Searches for Long-lived Particles in Hadron Colliders

Todd Adams
Florida State University
APS April Meeting
April, 2007

1) Reasons to Search
2) Search Techniques
3) Summary
Why Look for Long-lived Particles at Colliders?

• Because we can…
• Because we might find something interesting…
 – “Who ordered that?” – I.I. Rabi
 – other examples: strange particles, J/Ψ, tau lepton
 – NuTeV result
• There are theoretical models which predict such particles…
Theoretical Models

• R-parity violating supersymmetry (RPV SUSY)
 – neutralino (χ_0^1): lightest supersymmetric particle (LSP)
 – lifetime depends of a parameter (λ_{122})

• Hidden valleys
 “Echoes of a Hidden Valley at Hadron Colliders”
 M. Strassler and K. Zurek hep-ph/0604261
 – Predicts new class of “valley” particles
 • includes neutral, long-lived, low-mass particles
 • $H \rightarrow ???$
 – Recommends program to search at Tevatron and LHC
NuTeV Result

• **NuTeV**
 – neutrino deep-inelastic scattering experiment at Fermilab

• Searched for decays of particles along with neutrino beam

• 3rd search found
 – 3 events decaying to two muons
 – expectation of 0.07 ± 0.01

• No explanation to date
Because We Can…
Collider Experiments

- tracking volume w/ magnetic field
- electromagnetic calorimeter
- hadronic calorimeter
- muon system w/ magnetic field

multi-purpose detector
Possible Searches at Colliders

- **Short-lived (< 1 cm) decays**
- **Very-long-lived (>>10 m) decays**
 - missing transverse energy (neutral particles)
 - slow moving, heavily ionizing (charged particles)
 - stopped particles (stopped gluinos)
- **Long-lived decays (in between)**
 - decays to stable particles (e.g. e, μ, γ, π, K)
 - decays to unstable particles (e.g. τ, b)

= already searched for at Tevatron
Detached Vertices and Kinks

- reconstruct highly-displaced vertices
 - well-beyond b-lifetime
 - can be multiple particles (e.g. decays to b-jets or taus)
- reconstruct tracks with a “kink”
 - find two “stubby” tracks which cross
 - need to separate from multiple scattering
Hadron Collider Experiments

<table>
<thead>
<tr>
<th></th>
<th>CDF</th>
<th>D0</th>
<th>Atlas</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqrt{s} (Tev)</td>
<td>1.96</td>
<td>1.96</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Tracking</td>
<td>silicon & drift chamber</td>
<td>silicon & scint. fibers</td>
<td>pixels, silicon, & straw tubes</td>
<td>pixels & silicon</td>
</tr>
<tr>
<td>Inner /outer radius (cm)</td>
<td>1.3/132</td>
<td>1.5/50</td>
<td>5/115</td>
<td>4/108</td>
</tr>
</tbody>
</table>

- **tracking volume w/ magnetic field**
- **electromagnetic calorimeter**
- **hadronic calorimeter**
- **muon system w/ magnetic field**
Two Track Technique:

1) identify events with two tracks
2) fit to a common vertex
3) measure decay length (radius)

\[r = \sqrt{(x - x_{PV})^2 + (y - y_{PV})^2} \]

- Use \(K_S^0 \rightarrow \pi^+\pi^- \) as control sample
- \(K_S^0 \) in QCD production at \(\sqrt{s}=0.9, 1.96, \) and 14 TeV
- Can study detached vertices beyond \(r=100 \) cm
Distance of Closest Approach

- Most tracking code assumes track originates near center of detector
- Ability to reconstruct tracks from detached vertices related to DCA
Sample “Hidden Valley” Model

- $H \rightarrow X^0 X^0$, $X^0 \rightarrow \mu\mu$
 - $M(H) = 140$ GeV, $M(X^0) = 20, 40, 60$ GeV
 - $c\tau(X^0) = 100$ mm
Sample SUSY Model

- RPV unconstrained MSSM
 - $M(\chi_0^1) = 10, 20, 40$ GeV
 - $\lambda_{122} = 0.001$
Summary

• Collider experiments have the ability to study long-lived particles
 – wide range of topics/techniques

• Decays within the detector require extra effort
 – reconstruct detached vertices
 – finding the tracks has issues such as lifetime, pT, opening angle and DCA
 • to determine sensitivity we need to take these into account
 – effort should be made to make experiments as sensitive as possible
Search for NLLP $\rightarrow \mu^+\mu^-$

- Search for events with two muons from highly displaced vertex
 - $p_T>10$ GeV
 - $5 < r < 20$ cm

 0 events observed
 $0.75 \pm 1.1 \pm 1.1$ expected

- Limits set on NLLP pair production cross-section \times branching ratio
 - does not exclude example RPV SUSY point
muons
neutral particle
neutral particle
The Standard Model

- well established
- more than 30 years of success
 - incomplete

- E.g.
 - We have no deep understanding of the parameters and their values
 - We don’t know the meaning of flavor and other quantum numbers.
Collider Experiments

