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Quantum physics
(quantum theory, quantum mechanics)

Part 2
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Summary of 1st lecture
 classical physics explanation of black-body radiation

failed (ultraviolet catastrophe)

 Planck’s ad-hoc assumption of “energy quanta”

of energy Equantum = h, leads to a radiation spectrum
which agrees with experiment.

 old generally accepted principle of “natura non facit
saltus” violated

 Other evidence for “quantization”:

Photoelectric effect (Einstein: explained by “photon”
hypothesis)

Atomic spectra

 stability of atom

 Quantum theory born as attempt to address these
observations
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Outline

 Recap

Steps toward QM

Matter waves

Quantum mechanics

Schrödinger equation

derivation of SE from classical wave equation

Heisenberg's matrix mechanics

postulates of quantum mechanics

examples of solutions to Schrödinger equation

uncertainty (indeterminacy) principle
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Outline (2)
quantum mechanics and atoms

quantum mechanics of the hydrogen atom

periodic table

Compton scattering

More on quantum mechanics

postulates of quantum mechanics

the problem of measurement

probability amplitudes and quantum
interference

the double slit experiment

o classical and QM interpretations
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Outline (3)

Interpretation of quantum mechanics

Discussion of double slit experiment

wave particle duality, principle of
complementarity

Copenhagen interpretation

Other interpretations ?

Atoms in magnetic field

Stern Gerlach experiment

 Spin
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Steps towards QM

Planck: Vibrating atoms have only certain
energies:

o E = hf or 2hf or 3hf,….

Einstein: Energy is quantized in particles called
photons:

o E = hf

Bohr : Electrons in atoms can have only certain
values of energy.

For hydrogen:

De Broglie: matter waves
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Momentum of a photon

 Relativistic relationship between a particle’s
momentum and energy: E2 = p2c2 + m0

2c4

 For massless (i.e. restmass = 0) particles
propagating at the speed of light:

E2 = p2c2 , E = pc

 For photon, E = h

 momentum of photon = h/c = h/,

  = h/p

 “(moving) mass” of a photon:
E=mc2  m = E/c2 = h/c2

(photon feels gravity)
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Matter waves
 Louis de Broglie (1925): any moving particle has wavelength

associated with it:  = h/p

 example:

o electron in atom has   10-10 m;

o car (1000 kg) at 60mph has   10-38 m;

o wave effects manifest themselves only in interaction with things of
size comparable to wavelength  we do not notice wave aspect
of us and our cars.

 note: Bohr's quantization condition for angular momentum is
identical to requirement that integer number of electron
wavelengths fit into circumference of orbit.

 experimental verification of de Broglie's matter waves:

o beam of electrons scattered by crystal lattice shows diffraction
pattern (crystal lattice acts like array of slits);
experiment done by Davisson and Germer (1927)

o Electron microscope
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QUANTUM MECHANICS
new kind of physics based on synthesis of dual

nature of waves and particles; developed in
1920's and 1930's.
Schrödinger’s “wave mechanics”

(Erwin Schrödinger, 1925)
o Schrödinger equation is a differential equation for

matter waves; basically a formulation of energy
conservation.

o its solution called “wave function”, usually denoted by ;
o |(x)|2 gives the probability of finding the particle at x;
o applied to the hydrogen atom, the Schrödinger equation

gives the same energy levels as those obtained from the
Bohr model;

o the most probable orbits are those predicted by the Bohr
model;

o but probability instead of Newtonian certainty!
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Classical wave equation
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Schrödinger equation

 Energy

 De Broglie

 Classical wave equ.
+ de Broglie

 Schrödinger equation

 Energy operator

(Hamiltonian)

Momentum operator
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QM : Heisenberg

 Heisenberg’s “matrix mechanics”
(Werner Heisenberg, 1925)

o Matrix mechanics consists of an array of quantities
which when appropriately manipulated give the
observed frequencies and intensities of spectral
lines.

