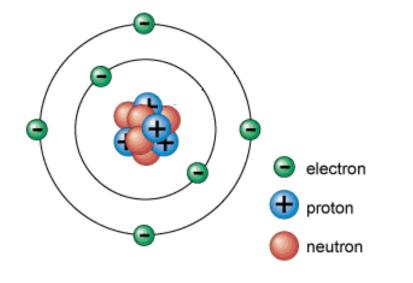
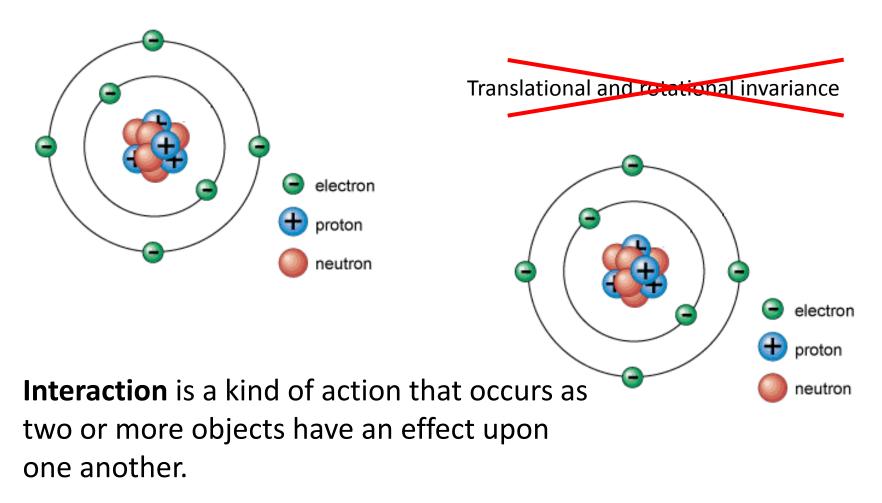
What is Condensed Matter Physics?

Can we manipulate materials?

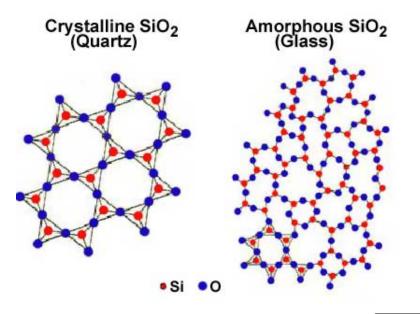
Can we design new materials?

