

New Phenomena at DØ

Todd Adams

for the

Extra dimensions Z' Leptoquarks **SUSY**

Florida State University Lake Louise Winter Institute **DØ** Collaboration 2004

Feb. 2004

Searches for New Phenomena

annihilation \rightarrow pair production

The Standard Model is great, but leaves questions New physics necessary to increase our understanding.

New phenomena are our clearest window into new physics: SUSY, leptoquarks, string theory, GUTs, mass,...

At Tevatron:

or intermediate propagator (exotic X⁰)

(exotic YY)

Upgraded detectors Higher luminosity Higher energy

Preliminary results (through summer 2003)

Large Extra Dimensions

Why is M_{Pl} >> M_{Weak}?

Possible solution: large extra dimensions

At the Tevatron (pp): gravitons appear as contributions to di-lepton/ photon production

Gravitons are able to propagate in

 $M_{Pl}^2 = M_S^{n_{extra}+2} \times R_c^{n_{extra}}$

Current constraints require n_{extra}>1

 $M_{\rm S} = fundamental$ Planck scale

all dimensions

Feb. 2004

Included in many SM extensions: enlarged gauge structure, compositeness, more

Carry lepton & baryon number Fractional EM charge

Assume: intra-generational coupling only (e.g. 1st generation LQ (LQ1) \rightarrow eq, $\nu_e q$, 2nd generation LQ (LQ2) $\rightarrow \mu q$, $\nu_\mu q$)

1st Generation LQ in eejj

Luminosity = 135 pb^{-1}

Feb. 2004

1st Generation LQ in evjj

Luminosity = 121 pb^{-1}

Require:

1 electron w/ $E_T(e) > 35 \text{ GeV}$ $\geq 2 \text{ jets w/ } E_T(\text{jet}) > 25 \text{ GeV}$ missing $E_T > 30 \text{ GeV}$ $ST_{12} > 330 \text{ GeV}$ $M_T^{ev} > 110 \text{ GeV}$

 $ST_{12} = E_T^e + E_T + E_T^{j1} + E_T^{j2}$

Data: 3 events Bkgd: 4.19±1.0 events

M(LQ1) > 156 GeVfor $\beta=0.5$ Run 2 Preliminary

LQ1 Combined Limit

Feb. 2004

GMSB in $\gamma\gamma$ + **Missing Energy**

Luminosity = 128 pb^{-1}

Gauge mediated SUSY breaking with NLSP χ_0^1

Require:

2 photons w/ $E_T(\gamma)$ >20 GeV missing E_T >35 GeV remove events with likely mis-measured jets or electrons

Feb. 2004

Summary

- Lots of interesting preliminary results
 - Other analyses available on DØ website
- First publications this spring

Stay Tuned!

Topic	Prelim. Run 2	Runs I + 2
LED : ee and $\gamma\gamma$	M _S >1.28 TeV	>1.37 TeV
LED: μμ	M _S >880 GeV	
Ζ' : μμ	M(Z')>610 GeV	
Z' : ee	M(Z')>719 GeV	
LQ1 : eejj	M(LQ1)>231 GeV	>253 GeV
LQ1 : evjj	M(LQ1)>156 GeV	
LQ2: μμ j j	M(LQ2)>186 GeV	
$GMSB: \gamma\gamma + MET$	$M(\chi_0^1) > 80 \text{ GeV}$	