o Physical observables (e.g. momentum, position,..)
are “operators” -- represented by matrices

o The set of eigenvalues of the matrix representing an
observable is the set of all possible values that could
arise as outcomes of experiments conducted on a
system to measure the observable.

o Shown to be equivalent to wave mechanics by
Erwin Schrödinger (1926)
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Postulates of Quantum Mechanics
The state of a quantum mechanical system is completely
specified by its wavefunction (or state function), x,t)

For every classical observable there is a linear, Hermitian
operator in quantum mechanics

In any measurement associated with an operator, the only
values observed are eigenvalues of the operator,

The average values of an observable is given by its
expectation value,

The wavefunction obeys the Schrödinger equation

H = “Hamiltonian” = energy operator =

*A A d  
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Potentials and Quantization (1)

• Consider a particle free to move in 1 dimension:

x

pCase: ‘Free’ Particle

Potential V = 0

Schrödinger Equation becomes:
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Potentials and Quantization (2)

position of the particle is constrained by a
potential

Case: “Particle in a Box”

 V = 0 for 0 ≤ x ≤ L, V=  for all other x

 The possible position of particle is limited to the
dimensions of the box, 0 to L

x

0

inf.

0 L
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http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/pbox.html
http://quantummechanics.ucsd.edu/ph130a/130_notes/node136.html
http://en.wikipedia.org/wiki/Particle_in_a_box

Particle in a 1-Dimensional Box
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QM Solution for the particle in a box

What does the energy
look like?
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Example: dye molecule
dye molecule, the length of which can be

considered as the length of the “box” to which
electron is limited

 L≈ 8Å=0.8 nm

Wavelength
corresponding to
transition n=1 to n=2:

Observed value is 680 nm
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Uncertainty principle
Uncertainty principle: (Werner Heisenberg, 1925)

o it is impossible to simultaneously know a particle's exact position and
momentum p x  ħ/2

h = 6.63 x 10-34 J  s = 4.14 x 10-15 eV·s
ħ = h/(2) = 1.055 x 10-34 J  s = 6.582 x 10-16 eV·s

(p means “uncertainty” in our knowledge
of the momentum p)

o also corresponding relation for energy and time:
E t  ħ/2  (but meaning here is different)

 note that there are many such uncertainty relations in
quantum mechanics, for any pair of “incompatible”

(non-commuting) observables (represented by “operators”)

 in general, P Q  ½[P,Q]
o [P,Q] = “commutator” of P and Q, = PQ – QP

o A denotes “expectation value”
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Example of Heisenberg Uncertainty:

 What is the uncertainty in velocity for an electron
in a 1Å radius orbital

x = 1 Å = 10-10m

(Recall the speed of light is c = 3 x108 m/s)
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Another Example: macroscopic object

 What is the uncertainty in position for a 80 kg
student walking across campus at 1.3 m/s with
an uncertainty in velocity of 1%.

Dp = m Dv = (80kg)(0.013 m/s) = 1.04 kg.m/s

Very small uncertainty……so, we know where
you are!
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 from The God Particle by Leon Lederman:
Leaving his wife at home, Schrödinger booked a villa in
the Swiss Alps for two weeks, taking with him his
notebooks, two pearls, and an old Viennese girlfriend.
Schrödinger's self-appointed mission was to save the
patched-up, creaky quantum theory of the time. The
Viennese physicist placed a pearl in each ear to screen
out any distracting noises. Then he placed the
girlfriend in bed for inspiration. Schrödinger had his
work cut out for him. He had to create a new theory
and keep the lady happy. Fortunately, he was up to the
task.

 Heisenberg is out for a drive when he's stopped by a
traffic cop. The cop says, "Do you know how fast you
were going?"
Heisenberg says, "No, but I know where I am."
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Multi-electron Atoms

Similar quantum numbers – but energies are
different.