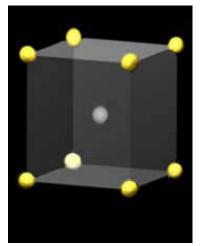

Christianne Beekman

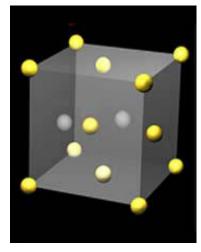
FSU Physics Department

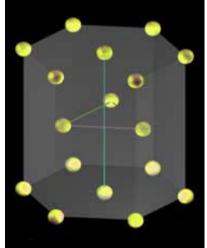


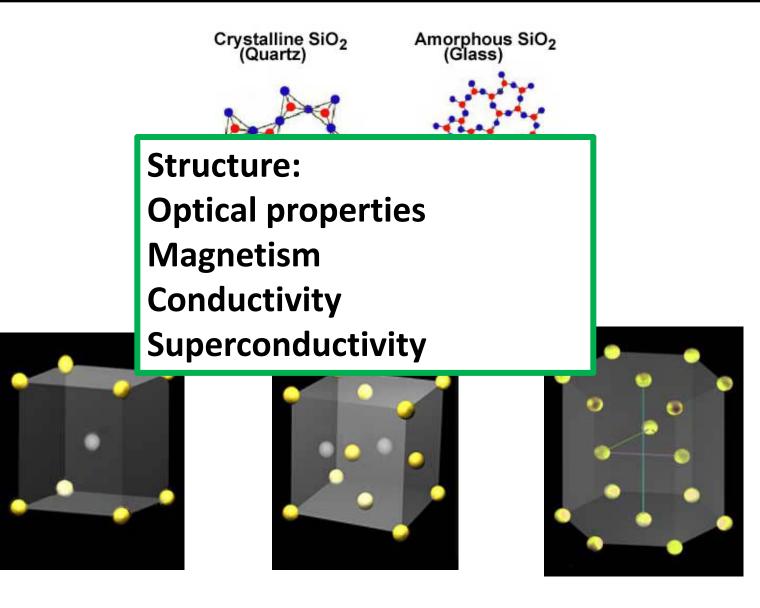
Translational and rotational invariance

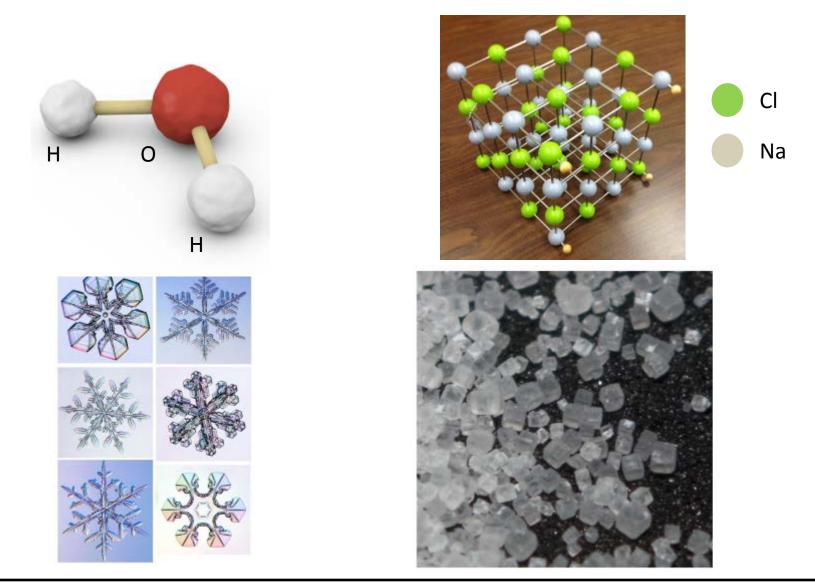


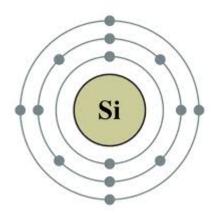

Emergent properties

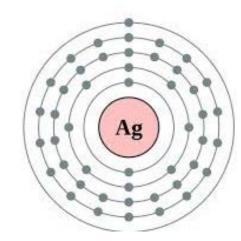

According to Wikipedia:


"Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of constituents in a system is **extremely large** and the **interactions** between the constituents are **strong**. The most familiar examples of condensed phases are solids and liquids, which arise from the electromagnetic forces between atoms. "


> Why do we study it? Interactions \rightarrow complexity Complexity \rightarrow functionality






Why is glass transparent?


Glass = amorphous solid

Why are metals shiny?

It is ubiquitous

It is useful, we can use it to explain processes and objects that surround us

The knowledge from research and discovery are used to improve our everyday lives.

Can we Manipulate Materials?

Slide from G. Boebinger

The "Iceman" Lived at the Transition from Neolithic Age to Copper Age

The Iceman's Axe

At the top of the carefully smoothed **yew** haft is a forked shaft into which the 9.5 cm blade was fixed with **birch tar** and tightly bound with thin **leather straps**. The blade is made of almost pure **copper**. The narrow end was produced by cold-hammering after the blade was cast.

ALL OF THESE MATERIALS ARE FOUND MATERIALS

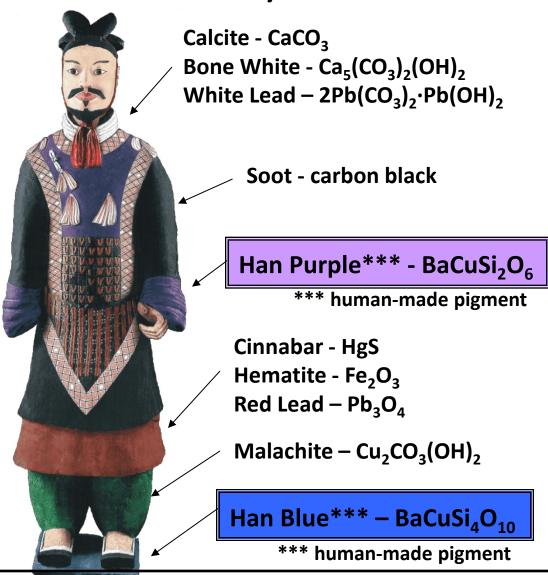
3300 B.C.E.

