Search for Long-Lived Particles at DØ

Todd Adams Florida State University July 19, 2005

Tevatron

- pp collisions at 1960 GeV
- detectors:
 DØ and CDF

recorded luminosity ~8 times Run I

Introduction

- Search for long-lived particles
 - "stable" = doesn't decay within the collider detector
 - can still decay
 - massive (>50 GeV)
 - charged particles = unique signature
- SUSY models
 - GMSB: stau
 - chargino
 - optimize for pair production

GMSB Model

- stable stau: NLSP (LSP is gravitino/goldstino)
- large value of C_{grav}
- Snowmass 2001 Model Line D

$\Lambda_{ m m}$	scale of SUSY breaking	19 to 100 TeV
M _m	messenger mass scale	$2\Lambda_{\rm m}$
N5	number of messenger fields	3
tanβ	ratio of Higgs VEVs	15
sign µ	sign of higgsino mass term	+1
C _{grav}	factor for effective mass of gravitino	>>1

Chargino Model

- small (<150 MeV) mass difference between lightest chargino and lightest neutralino
- stable chargino

 higgsino-like
 or
 gaugino-like

	higgsino-like	gaugino-like
μ (GeV)	60-300	10,000
M ₁ (GeV)	100,000	3M ₂
M_2 (GeV)	100,000	60-300
M ₃ (GeV)	500	500
tanβ	15	15
squark mass (GeV)	800	800

Charged Massive Stable Particles (CMSPs)

- Massive: >50 GeV
- Slow-moving: $\beta < 1$
- Charged: large energy deposition

Bethe-Block formula

$$\frac{dE}{dx} = \frac{4\pi N_0 z^2 e^4}{mv^2} \frac{Z}{A} \left[\ln \left(\frac{2mv^2}{I(1-\beta^2)} \right) - \beta^2 \right]$$

- Long-lived: decays outside of muon detector
- Will look like slow moving muon

DØ Detector

July 19, 2005

Muon System

- Detects minimum-ionizing particles
- Timing: speed of light particle will register at t=0 in all three layers
 - resolution is 2-3

ns

- Three layers
- Toroid between 1st and 2nd layers
- CMSP's will be out-of-time

July 19, 2005

Trigger

- Trigger requires two tracks in muon system
- Timing issues:
 - trigger gate is asymmetric
 - allows later particles
 - trigger gate ranges from 20-85 ns for different layers
 - causes inefficiency for slower moving particles
 - efficiency drops as mass increases
 - sufficient for our mass range (60-300 GeV)

Preliminary Dimuon Selection

Luminosity = 390 pb^{-1}

- muon $p_T > 15 \text{ GeV}$
- matched to track in central tracker
- scintillator hits in 2 of 3 layers of muon system
- at least one isolated muon
- $\Delta \phi > 1.0$ radians
- cosmic ray muon rejection

Muon Speed

- Calculate speed of muon at each layer
 - -v = d/t (v in units of c)
 - $-\sigma_v$ from timing error
- Calculate average velocity for each muon
- Calculate speed χ^2

$$\chi^{2} = \sum_{layer} \frac{(v_{avg} - v_{layer})^{2}}{\sigma^{2}}$$

• Require $\chi^2 < 4$

Speed Significance

significance = $\frac{1 - \text{speed}}{\sigma_{\text{speed}}}$

July 19, 2005

Backgrounds

- Z/Drell-Yan is major background

 no natural source of slow-moving high-p_T particles
- Use data to estimate background
 - use Z-peak events for timing distribution
 - use negative time
 events for invariant
 mass distribution

Transverse Momentum

DØ Run II Preliminary

Signal has larger p_T

July 19, 2005

SUSY05 – T. Adams

Dimuon p_T vs Significance Product

• Significance product: $Sig(\mu_1) \times Sig(\mu_2)$

Analysis Results

Stau Mass (GeV)	Background Estimate	Data Events
60	$13.6 \pm 0.7 \pm 0.5$	13
100	$0.66 \pm 0.06 \pm 0.02$	0
150	$0.69 \pm 0.05 \pm 0.02$	0
200	$0.60 \pm 0.04 \pm 0.02$	0
250	$0.47 \pm 0.03 \pm 0.02$	0
300	$0.61 \pm 0.05 \pm 0.02$	0

• Background estimated using data

stau Cross-section Limit

Charginos look like stau's

Use same analysis

Chargino Limits

Higgsino-like

Gaugino-like

M > 140 GeV

M > 174 GeV

DØ RunII Preliminary

July 19, 2005

SUSY05 – T. Adams

19

Effect of Lifetime

• "Short" lifetime \rightarrow decay within detector

Conclusions

- DØ has performed a search for charged, massive stable particles
 look for slow moving particles
- Set limits on stau and chargino production – best limits on chargino mass

July 19, 2005

SUSY05 – T. Adams