 No two electrons can have the same set of
quantum numbers

These two assumptions can be used to motivate
(partially predict) the periodic table of the
elements.
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Quantum Mechanics of the Hydrogen Atom

 En = -13.6 eV/n2,

 n = 1, 2, 3, … (principal quantum number)

 Orbital quantum number

 l = 0, 1, 2, n-1, …
o Angular Momentum, L = (h/2) ·√ l(l+1)

Magnetic quantum number - l  m  l,
(there are 2 l + 1 possible values of m)

 Spin quantum number: ms= ½
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Periodic table

Pauli’s exclusion Principle:

 No two electrons in an atom can occupy the
same quantum state.

 When there are many electrons in an atom, the
electrons fill the lowest energy states first:

 lowest n

 lowest l

 lowest ml

 lowest ms

 this determines the electronic structure of atoms
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Summary so far
 electron was identified as particle emitted in photoelectric effect

 Einstein’s explanation of p.e. effect lends further credence to quantum
idea

 Geiger, Marsden, Rutherford experiment disproves Thomson’s atom
model

 Planetary model of Rutherford not stable by classical electrodynamics

 Bohr atom model with de Broglie waves gives some qualitative
understanding of atoms, but

 only semiquantitative

 no explanation for missing transition lines

 angular momentum in ground state = 0 (1 )

 spin??

 Quantum mechanics:

 Schrödinger equation describes observations

 observables (position, momentum, angular momentum..)

are operators which act on “state vectors” – wave functions
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Compton scattering 1

 Expectation from classical
electrodynamics:

• radiation incident on
free electrons 
electrons oscillate at
frequency of incident
radiation  emit light
of same frequency 
light scattered in all
directions

• electrons don’t gain
energy

• no change in
frequency of light

• Scattering of X-rays on free
electrons;
• Electrons supplied by graphite target;
• Outermost electrons in C loosely
bound; binding energy << X ray energy
•  electrons “quasi-free”
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Compton scattering 2

Compton (1923) measured intensity of scattered
X-rays from solid target, as function of
wavelength for different angles. Nobel prize
1927.

X-ray source

Target

Crystal
(selects
wavelength)

Collimator
(selects angle)



Result: peak in scattered radiation shifts to longer
wavelength than source. Amount depends on θ (but not
on the target material). A.H. Compton, Phys. Rev. 22 409 (1923)
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Compton scattering 3

 Classical picture: oscillating electromagnetic field causes

oscillations in positions of charged particles, which re-radiate in all
directions at same frequency as incident radiation. No change in
wavelength of scattered light is expected

 Compton’s explanation: collisions between particles of light (X-ray
photons) and electrons in the material

Oscillating electronIncident light wave Emitted light wave

θ

ep

 pBefore After

Electron

Incoming photon

p

scattered photon

scattered electron
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Compton scattering 4
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Compton scattering 5

 unshifted peaks come from
collision between the X-ray
photon and the nucleus of the
atom

 ’ -  = (h/mNc)(1 - cos)  0

since mN >> me
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Postulates of Quantum Mechanics
The state of a quantum mechanical system is completely
specified by its wavefunction, x,t)

For every classical observable there is a linear, Hermitian
operator in quantum mechanics

In any measurement associated with an operator, the only
values observed are eigenvalues of the operator,

The average value of an observable is given by its
expectation value,

The wavefunction obeys the Schrödinger equation

H = “Hamiltonian” = energy operator =

*A A d  



 

H E 

( , ) ( , )A x t a x t 
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measurement (1)
Measurement involves interaction with the system which

is subject to the measurement process

Measurements always have “errors”, uncertainties, due
to:
 Imperfections of measuring equipment/process  uncertain data

 System subject to random outside influences

Measurement result with quoted uncertainty is really a

probabilistic statement:

 really means

 (assuming “gaussian errors”)

X x x 

( [ , ]) 0.68,

( [ 2 , 2 ]) 0.95

P X x x x x

P X x x x x

 

 

   

   
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Measurement (2)

 Any measurement disturbs the system  will be in a
different state from the one it was in before the
measurement

 Examples:
 Temperature measurement: thermometer gets into thermal

equilibrium with measured system in- (or out-)flux of thermal
energy temperature changed

 Measure position of object – have to shine light onto it to see it,
light photons transfer momentum to measured object