The Bronze Age (c. 3000 BCE – c. 1200BCE)

Bronze = Copper + 10% Tin Required long-distance trade routes

From Saphar-Kharaba Late Bronze Age Cemetery (c. 1300 BCE) in Southern Georgia (*The country, not the state*)

Iron Age (c. 1200 BCE – 400 AD)


From Tutankhamun's Tomb (c. 1323 BCE)

Slide from G. Boebinger

Human Invention of Materials for Aesthetic Heronation (700 BCE – 200 AD)

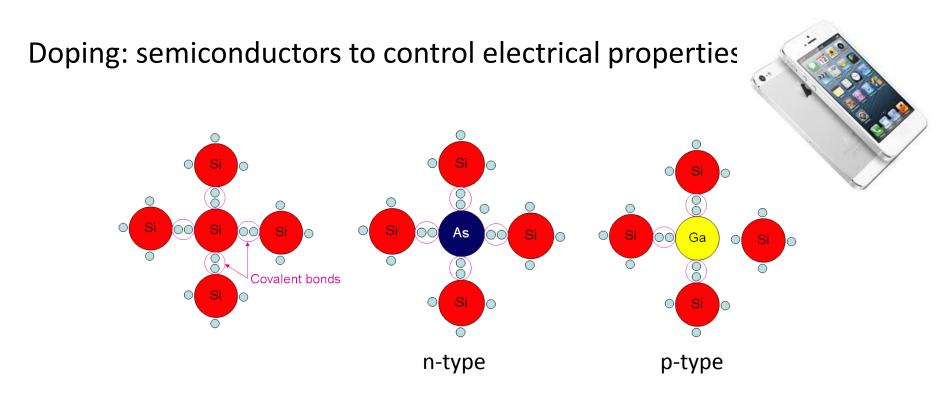
Han Purple: the first synthetic purple pigment. Likely made from a mix of barium and copper minerals, quartz, and a lead salt as an extra ingredient that acts as a catalyst and flux. The mixture needed to be heated to between 900 and 1000 C – any hotter and Han blue results, which is closely related to Egyptian blue (CaCuSi₄O₁₀), the oldest known synthetic pigment in the world.

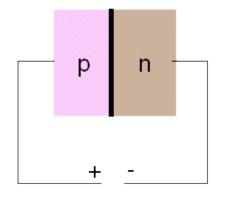
Slide from G. Boebinger

Limitation of the then State-of-the-Art Material... CAST IRON

> Cast iron building architecture reaches six stories

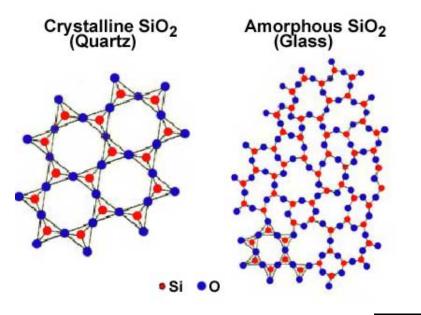
...Cast Iron can build Soho

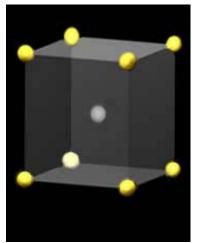


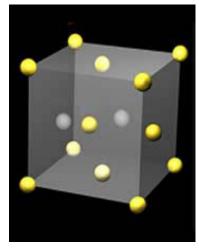

It takes STEEL to build Midtown

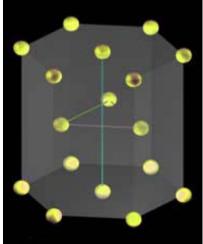
Research and development to improve steel continues at the MagLab

