

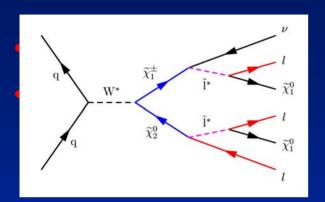
Searches for New Phenomena with Lepton Final States at the Tevatron

including charginos, neutralinos, excited leptons and unexpected signatures

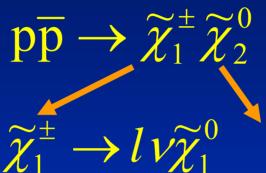
Todd Adams
Florida State University
for the CDF and DØ Collaborations
Moriond Electroweak
March, 2007

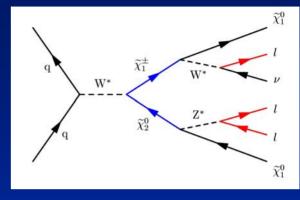
The path to new understanding is through discovery

Historically, lepton final states have led to numerous discoveries


Many possibilities = many searches

Outline

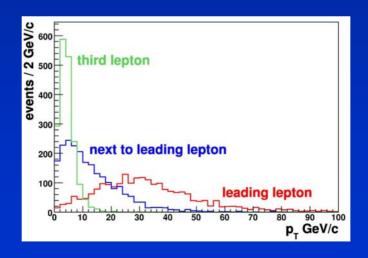

- SUSY Trileptons
 - combined final states
- W⁵
- Z'


- Excited electrons
- RS Gravitons
- NLLP
- Summary

Charginos and Neutralinos in Trileptons

R-parity conserved

$$\rightarrow l \, \nu \widetilde{\chi}_1^0 \quad \widetilde{\chi}_2^0 \rightarrow l \overline{l} \widetilde{\chi}_1^0$$


Trileptons:

Advantages

• small backgrounds

Disadvantages

- 3rd lepton is low p_T
- small cross-sectionx branching ratio

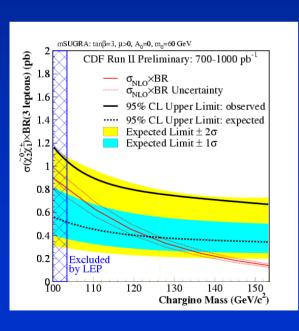
Techniques

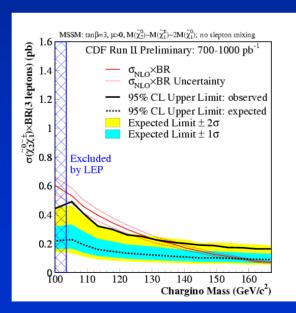
- all 3 leptons
- 2 leptons + track
- same-sign leptons

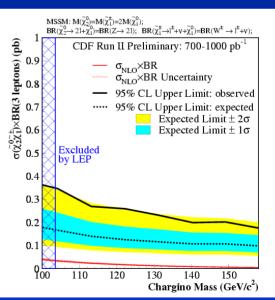
14 Combined Results

3lep	ee+l CEM	ee+l plug	eμ+l	μμ+l high p _T	μe+l CEM	μe+l plug	ee + track	μμ+l low p _T
Lumi (pb ⁻¹)	1034	954	1034	745	745	680	1013	976
Bkgd	$\begin{array}{c} 0.44 \pm \\ 0.08 \end{array}$	0.34 ± 0.10	0.28 ± 0.09	0.64 ± 0.18	0.42 ± 0.08	0.36 ± 0.07	0.97 ± 0.28	0.42 ± 0.12
Data	0	0	0	1	0	0	3	1

LS lep	ee LS	ee _{si} LS	e _{si} e _{si} LS	e _{si} μ LS	eµ LS	μμ LS
Lumi (pb ⁻¹)	993	993	993	971	971	1087
Bkgd	0.10 ± 0.10	0.50 ± 0.30	1.30 ± 0.30	1.70 ± 020	2.30 ± 0.50	0.90 ± 0.10
Data	1	2	1	4	4	1


SUSY Interpretation


mSUGRA (inspired) $\tan \beta = 3$, $A_0 = 0$, $\mu > 0$, $m_0 = 60$

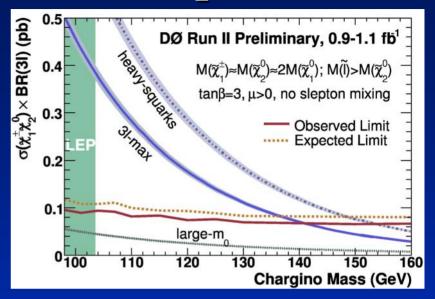

A. mSUGRA no limit yet

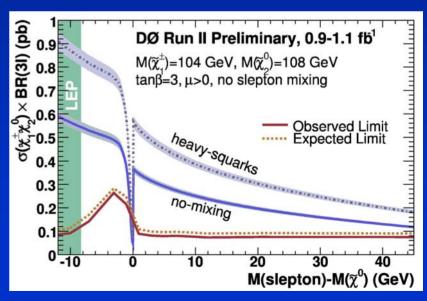
B. MSSM same as mSUGRA without slepton mixing $M(\chi_1^{\pm}) > 130 \; \text{GeV}$

