$\mathcal{A R I S} \mathcal{T O} \mathcal{T E L} \mathcal{A N} \mathcal{P H} \mathcal{S}$ I CS

- Aristoteles (Aristotle) (384-322 BC) had very strong influence on European pfilosopfy and science;
n everything on Earth made of (mixture of) four elements: earth, water, air, fire
n everyelement has a "naturalplace":
u earth at center of Earth,
u water above earth,
u air above water,
u fire above air;
n celestialbodies (stars, planets, Moon) made from fiftrelement, "ether", which also fills space between them; ether is perfect, incorruptible, weightless;
n two kinds of motion of things on Earth: "natural" and "violent" motion
n naturalmotion: things tend to move towards their natural place. natural motion fappens by itself, needs no pust/pull (e.g. stone falls).
n violent motion: = motion contrary to naturalmotion; needs effort (external pusti or pull)
n celestialmotion $=$ natural motion of ether; natural motion of bodies made from ether is circular motion, regular and perpetual

Problems witf aristotelian pfysics:

- Galileo Galilei's trought experiments and realexperiments:
n falling bodies:
u according to Aristoteles, heavy bodies (contain more earth element) fall faster than lighter bodies
u observation: fall equally fast if they fave same shape and size
u Galile i: difference in speed of differently shaped falling bodies due to air resistance
n thought experiment about two falling bodies - "reductio ad absurdum":
u consider two bodies, one light (L), one heavy (\mathcal{H}) Aristoteles: Lfalls more slowly than $\mathcal{H} \Rightarrow \mathcal{L}$ put under \mathcal{H} sfould slow down fall of $\mathcal{H} ; \Rightarrow \mathcal{H}$ with \mathcal{L} under it should fall more slowly than \mathcal{H} alone; but $(\mathcal{L}+\mathcal{H})$ heavier than \mathcal{H} alone \Rightarrow sfould fall faster than \mathcal{H} alone $\quad \Rightarrow$ contradiction.
n pendulum: ball suspended on string reaches same fieight as that to which it was lifted to set it in motion (not quite; - due to friction);
height independent of path (pendulum with shortened string)
n ball rolling on incline d plane:
u ball rolling down incline d plane speeds up;
u ball rolling up slows down; rate of slowing down depends on steepness of incline: less stee $p \Rightarrow$ longer distance travelled; extrapolation to zero slope of incline: ball willgo on forever

GALILEI'S NNEW SCIENCE

- Gatileo Galilei (1564-1642) -- founder of modern science;
n new metrods introduced by Gatilei include:
a controlled experiments designed to test specific Kypotheses
u idealizations to eliminate any side effects that might obscure main effects
u limiting the scope of enquiry - consider only one question at a time;
u quantitative methods - did carefulmeasurements of the motion of falling Godies.
n from observations and thought experiments, generalizes to two ne wlaws:
- $\mathcal{L A W} O \mathcal{F} I \mathfrak{N E} \mathcal{E T} I \mathfrak{A}$:
n without externalinfluence (force) acting on it, a body will not change its speed or direction of motion; it will stay at rest if it was at rest to begin with.
n inertia $=$ property of bodies that makes them obey this law, their ability to maintain their speed (or stay at rest)
- $\mathcal{L A W} O \mathcal{F}$ fallid \mathfrak{N} :
n if air resistance is negligible, any two objects that are dropped together will fall together; speed of falling inde pendent of weight and material.

$\mathfrak{N E W} \mathcal{T} O \mathcal{N}$ AN $\mathcal{M E C \mathcal { H } \mathcal { A } I C S}$

- Starting from Law of inertia (René Descartes, Galileo Galilei), Isaac $\mathcal{N e}$ wton developed a new way of looking at nature.
- Principia Mathematica Prilosophiae Naturalis (1687) (Mathematical Principles of Natural Prilos ophy):
n Gased on a small number of concepts and principles, provide a clear and quantitative explanation of a vast array of phenomena.
n give a unification of our view of nature - the first major synthesis of science
n explain: motion of bodies on Earth and in heaven (falling bodies, Moon, plane ts, comets,...
n Keyconcepts:
u velocity
u acceleration,
u force
u inertialmass, gravitationalmass
n Key principles:
u law of inertia (Newton's 1st law of motion)
u law of motion (forces) (Newton's 2nd law of motion)
u law of force pairs (action=reaction) (Newton's 3rd law of motion')
u law of gravity

$\mathcal{F O}$ RCE

n law of inertia: no force \Rightarrow no acceleration;
n if acceleration-there must be force;
n we say: body exerts force on another if it forces the other body to accelerate;
n note there is some circularity in this definition, but definition is justified by its usefunness and predictive power;
${ }^{n}$ force is not a property of a body;
n if more then one force acting \Rightarrow effects add \Rightarrow forces add.. "net force";
n acceleration is in direction of net force; two or more forces cancompensate ("balance") each other (e.g. two equally strong forces acting in opposite directions)
n Kinds of forces:
u push, pull, shove, Kick, tap
u friction, air resistance
u gravity
u electric
u magnetic
n Aristotelian view: forces cause velocity
(force necessary to maintain uniform motion).
n Newtonian view: forces cause acceleration
(force necessary to change motion)

Forces, Newton's 2nd law

- Observations:
n stronger force \Rightarrow larger acceleration
n more "massive" object \Rightarrow smaller acceleration
n apply more than one force \Rightarrow net force determines acceleration
n inertia $=$ resistance of object against being accelerated;
(inertial) mass $=$ measure of amount of inertia, observed to be proportional to amount of matter - . set them equal;
n unit of mass $=$ Kilogram $=\mathrm{kg}$ (original definition: $=$ mass of 1 (iter of water)
- observations can be summarized by: Newton's 2nd law: $\mathcal{F}=\mathcal{K} m$ a
n $K=$ proportionality constant; by choice of units, can make $K=1$
n note that \mathcal{F}, a are vectors, and acceleration a is in direction of force \mathcal{F}
n unit of force $=$ ne wton; 1 ne wton $=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}{ }^{-2}$
n in Englist system: unit of force $=$ pound $=4.448 \mathfrak{N}$
n note: the mass m in Newton's 2nd law is the "inertial mass"
- weight vs mass:
n mass of object = quantity of its inertia;
n weight of an object $=$ netgravitationalforce on an object; depends on environment;
n our weight on the Moon is $1 / 6$ of that on the surface of the Earth;
n our weight on a figh mountain is smaller than at sealevel;
n our weight in a satelfite in orbit around Earth $=0$;
n our mass is always the same.

$\mathcal{N e}$ wton's 3 rd law (Law of force pairs - action and reaction)

- "actio = reactio',
n when a body exerts a force on a second body, the second body exerts an equally strong force on the first body, directed opposite to the first force;
- examples:
n apple and Eartri:
u Earthexerts force on apple \Rightarrow apple exerts force on Earth;
u Eartf's large mass \Rightarrow Eartf's accelerationvery small
n 6ook on table: 2 pairs of forces:
u Earth exerts gravitationalforce on book, 6ookexerts gravitationalforce on Earth.
a bookexerts force (=its weight) on table; table exerts equal and opposite force on book ("contact force", "normalforce")
u net force on book $=0 \Rightarrow$ book stays at rest on table (does not fly away, does not fall throught table)
u (contact force caused by interaction of electrons in atoms of 6ookwith those in table)
n walking: exertforce onground \Rightarrow ground exerts force on you;
rowing, driving, recoil of agun, rocket propulsion
- Note:
n Newton's 3rd law closely related to momentum conservation