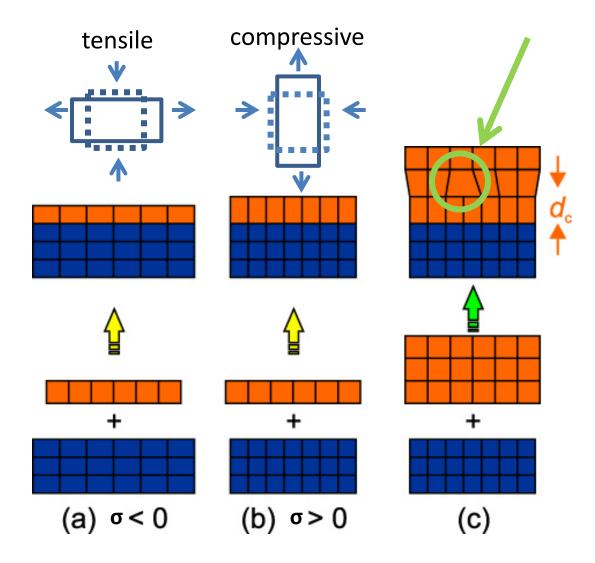
Diode, Transistors \rightarrow iphones etc.

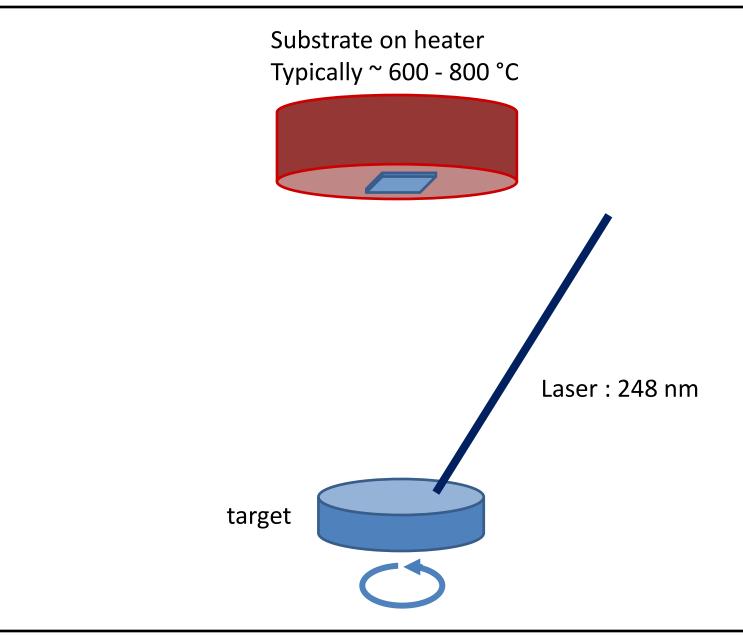

Whenever you put different atoms together interesting properties emerge

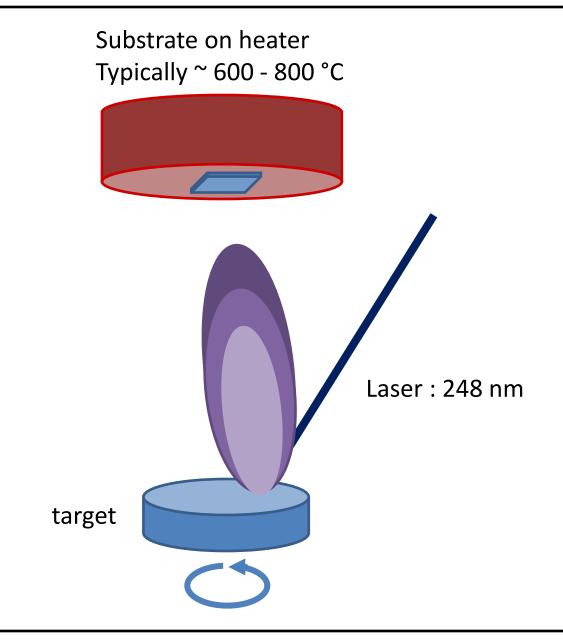

	GROUP		PF	-RI	OD	OIC	ТΑ	BI	F ()F	ΤН	E F	EL F	M	=N ⁻	ΓS		18 VIIIA	
D	1 1.0079							http://www.periodni.com 2 4.002											
1 PERIOD	H						Me	Hetal Semimetal Nonmetal											
Р	HYDROGEN	2 11A	13 IA										13 IIIA					HELIUM	
	3 6.941	4 9.0122	ATOMIC N	ATOMIC NUMBER 5 10.811				Alkaline earth metal Halogens element Transition metals Noble gas					5 10.811 B	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180	
² Li Be _{SYME}				YMBOL	BOL			Lanthanida			NDARD STATE (25 °C; 101 kPa)			C	Ν	0	F	Ne	
		BERYLLIUM	BORON					Actinide Ne - gas Fe - solid					BORON 13 26.982	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON	
	11 22.990	12 24.305		ELE	(ENT NAME		ι	Hg - liquid TC - synthetic						14 28.086	15 30.974	16 32.065	17 35.453	18 39.948	
3	Na	Mg												Si	Р	S	Cl	Ar	
	SODIUM	MAGNESIUM 20 40.078		4 IVB	5 VB		7 VIIB 25 54.938	8 26 55.845	9	10 28 58.693	11 B 29 63.546			SILICON	PHOSPHORUS	SULPHUR 34 78.96		ARGON	
4						24 51.996							31 69.723	32 72.64	33 74.922		35 79.904	36 83.798	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	POTASSIUM 37 85.468	CALCIUM 38 87.62	39 88.906	40 91.224	VANADIUM 41 92.906	CHROMIUM 42 95.96	MANGANESE	IRON 44 101.07	COBALT 45 102.91	NICKEL 46 106.42	COPPER 47 107.87	ZINC 48 112.41	GALLIUM 49 114.82	GERMANIUM	ARSENIC 51 121.76	SELENIUM 52 127.60	BROMINE 53 126.90	54 131.29	