4 Combined Results

New channels

• μμl and e μl

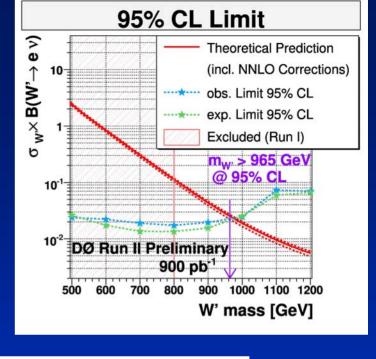

	Lumi (pb ⁻¹)	Bkgd	Data	
eel	1000	$\boldsymbol{0.76 \pm 0.67}$	0	
$\mu\mu l$	1100	0.32 ± 1.34	2	
μel	1100	0.94 ± 0.40	0	
LS $\mu\mu$	1000	1.1 ± 0.4	1	

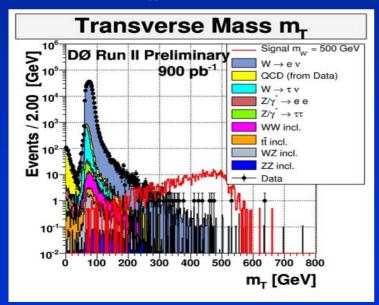


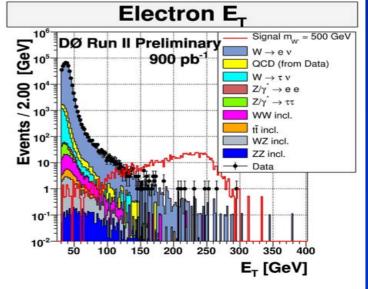
SUSY Limits from Trileptons

Use 3 SUSY models

- mSUGRA inspired
- $m(\chi_1^{\pm}) \approx m(\chi_2^{0}) \approx 2m(\chi_1^{0})$
- no slepton mixing
- large m₀
 - W/Z decays dominate
 - no sensitivity
- 3*l*-max
 - m(slepton) slightly larger than m(χ_2^0)
 - $M(\chi_1^{\pm}) > 141 \text{ GeV}$
- heavy squarks
 - relax scalar mass unification

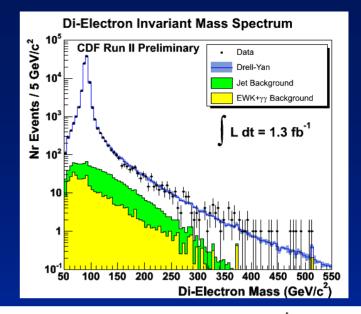

W' Search

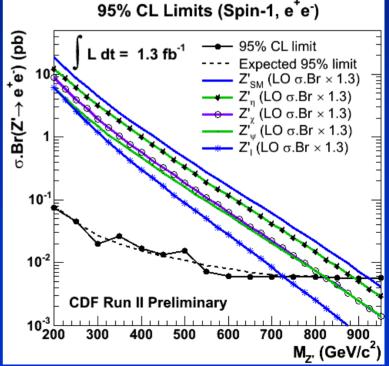

- Search for additional charged gauge boson
- Events w/ electron (E_T>30 GeV,
 MET>30 GeV, M_T>150 GeV)


Data = 630 events

Bkgd = $623 \pm 18^{+83}$ -75 events

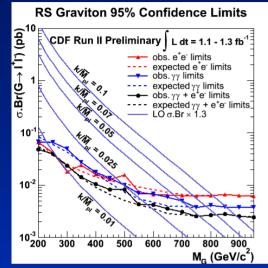
 M_W , > 965 GeV @ 95% CL

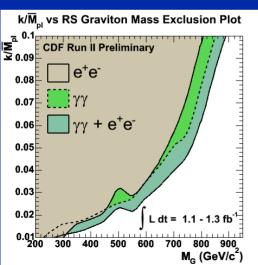




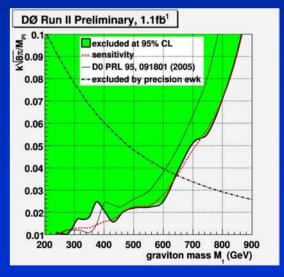
DiElectron High Mass Search

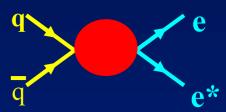
- Select events with two electrons (E_T>25 GeV)
- Search for narrow high mass resonances
 - 150<M(ee)<950 GeV
 - Model independent
 - No excess found
- Z' (spin 1) additional neutral gauge boson
 Z'_{SM}>923 GeV Z'_I>729 GeV Z'_Y>822 GeV Z'_χ>822 GeV Z'_η>891 GeV