<table>
<thead>
<tr>
<th></th>
<th>CDF</th>
<th>D0</th>
<th>Atlas</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>√s (Tev)</td>
<td>1.96</td>
<td>1.96</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Tracking</td>
<td>silicon & drift chamber</td>
<td>silicon & scint. fibers</td>
<td>pixels, silicon, & straw tubes</td>
<td>pixels & silicon</td>
</tr>
<tr>
<td>Inner/outer radius (cm)</td>
<td>1.3/132</td>
<td>1.5/50</td>
<td>5/115</td>
<td>4/108</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>Liquid Ar-U</td>
<td>Liquid Ar & Steel/ Scintillator</td>
<td>Pb-Tungston & copper/ scintillator</td>
<td></td>
</tr>
<tr>
<td>Inner/Outer radius (cm)</td>
<td></td>
<td>115/420</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Tracking volume w/ magnetic field**
- **Electromagnetic calorimeter**
- **Hadronic calorimeter**
- **Muon system w/ magnetic field**

April, 2007

Searches for Long-lived Particles
NuTeV
Neutrinos at the Tevatron

neutrino deep-inelastic scattering
\[\sin^2 \theta_w \]
structure functions
charm production

Fermilab E815
(1996-97)
A Neutrino Experiment...

NuTeV

- 10^{12} protons per minute (107 Watts)
- $\sim 15 \times 10^9$ neutrinos per minute (in five 2ms pulses)
- 700 ton detector located 1.4 km from neutrino production
Search Results…

- Neutral Heavy Leptons
 - $0.25 < M(\text{NHL}) < 2.2$ GeV
- Karmen anomaly
 - $M(\text{ee}) = 33.9$ MeV
- High mass $M > 2.2$ GeV
Third search: 3 events found

Expected background: 0.07 ± 0.01 events
$K_S^0 \rightarrow \pi^+\pi^-$
fit pairs of tracks to common vertex
require $r > 0.5$ cm

long lifetime $= 9.0 \times 10^{-11}$ s
natural source of neutral, long-lived particles

$M = 0.4983 \pm 0.0001$ GeV
$\sigma = 0.0171 \pm 0.0002$ GeV

$M = 0.4961 \pm 0.0002$ GeV
$\sigma = 0.0235 \pm 0.0005$ GeV
$\mathbf{K_S^0 \rightarrow \pi^+ \pi^-}$

Expected Lifetime

MC/Data is flat

\[
r = \sqrt{(x - x_{PV})^2 + (y - y_{PV})^2}
\]
Event Selection

Muons

• hits in all 3 layers of muon system
• cosmic ray timing cut
• central track
 – $\chi^2<4$, >13 CFT hits
• isolation
 – Calorimeter
 • $\Sigma E_{\text{cal}}(0.1<\Delta R<0.5) < 2.5$ GeV
 – Tracking system
 • $\Sigma E_{\text{trk}}(\Delta R<0.5) < 2.5$ GeV
• $p_T>10$ GeV

Luminosity

380 ± 25 pb$^{-1}$

Events

• dimuon trigger
• >1 muon
 – opposite signed
 – opening angle < 0.5 rad
• primary vertex
 – $|v_{x,y}|<0.3$ cm
 – $|v_z|<60$ cm

opening angle

April, 2007 Searches for Long-lived Particles
Event Selection

Muons
• segments in all 3 muon layers
• cosmic ray timing cut
• central track
 – $\chi^2<4$, >13 CFT hits
• isolation
 – $\Sigma E_{\text{cal}}(0.1<\Delta R<0.5) < 2.5$ GeV
 – $\Sigma E_{\text{trk}}(\Delta R<0.5) < 2.5$ GeV
• $p_T>10$ GeV
• $DCA_{XY}>0.01$ cm
• $DCA_Z>0.1$ cm

Events
• dimuon trigger
• >1 muon
 – opposite signed
 – opening angle < 0.5 rad
• primary vertex
 – $|v_{x,y}|<0.3$ cm
 – $|v_z|<60$ cm
• dimuon vertex
 – $\chi^2 < 4$
 – $r > 6\sigma_r$
 – $5 < r < 20$ cm
Signal Monte Carlo

m_1 = 3, 5, 8, 10
\tan\beta = 10 \quad \mu = -5000
M_2 = 200 \quad m_A = 500
M_3 = 400 \quad M(\text{squark}) = 300
\lambda_{122} = 0.01 \quad M(\text{other}) = 1500
\sigma = 0.022-0.025 \text{ pb}

RPV unconstrained MSSM
- LSP: neutralino (3-10 GeV)
- small \lambda_{122} = long lifetime (m or km)
 - decay in region: radius = 0-25 cm

\chi_0^1 \rightarrow \mu\mu\nu, \mu\nu\nu, e\nu\nu

p14.07.00 simulation
p14.06.01 recon
minbias = 0.4 events

April, 2007

Searches for Long-lived Particles
Search for Neutral, Long-lived Particles

- Search for pair production of two neutral particles
- Look for decay well away from production point
 - two isolated muons $p_T > 10$ GeV
- Sample signal
 - RPV SUSY
 - χ_1^0 pair production
• **Why do searches?**

• Why search for neutral, long-lived particles?

• How to search for neutral, long-lived particles at D0?

• What did we find?

• What does it mean?