5				Zr	Nb		()		Rh				-				T		
Ũ	RUBIDIUM	Sr	Y	ZIRCONIUM	1.110	Mo	TC	Ru	RHODIUM	Pd	Ag			Sn	Sb	Te		Xe	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	CAESIUM	BARIUM	Lanthanide			TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	
	87 (223)	88 (226)	89-103	104 (267)	105 (268)	106 (271)	107 (272)	108 (277)	109 (276)	110 (281)	111 (280)	112 (285)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()	
7	Fr	Ra	Ac-Lr	IRſ	IDlb	Sg	IBlh	IHIs	Mit	Ds	Rg	Cm	Wmí:	171	Uun	ILv	Ums	Uuo	
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM	COPERNICIUM	UNUNTRIUM	FLEROVIUM		LIVERMORIUM	UNUNSEPTIUM	UNUNOCTIUM	
																C	opyright © 2012	2 Eni Generalić	
				57 138 91	DE 58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168 93	70 173.05	71 174 97	
 Pure Appl. Chem., 81, No. 11, 2131-2156 (2009) Relative atomic masses are expressed with 				_				(Tb							
five significant figures. For elements that have no stable nuclides, the value enclosed in				La	Ce	Pr	Nd	Pm promethium	Sm	Eu	Gd GADOLINIUM	- 10	Dy	Но	Er	Тт ТНИЦІИМ	YD	Lu	
brac	kets indicates	ets indicates the mass number of the			SERIUM	FINASEODTMIOM		FROMETHIOM	SAMARIUM	EUROPIUM	GADOLINIOM	TERBIUM	DYSPROSIUM	HOLMIOM		HOLIOM	TIERBIOM	LUTETIUM	
longest-lived isotope of the element. However three such elements (Th, Pa and U) do have a characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated.				89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cſ	Es	Fm	Md	No	Lr	
				ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM	