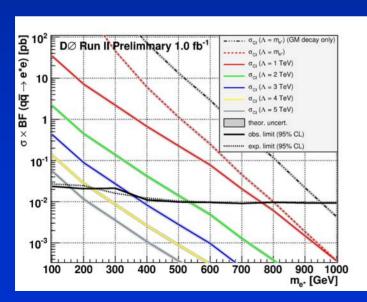


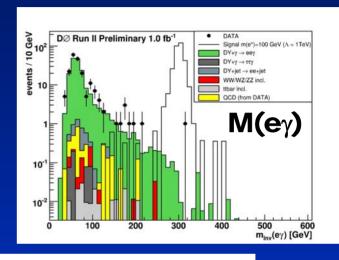


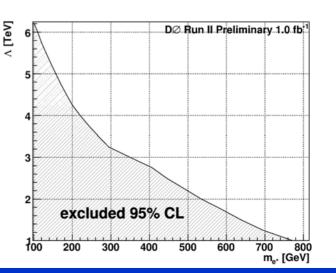
RS Gravitons



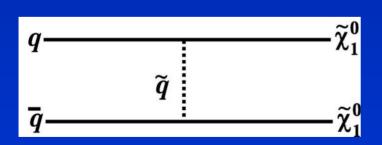

- Use extra dimensions to address hierarchy problem
- Resonant production of gravitons at Tevatron
- Combine dielectron w/ diphoton search
 - Diphoton is twice as sensitive (spin 2)
- CDF
 - $M_{\underline{G}} > 889 \text{ GeV for}$ $k/\overline{M}_{pl} = 0.1$
- D0
 - $M_{\underline{G}} > 865 \text{ GeV for}$ $k/\overline{M}_{pl} = 0.1$

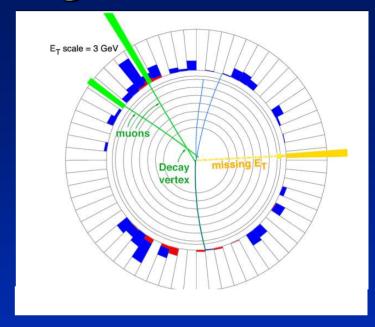


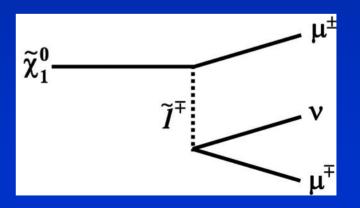



Excited Electrons

- Some models predict quarks and leptons are made of smaller pieces
 - allows excited states (e^*, μ^*, q^*, etc)
- Search in eey
 - possible decay mode e*→eγ
 - $p_T(e_1/e_2/\gamma) > 25/15/15 \text{ GeV}$
 - observed 259 events
 - expectation = $232 \pm 3 \pm 29$ events
- $m_{e^*} > 756 \text{ GeV}$

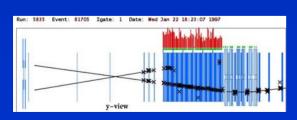


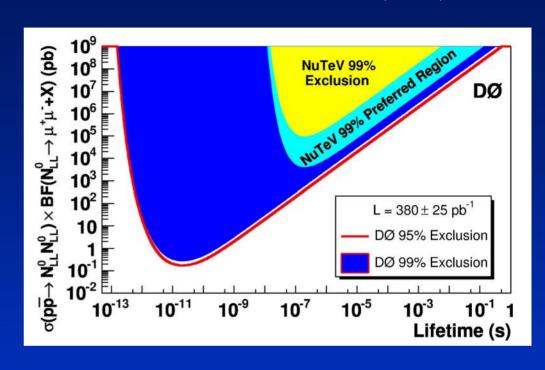




Search for Neutral, Long-lived Particles

- Search for pair production of two neutral particles
- Look for decay well away from production point
 - two isolated muons p_T>10 GeV
- Sample signal
 - RPV SUSY
 - χ_1^0 pair production


Limits on NLLP Production


Phys. Rev. Lett. 97 161802 (2006)

0 events observed $0.75 \pm 1.1 \pm 1.1$ expected

NuTeV

- neutrino experiment at Fermilab
- observed 3 dimuon events in decay region

DØ sets limits on pair production cross-section vs. lifetime

Excludes some interpretations of NuTeV result

Summary

- The Tevatron has an exciting program of searches for new phenomena using leptons
- I've shown some of the more recent ones
 - Trileptons, W', Z', RS gravitons, NLLP
- Many more not covered
 - RPV SUSY, technicolor, leptoquarks, charged massive stable particles and more
- Significant discovery potential remains
- Also, excellent preparation for initial LHC searches
- Now for some jets and photons...