 Influence of measurement process, as well as random
outside influences (non-isolation) can more easily be
minimized for big (high mass) system

 expect physics of small systems to be more
probabilistic
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Measurement (3) “Heisenberg microscope”:

• Try to measure position of a
tiny particle – image particle
with a microscope

• Uncertainty of particle
position  angular resolution
of microscope =1.22/D,
where = wavelength of used
light, D=diameter of objective
lens

• To optimize position
resolution, need small
wavelength and large D

• p=h/, energetic photons
need to be scattered off
particle under large angles 
momentum of particle
changed

• Requirement fro precise
measurement of
positionsignificant jolts to
particle uncertainty of
momentum
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Measurement (4)

 Scientific statement about a measurement is a prediction:

 “momentum of this electron is 30.02 GeV/c” means: if
you measure p, you will obtain (with 95% confidence)
a value between 3-0.04 and 3+0.04 GeV/c

 ideal measurement:

 is reproducible

Subsequent measurement of the same quantity will
yield the same result

 brings the system into a special state that has the
property of being unaffected by a further measurement
of the same type
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Measurement (5): Quantum states

Existence of quantum states is one of the
postulates of QM

Any system has quantum states in which the outcome
of a measurement is certain.

 These states are unrealizable abstractions, but
important

Examples:

o |E1> = the state in which a measurement of the system’s
energy will certainly return the value E1

o |p> = the state in which a measurement of the system’s
momentum will certainly return the value p

o |x> = state for which measurement of position will give
value x
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Measurement (6): Process of measurement

“Generic” state |>:

Results of measurement of momentum, position,
..uncertain

At best can give probability P(E) that energy will be E,
P(p) that momentum will be p,..

 reproducibilty: after having measured energy with
value E, repetition of energy measurement should give
again same value E

 act of measuring energy jogged system from state
|> into a different special state |E>

 |> energ. meas.  |E> with prob. P(E)

 |> mom. meas.  |p> with prob. P(p)

 |p> mom. meas.  |p> with certainty

Special states are idealizations
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Measurement (7)

 in general, different dynamical quantities (e.g.
energy, position, momentum, etc.) are
associated with different special states. If you are
certain about the outcome of a measurement of
e.g. position, you cannot be certain about the
outcome of a measurement of momentum, or
energy

dynamical quantities such as position or energy
should be considered as questions we can ask
(by making a measurement) rather than intrinsic
properties of the system.
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Measurement (8)

Outcomes of measurements are in general
uncertain; the most we can do is compute the
probability with which the various possible
outcomes will arise

QM more complicated than classical mechanics:

Classical mechanics: predict values of x, p,..

QM: need to compute probability distributions
P (x),… P(p)
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Measurement (9)

 In classical mechanics, we simply compute expectation
values of the quantum mechanical probability
distributions

 If probability distribution is very sharply peaked and
narrow around its expectation value

 enough to know the value of <x>, since probability of
measuring value significantly different from <x> is
negligibly small

 Classical mechanics = physics of expectation values,
provides complete predictions when underlying quantum
probability distributions are very narrow

3( ) ,x xP x d x 



42

Probability amplitudes

Probability used in many branches of science

In QM, probabilities are calculated as modulus
squared of a complex amplitude:

Consider process that can happen in two
different ways, by two mutually exclusive routes,
S or T

The probability amplitude for it to happen by one
or the other route :

instead of

This leads to “quantum mechanical interference”,
gives rise to phenomena that have no analogue
in classical physics

2 *| |P A AA 

( or ) ( ) ( )A S T A S A T 

( or ) ( ) ( )P S T P S P T 
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Quantum interference

Two routes, S, T for process

Probability that event happens regardless of
route:

 i.e. probability of event happening is not just sum
of probabilities for each possible route, but there
is an additional term – “interference term”

Term has no counterpart in standard probability
theory; depends on phases of probability
amplitudes

