Searches for New Phenomena with Lepton Final States at the Tevatron including charginos, neutralinos, excited leptons and unexpected signatures

Todd Adams
Florida State University
for the CDF and DØ Collaborations
Moriond Electroweak
March, 2007
The path to new understanding is through discovery

Historically, lepton final states have led to numerous discoveries

Many possibilities = many searches

Outline

• SUSY Trileptons
 • combined final states
• W'
• Z'

• Excited electrons
• RS Gravitons
• NLLP
• Summary
Charginos and Neutralinos in Trileptons

Advantages
- small backgrounds

Disadvantages
- 3rd lepton is low p_T
- small cross-section \times branching ratio

R-parity conserved

$p\bar{p} \rightarrow \tilde{\chi}_1 \tilde{\chi}_2^0$

Trileptons:

$\tilde{\chi}_1^\pm \rightarrow l\nu\tilde{\chi}_1^0$

$\tilde{\chi}_2^0 \rightarrow l\bar{l}\tilde{\chi}_1^0$

Techniques
- all 3 leptons
- 2 leptons + track
- same-sign leptons
14 Combined Results

<table>
<thead>
<tr>
<th>3lep</th>
<th>ee+1 CEM</th>
<th>ee+1 plug</th>
<th>eμ+1</th>
<th>μμ+1 high p_T</th>
<th>μμ+1 CEM</th>
<th>μe+1 plug</th>
<th>ee + track</th>
<th>μμ+1 low p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumi (pb⁻¹)</td>
<td>1034</td>
<td>954</td>
<td>1034</td>
<td>745</td>
<td>745</td>
<td>680</td>
<td>1013</td>
<td>976</td>
</tr>
<tr>
<td>Bkgd</td>
<td>0.44 ± 0.08</td>
<td>0.34 ± 0.10</td>
<td>0.28 ± 0.09</td>
<td>0.64 ± 0.18</td>
<td>0.42 ± 0.08</td>
<td>0.36 ± 0.07</td>
<td>0.97 ± 0.28</td>
<td>0.42 ± 0.12</td>
</tr>
<tr>
<td>Data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS lep</th>
<th>ee LS</th>
<th>ee_{si} LS</th>
<th>e_{si}e_{si} LS</th>
<th>e_{si}μ LS</th>
<th>eμ LS</th>
<th>μμ LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumi (pb⁻¹)</td>
<td>993</td>
<td>993</td>
<td>993</td>
<td>971</td>
<td>971</td>
<td>1087</td>
</tr>
<tr>
<td>Bkgd</td>
<td>0.10 ± 0.10</td>
<td>0.50 ± 0.30</td>
<td>1.30 ± 0.30</td>
<td>1.70 ± 0.20</td>
<td>2.30 ± 0.50</td>
<td>0.90 ± 0.10</td>
</tr>
<tr>
<td>Data</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
SUSY Interpretation

mSUGRA (inspired)

\[\tan \beta = 3, \ A_0 = 0, \ \mu > 0, \ m_0 = 60 \]

A. mSUGRA
no limit yet

B. MSSM
same as mSUGRA
without slepton mixing
\[M(\chi_1^{\pm}) > 130 \text{ GeV} \]

C. MSSM
set lepton BR to
same as W/Z
no limit yet
4 Combined Results

- New channels
 - $\mu\mu l$ and $e\mu l$

<table>
<thead>
<tr>
<th>Channel</th>
<th>Lumi (pb$^{-1}$)</th>
<th>Bkgd</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>eel</td>
<td>1000</td>
<td>0.76 ± 0.67</td>
<td>0</td>
</tr>
<tr>
<td>$\mu\mu l$</td>
<td>1100</td>
<td>0.32 ± 1.34</td>
<td>2</td>
</tr>
<tr>
<td>$\mu\mu l$</td>
<td>1100</td>
<td>0.94 ± 0.40</td>
<td>0</td>
</tr>
<tr>
<td>LS $\mu\mu$</td>
<td>1000</td>
<td>1.1 ± 0.4</td>
<td>1</td>
</tr>
</tbody>
</table>
SUSY Limits from Trileptons

- Use 3 SUSY models
 - mSUGRA inspired
 - \(m(\chi_1^\pm) \approx m(\chi_2^0) \approx 2m(\chi_1^0) \)
 - no slepton mixing
 - large \(m_0 \)
 - W/Z decays dominate
 - no sensitivity
 - 3\(\ell \)-max
 - \(m(\text{slepton}) \) slightly larger than \(m(\chi_2^0) \)
 - \(M(\chi_1^\pm) > 141 \text{ GeV} \)
 - heavy squarks
 - relax scalar mass unification
W’ Search

- Search for additional charged gauge boson
- Events w/ electron (E_T>30 GeV, MET>30 GeV, M_T>150 GeV)

Data = 630 events
Bkgd = 623 ± 18 +83 −75 events
MW’ > 965 GeV @ 95% CL
DiElectron High Mass Search

- Select events with two electrons ($E_T > 25$ GeV)
- Search for narrow high mass resonances
 - $150 < M(ee) < 950$ GeV
 - Model independent
 - No excess found
- Z' (spin 1) additional neutral gauge boson
 - $Z'_{SM} > 923$ GeV
 - $Z'_I > 729$ GeV
 - $Z'_\psi > 822$ GeV
 - $Z'_\chi > 822$ GeV
 - $Z'_\eta > 891$ GeV

March, 2007 Tevatron Searches w/ Leptons – Todd Adams, FSU
RS Gravitons

- Use extra dimensions to address hierarchy problem
- Resonant production of gravitons at Tevatron
- Combine dielectron w/ diphoton search
 - Diphoton is twice as sensitive (spin 2)
- CDF
 - $M_G > 889$ GeV for $k/M_{pl} = 0.1$
- D0
 - $M_G > 865$ GeV for $k/M_{pl} = 0.1$
Excited Electrons

- Some models predict quarks and leptons are made of smaller pieces
 - allows excited states (e^*, μ^*, q^*, etc)
- Search in $ee\gamma$
 - possible decay mode $e^* \rightarrow e\gamma$
 - $p_T(e_1/e_2/\gamma) > 25/15/15$ GeV
 - observed 259 events
 - expectation $= 232 \pm 3 \pm 29$ events
- $m_{e^*} > 756$ GeV
Search for Neutral, Long-lived Particles

- Search for pair production of two neutral particles
- Look for decay well away from production point
 - two isolated muons $p_T > 10$ GeV
- Sample signal
 - RPV SUSY
 - χ_1^0 pair production
Limits on NLLP Production

0 events observed
0.75 ± 1.1 ± 1.1 expected

NuTeV
• neutrino experiment at Fermilab
• observed 3 dimuon events in decay region

DØ sets limits on pair production cross-section vs. lifetime
Excludes some interpretations of NuTeV result

Summary

• The Tevatron has an exciting program of searches for new phenomena using leptons
• I’ve shown some of the more recent ones
 • Trileptons, W’, Z’, RS gravitons, NLLP
• Many more not covered
 • RPV SUSY, technicolor, leptoquarks, charged massive stable particles and more
• Significant discovery potential remains
• Also, excellent preparation for initial LHC searches
• Now for some jets and photons…