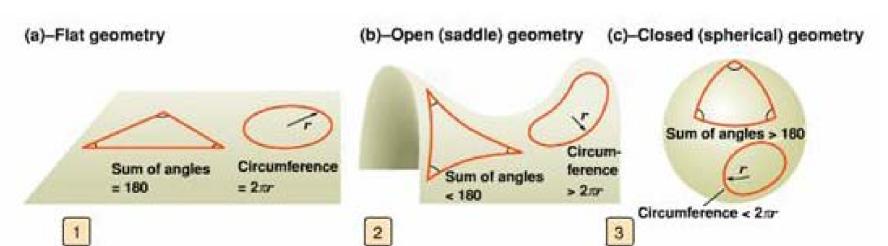
- Use Type 1a supernovae
 - a standard candle
 - use brightness to determine distance
 - use redshift to determine distance
 - compare distances
 - data lies below prediction
- Answer: The rate of expansion is speeding up!

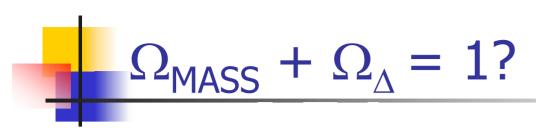

Einstein's "Greatest Blunder"


- Einstein believed in a static Universe
 - pre-Hubble
- Equations of general relativity showed any Universe containing matter could not be static
- So, Einstein inserted a "fudge-factor" to balance the equation
 - called the cosmological constant (Ω_{Λ})
 - opposes gravity (necessary to be static)
- After Hubble, Einstein called this his greatest blunder
 - should have predict Universe was expanding or contracting

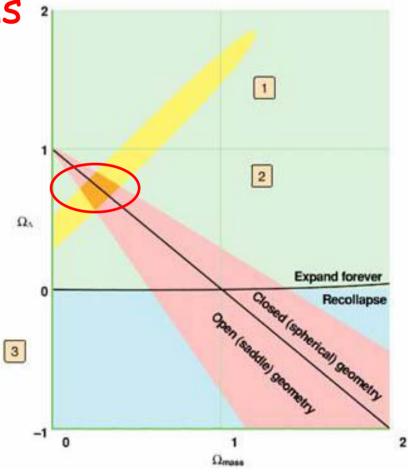
Redshift Doesn't Match

- Redshifts of Type Ia supernovae don't completely match expectation
 - points tend to lie below the line
- This can be explained by the expansion of the Universe speeding up

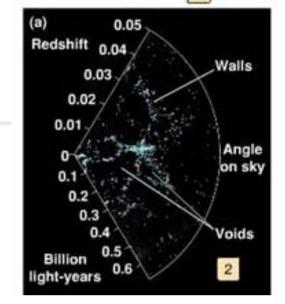




Shape of the Universe


The Universe has a shape

- determined by Ω_{MASS} + Ω_{Δ}
- Ω_{MASS} + Ω_{Δ} < 1 (saddle)
- Ω_{MASS} + Ω_{Δ} > 1 (spherical)
- determines how we see the Universe behave



- The Universe appears flat
- Data gives shaded regions 2
 - supernovae
 - CMB
 - movement of globular clusters and galaxies
- Currently favored:
 - \bullet $\Omega_{MASS} \sim 0.3$
 - Ω_Λ ~ 0.7

Bigger Structure

- Structure bigger than galaxies
- Galaxy groups
 - 2-30 galaxies
 - Local Group contains the Milky Way
- Galaxy clusters
 - 100s of galaxies
- Superclusters
 - groups and clusters combined
- The Universe is filled with <u>large scale</u> <u>structure</u>
 - "walls" and "filaments"

Formation of Structure

- (early in the Universe)
- Normal matter was spread fairly evenly
 - due to interactions and radiation
- Dark matter was not smoothly
 - clumps remained
- Expansion spread things out
 - but gravity held large clumps of dark matter together
- Dark matter attracted normal matter
 - source of galaxies and structure