2 2

2 * * 2

*

( or ) | ( or ) | | (S) ( ) |

| (S) | ( ) ( ) ( ) ( ) | ( ) |

( ) ( ) 2 ( ( ) ( ))
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A A S A T A S A T A T

P S P T A S A T

  

   

   Re
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WAVE-PARTICLE DUALITY OF LIGHT

 Einstein (1924) : “There are therefore now two theories of light,
both indispensable, and … without any logical connection.”

 evidence for wave-nature of light:

 diffraction

 interference

 evidence for particle-nature of light:

 photoelectric effect

 Compton effect

 Light exhibits diffraction and interference phenomena that are only
explicable in terms of wave properties

 Light is always detected as packets (photons); we never observe
half a photon

 Number of photons proportional to energy density (i.e. to square of
electromagnetic field strength)
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double slit experiment

d
θ

sind 

D

y

 Originally performed by Young
(1801) to demonstrate the wave-
nature of light. Has now been
done with electrons, neutrons, He
atoms,…

 Classical physics expectation: two
peaks for particles, interference
pattern for waves
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Maxima when: sind n 
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Double slit experiment -- interpretation

 classical:
 two slits are coherent sources of light

 interference due to superposition of secondary waves on
screen

 intensity minima and maxima governed by optical path
differences

 light intensity I  A2, A = total amplitude

 amplitude A at a point on the screen
A2 = A1

2 + A2
2 + 2A1 A2 cosφ,    φ = phase difference 

between A1 and A2 at the point

 maxima for φ = 2nπ

 minima for φ = (2n+1)π

 φ depends on optical path difference  δ:   φ = 2πδ/

 interference only for coherent light sources;

 For two independent light sources: no interference since
not coherent (random phase differences)
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Double slit experiment: low intensity
 Taylor’s experiment (1908): double slit experiment with very

dim light: interference pattern emerged after waiting for few
weeks

 interference cannot be due to interaction between photons, i.e.
cannot be outcome of destructive or constructive combination
of photons

  interference pattern is due to some inherent property of
each photon – it “interferes with itself” while passing from
source to screen

 photons don’t “split” – light detectors always show signals of
same intensity

 slits open alternatingly: get two overlapping single-slit
diffraction patterns – no two-slit interference

 add detector to determine through which slit photon goes:
 no interference

 interference pattern only appears when experiment provides
no means of determining through which slit photon passes

 http://www.thestargarden.co.uk/QuantumMechanics.html

 http://abyss.uoregon.edu/~js/21st_century_science/lectures/lec13.html

 http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/slits.html

 http://en.wikipedia.org/wiki/Double-slit_experiment

 http://grad.physics.sunysb.edu/~amarch/
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 double slit experiment with very low intensity ,
i.e. one photon or atom at a time:

get still interference pattern if we wait long
enough



50

Double slit experiment – QM interpretation

 patterns on screen are result of distribution of photons
 no way of anticipating where particular photon will

strike
 impossible to tell which path photon took – cannot

assign specific trajectory to photon
 cannot suppose that half went through one slit and

half through other
 can only predict how photons will be distributed on

screen (or over detector(s))
 interference and diffraction are statistical phenomena

associated with probability that, in a given
experimental setup, a photon will strike a certain point

 high probability  bright fringes
 low probability  dark fringes
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Double slit expt. -- wave vs quantum

 pattern of fringes:

 Intensity bands due to
variations in square of
amplitude, A2, of
resultant wave on each
point on screen

 role of the slits:

 to provide two
coherent sources of the
secondary waves that
interfere on the screen

 pattern of fringes:

 Intensity bands due to
variations in
probability, P, of a
photon striking points
on screen

 role of the slits:

 to present two
potential routes by
which photon can pass
from source to screen

wave theory quantum theory
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double slit expt., wave function

 light intensity at a point on screen I depends on number of

photons striking the point
number of photons  probability P of finding photon there, i.e

I  P = |ψ|2, ψ = wave function

 probability to find photon at a point on the screen :
P  = |ψ|2 = |ψ1 + ψ2|

2 = |ψ1|
2 + |ψ2|

2 + 2 |ψ1| |ψ2| cosφ;   

 2 |ψ1| |ψ2| cosφ is “interference term”; factor cosφ due to fact 
that ψs are complex functions

 wave function changes when experimental setup is changed

o by opening only one slit at a time

o by adding detector to determine which path photon took

o by introducing anything which makes paths distinguishable
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Waves or Particles?
 Young’s double-slit
diffraction experiment
demonstrates the wave
property of light.