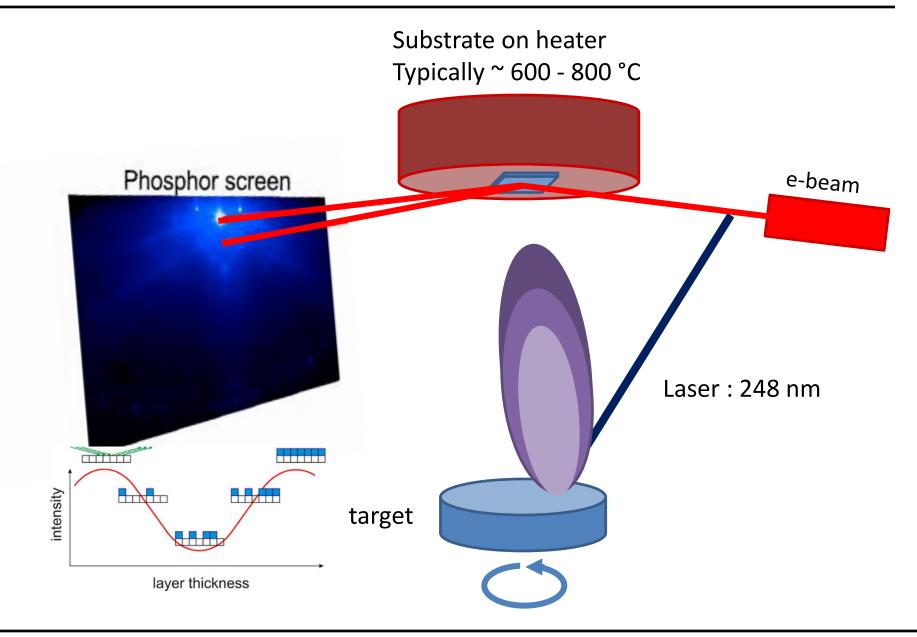

Doping and impurities


External perturbations: temperature and applied fields

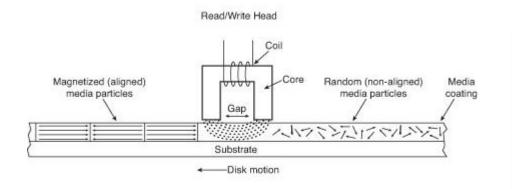

External pressure: hydrostatic and strain



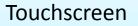



How do we make thin films?

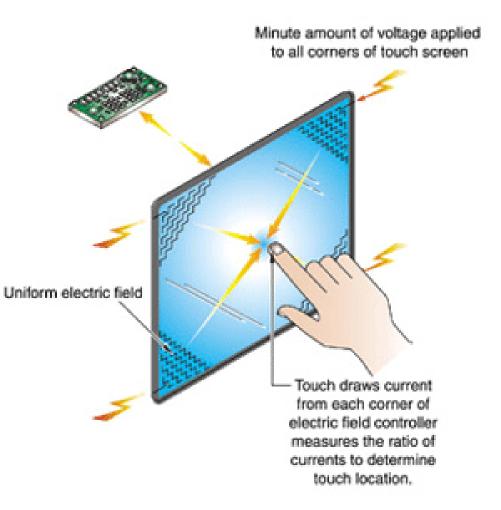
How do we make Materials?



How do we make Materials?

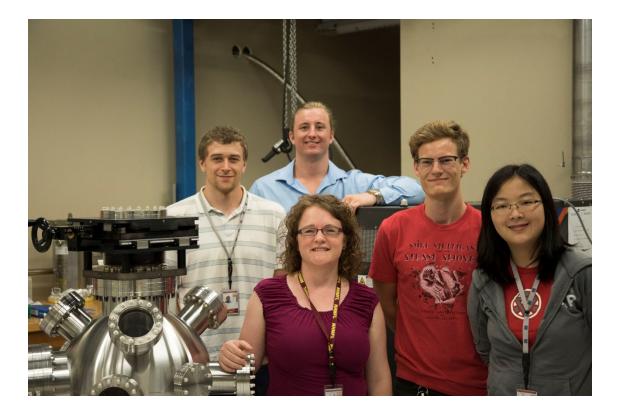


Thin Films: Applications



Older Hard drive Locally change magnetization in a magnetic particles through applied magnetic field. Basically an electromagnet

Indium Tin Oxide is transparent like glass but is also conductive. Oxygen stoichiometry determines the conductivity. Basically n-type semiconductor.



Investigate the effect of doping and impurities

Apply Strain to materials that have never been grown in thin film form

External perturbations: temperature and applied fields

Expand our knowledge about the Physics of materials

We are constantly making new materials and pushing the boundaries of condensed mater physics