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Very special time for particle physics

Two hadron colliders teamed in the discovery of new physics:

• the Tevatron collected high quality data at
√
s = 1.96 TeV;

• the Large Hadron Collider (LHC) very successfully operated at
√
s = 7, 8 TeV, will reach the designed

√
s = 13− 14 TeV starting in

2015, eventually collecting more than 100 times the data of the Tevatron.

Because ..... E = mc2 (!) we do expect to see new particles and to be able to

identify them with reasonable accuracy.







The Standard Model of particle physics

“The Standard Model is a quantum field theory based on the local symmetry

group SU(3)× SU(2)× U(1).”

SU(3)c → strong force (g)

SU(2)L × U(1)Y electroweak force (W,Z, γ)

particle multiplets:
(

νe

e

)

L

,

(

u

d

)

L

↔

(

u u u

d d d

)

L
︸ ︷︷ ︸

SU(3)

}

SU(2)

eR , uR = (u u u)R , dR = (d d d)R

Masses induced by coupling to the Higgs particle(?)



The story begins in 1964 . . .

with Englert and Brout; Higgs; Hagen, Guralnik and Kibble



The Higgs Field and Mass

To understand the Higgs mechanism,

imagine that a room full of physicists

quietly chattering is like space filled

with the Higgs field ...



... a well known physicist walks in, cre-

ating a disturbance as he moves across

the room and attracting a cluster of ad-

mirers with each step ...

... this increases his resistance to move-

ment, in other words ... he acquires

mass! ... just like a particle moving

through the Higgs field ...



... if now a rumor crosses the room, ...

... it creates the same kind of cluster-

ing, but this time among the scientists

themselves. In this analogy the Higgs

field has materialized and acquired a

mass itself!



Light SM Higgs boson strongly favored

Precision measurement provides an invaluable tool to test the consistency of

the SM.
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Confirmed by direct searches! SM Higgs-like particle discovered at
the LHC with MH = 125− 126 GeV
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plus exclusion limits (95 % c.l.) extended to:

⊲ 110 GeV < MH < 122.5 GeV , 127 GeV < MH < 600 GeV (CMS)

⊲ 111.4 GeV < MH < 122.1 GeV , 129.2 GeV < MH < 541 GeV (ATLAS)





How can we read these events? How can we tell signal
from background?



Higgs boson production at hadron colliders
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The basic picture of a pp̄, pp → X high energy process . . .
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where the short and long distance part of the QCD interactions can be

factorized and the cross section for pp, pp̄ → X can be calculated as:

σ(pp, pp̄ → X) =
∑

ij

∫

dx1dx2fi
p(x1)fj

p,p̄(x2)σ̂(ij → X)

−→ ij → quarks or gluons (partons)
−→ f

p

i (x), f
p,p̄

i (x): Parton Distributions Functions: probability densities

(probability of finding parton i in p or p̄ with a fraction x of the original

hadron momentum)
−→ σ̂(ij → X): partonic cross section



Theoretical predictions of SM Higgs production have been crucial
to discovery: synergy between theory and experiments.
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LHC Higgs Cross Sections Working Group

⊲ highly refined predictions including all known QCD and EW effects on total

and differential cross sections available for all production modes;

⊲ directly used to compare with data at discovery time;

⊲ now used to study properties of discovered particle and identify it

unambiguously.



Summary: some important facts

• The discovery of a Higgs particle has been an incredible
adventure that has seen the joint effort of decades of theoretical and

experimental work coalesce and give amazing results.

• It has shown the impact of precise theoretical predictions when

compared with experimental measurements for

⊲ discovery of new physics (Higgs boson, Supersymmetry, . . .)
⊲ precision measurements of masses, coupling . . .

• Further developments in QCD and EW calculations are under way to

face the challenges of Run II of the LHC, aiming at

⊲ testing existing techniques on new problems;
⊲ developing new techniques and new algorithms;
⊲ understanding the comparison with data.