 However, dimming the
light results in single
flashes on the screen
representative of
particles.
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Electron Double-Slit Experiment

 C. Jönsson (Tübingen,
Germany, 1961

very narrow slits

 relatively large distances
between the slits and the
observation screen.

 double-slit
interference effects for
electrons

 experiment demonstrates
that precisely the same
behavior occurs for both light
(waves) and electrons
(particles).
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Neutrons, A Zeilinger et
al. Reviews of Modern
Physics 60 1067-1073

(1988)

He atoms: O Carnal and J Mlynek
Physical Review Letters 66 2689-

2692 (1991)

C60 molecules: M
Arndt et al. Nature
401, 680-682

(1999)

With multiple-slit
grating

Without grating

Results on matter wave interference

Interference patterns can not be explained classically - clear demonstration of matter waves

Fringe visibility
decreases as
molecules are
heated. L.
Hackermüller
et al. , Nature
427 711-714

(2004)
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Double slit experiment -- interpretation

 classical:
 two slits are coherent sources of light

 interference due to superposition of secondary waves on
screen

 intensity minima and maxima governed by optical path
differences

 light intensity I  A2, A = total amplitude

 amplitude A at a point on the screen
A2 = A1

2 + A2
2 + 2A1 A2 cosφ,    φ = phase difference 

between A1 and A2 at the point

 maxima for φ = 2nπ

 minima for φ = (2n+1)π

 φ depends on optical path difference  δ:   φ = 2πδ/

 interference only for coherent light sources;

 For two independent light sources: no interference since
not coherent (random phase differences)
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Which slit?

 Try to determine which slit the electron went through.

 Shine light on the double slit and observe with a microscope. After the
electron passes through one of the slits, light bounces off it; observing the
reflected light, we determine which slit the electron went through.

 photon momentum

 electron momentum :

momentum of the photons used to determine which slit the electron went
through > momentum of the electron itself changes the direction of the
electron!

The attempt to identify which slit the electron passes through
changes the diffraction pattern!

Need ph < d to
distinguish the slits.

Diffraction is significant only
when the aperture is ~ the
wavelength of the wave.
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Discussion/interpretation of double slit experiment

 Reduce flux of particles arriving at the slits so that only one
particle arrives at a time. -- still interference fringes observed!
 Wave-behavior can be shown by a single atom or photon.

 Each particle goes through both slits at once.

 A matter wave can interfere with itself.

 Wavelength of matter wave unconnected to any internal size of
particle -- determined by the momentum

 If we try to find out which slit the particle goes through the
interference pattern vanishes!
 We cannot see the wave and particle nature at the same time.

 If we know which path the particle takes, we lose the fringes .

Richard Feynman about two-slit experiment: “…a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which
has in it the heart of quantum mechanics. In reality it contains the only
mystery.”



59

Wave – particle - duality
 So, everything is both a particle and a wave --

disturbing!??

 “Solution”: Bohr’s Principle of Complementarity:

 It is not possible to describe physical observables
simultaneously in terms of both particles and
waves

 Physical observables:
o quantities that can be experimentally measured. (e.g.

position, velocity, momentum, and energy..)

o in any given instance we must use either the particle
description or the wave description

 When we’re trying to measure particle properties,
things behave like particles; when we’re not, they
behave like waves.
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Probability, Wave Functions, and the
Copenhagen Interpretation

 Particles are also waves -- described by wave function

 The wave function determines the probability of finding
a particle at a particular position in space at a given
time.

