Search for Long-Lived Neutral Particles with the DØ Detector

Todd Adams Florida State University

APS April Meeting 2005 April 16, 2005

Introduction

- Goal: search for relatively long-lived neutral particles with hadron collider experiment
- Constraints:
 - small decay region
 - no coupling to Z boson
- Motivations:

- NuTeV dimuon excess in decay search
- Unexplored theoretical phase space
 - e.g. uMSSM

NuTeV Neutral Particle Search

- Search for long-lived neutral particle
- Production at primary proton target $- p + p \rightarrow N^0 + N^0 + X$
- Decays in region in front of neutrino detector $N^0 \rightarrow \mu\mu\nu$
- Characteristics
 - Mass region 2.2-15 GeV
 - Long lifetime (1.6 km)
 - Weakly interacting
- Expected background: $0.07 \pm 0.01^{\circ}$
- Observed 3 µµ events

Theoretical Example

q,g

q,g

 χ_0

- Could be RPV unconstrained MSSM
- $-\tan\beta = 10 RS = 0.1$ $-M_1 = 50 - \mu = -5000$ $-M_2 = 200 - m_A = 500.0$ $-M_3 = 400 - M(squark) = 300.0$ $-\lambda_{122} = 0.01 - M(other) = 1500.0$ • Yields
 - $-LSP = \chi_0^{\ 1} \qquad \sigma \sim 0.024 \text{ pb}$
 - $-M(\chi_0^{-1}) = 5.1 \text{ GeV}; \ \gamma \text{ct} = 24,800 \text{ cm}$

use SUSYGEN for generation

Todd Adams

 $\overline{\chi}_0^1$

DØ Experiment

• Use the volume *inside* the fiber tracker as a decay region (radius < 20 cm)

- Use K_S to demonstrate ability to vertex at large radius
 - fit pairs of central tracks

Invariant Mass

Efficiency vs. radius

Preliminary

radius (cm)

radius (cm)

We can reconstruct vertices out to 20 cm

Todd Adams

Dimuon Data Sample

- Data set: August 2002 August 2004
- Require dimuon trigger
- At least 2 muons with
 - central track match (at least 14 CFT hits)
 - $-\chi_{track}^{2}\!<\!4$
 - calorimeter isolation $E_{0.1 < R < 0.5} < 2.5 \text{ GeV}$
 - $p_T(\mu) > 4 \text{ GeV}$
 - reject cosmic rays (timing cut)
- Perform vertex fit for all muon pairs in each event
- Require vertex $\chi^2 < 4$
 - 387 pb⁻¹ integrated luminosity

Dimuon Invariant Mass

Signal Selection

- Additional criteria:
 - opening angle < 0.5 radians</p>
 - $r/\sigma_r > 6$ $r = \sqrt{(v_x v_x(PV))^2 + (v_y v_y(PV))^2}$
 - -5 < r < 20 cm PV = primary vertex

Signal Simulation

- Run SUSYGEN RPV unconstrained MSSM
- Require one N^0 to decay within r=5-20 cm
 - Account for decay probability separately
- Allow N⁰ $\rightarrow \mu\mu\nu$, $\mu\nu\nu$, eev

Signal Study

April 16, 2005

DØ Sensitivity

387 pb⁻¹ using acceptance from SUSYGEN MC

Summary

- DØ has the ability to reconstruct vertices at large radial displacement
- Tevatron's high energy and luminosity allow probes of new theoretical phase space
- We have a new analysis technique to search for long-lived neutral particles produced in pp collisions

Todd Adams

NuTeV's Three Events

Run: 6133 Event: 3846 Igate: 1 Date: Tue Jul 22 12:27:12 1997

Todd Adams