 The total probability of finding the particle is 1. Forcing
this condition on the wave function is called
normalization.
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The Copenhagen Interpretation
 Bohr’s interpretation of the wave function consisted of

three principles:
 Born’s statistical interpretation, based on probabilities

determined by the wave function

 Heisenberg’s uncertainty principle

 Bohr’s complementarity principle

 Together these three concepts form a logical interpretation of the
physical meaning of quantum theory. In the Copenhagen
interpretation, physics describes only the results of
measurements.

 correspondence principle:

 results predicted by quantum physics must be identical to
those predicted by classical physics in those situations where
classical physics corresponds to the experimental facts
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Atoms in magnetic field
 orbiting electron behaves like current loop

•  magnetic moment  μ = current x area

• interaction energy = μ·B (both vectors!)
= μ·B

• loop current = -ev/(2πr)

• angular momentum L = mvr

• magnetic moment = - μB L/ħ  

μB = e ħ/2me = “Bohr magneton”

• interaction energy
= m μB Bz

(m = z –comp of L)

e
r


IA

L


n

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Splitting of atomic energy levels

Predictions: should always get an odd number of
levels. An s state (such as the ground state of
hydrogen, n=1, l=0, m=0) should not be split.

Splitting was observed by Zeeman

(2l+1) states with same
energy: m=-l,…+l

(Hence the name
“magnetic quantum
number” for m.)

0B  0B

B ≠ 0: (2l+1) states with 
distinct energies

m = 0

m = -1

m = +1
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Stern - Gerlach experiment - 1
 magnetic dipole moment associated with angular momentum

 magnetic dipole moment of atoms and quantization of angular
momentum direction anticipated from Bohr-Sommerfeld atom
model

 magnetic dipole in uniform field magnetic field feels torque, but
no net force

 in non-uniform field there will be net force  deflection

 extent of deflection depends on

 non-uniformity of field

 particle’s magnetic dipole moment

 orientation of dipole moment relative to
mag. field

 Predictions:

 Beam should split into an odd number of
parts (2l+1)

 A beam of atoms in an s state
(e.g. the ground state of hydrogen,

n = 1, l = 0, m = 0) should not be split.

N

S
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Stern-Gerlach experiment (1921)
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Stern-Gerlach experiment - 3
 beam of Ag atoms (with electron in s-state

(l =0)) in non-uniform magnetic field

 force on atoms: F = z· Bz/z

 results show two groups of atoms,
deflected in opposite directions, with
magnetic moments z =  B

 Conundrum:

 classical physics would predict a
continuous distribution of μ

 quantum mechanics à la Bohr-
Sommerfeld predicts an odd number (2ℓ
+1) of groups, i.e. just one for an s state
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The concept of spin

 Stern-Gerlach results cannot be explained by
interaction of magnetic moment from orbital angular
momentum

 must be due to some additional internal source of
angular momentum that does not require motion of
the electron.

 internal angular momentum of electron (“spin”) was
suggested in 1925 by Goudsmit and Uhlenbeck
building on an idea of Pauli.

 Spin is a relativistic effect and comes out directly
from Dirac’s theory of the electron (1928)

 spin has mathematical analogies with angular
momentum, but is not to be understood as actual
rotation of electron

 electrons have “half-integer” spin, i.e.  ħ/2
 Fermions vs Bosons
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Summary
 wave-particle duality:

 objects behave like waves or particles, depending on experimental
conditions

 complementarity: wave and particle aspects never manifest
simultaneously

 Are really neither wave nor particle in the everyday sense of the word
(problem of semantics)

 Spin:
 results of Stern - Gerlach experiment explained by introduction of “spin”
 later shown to be natural outcome of relativistic invariance (Dirac)

 Copenhagen interpretation:
 probability statements do not reflect our imperfect knowledge, but are

inherent to nature – measurement outcomes fundamentally
indeterministic

 Physics is science of outcome of measurement processes -- do not
speculate beyond what can be measured

 act of measurement causes one of the many possible outcomes to be
realized (“collapse of the wave function”)

 measurement process still under active investigation – lots of progress in
understanding in recent years


