Rayleigh Taylor Instabilities in Magnetized Supernovae

50th Anniversary of GFDI 2017-05-15 David Collins (fsu) with Peter Hoeflich Boyan Hristov

Basic Outline

- Measuring Distances
 - This size of the whole dang universe.
- Details of Supernova
- MHD Impact

How far is this? It changes every few years. (about 740 light years, most recently)

Carls Mai

Velocity vs. Distance

- Each joint in this Scissors lift is expanding a the same rate,
- So two joints away from you is moving away twice as fast as the next one over
- V = H0 D
- H0 = 70 km/s/Mpc (ish)

Expanding Universe

- The equation of motion for the universe is pretty simple.
 - a = how large it is. a(now) = 1
 - H0 = current expansion rate
 - Omega = energy density

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2(t)$$

= $H_0^2 \left[a^{-4}(t) \Omega_r + a^{-3}(t) \Omega_m + a^{-2}(t)(1 - \Omega_m - \Omega_A) + \Omega_A \right]$

Expanding Universe

• The equation of motion for the universe is pretty simple.

a = how large it is. a(now) = 1
H0 = current expansion rate
Omega = energy density

Accurate Brightness begets Accurate Distances.

Accurate Brightness begets Accurate Distances.

From the physics of the object $F=\frac{L}{4\pi D^2}$ from the The thing I want telescope

Supernovae are incredibly bright.

- This galaxy has ~10⁹ stars (Greco+2012)
- This one solar mass object is bright.
- 2014j, in M82

Light Curve

• Light curves and spectra are extremely consistent (almost, more in a second)

(Perlmutter 1997)

Spectra

- SNIa have very consistent spectra
- Spectra from 3 SNe in different galaxies (offset for clarity)

(Wait, what's a spectrum?)

Well, almost.

They actually make a one parameter *family* of objects.

Peak Brightness in Various Colors

Well, almost.

Accurate Brightness begets Accurate Distances.

$$F = \frac{L}{4\pi D^2}$$

- Now we can measure the expansion rate of the universe.
- the take away, things are further than they should be if there weren't an insane amount of stuff we super don't understand.

Expanding Universe

• The equation of motion for the universe is pretty simple.

a = how large it is. a(now) = 1
H0 = current expansion rate
Omega = energy density

Accurate Brightness begets $F = \frac{L}{4\pi D^2}$

- Now we can measure the expansion rate of the universe.
- The inset:
 - flat is just expanding, nothing in it.
 - Blue line is only matter, and flat
 - Dots are flat, plus Dark Energy.

(Flat? Ask me later. But the universe is definitely flat.)

We've learned that there exists dark energy

 To learn what it *is* we need to understand the systematics of supernovae much better. (error bars)

(and neutral atoms are less than 1% of the atoms.)

What we know so far

- Type Ia are explosions of White Dwarfs.
- What's a White Dwarf?
- Normal stars fuse Hydrogen at the core, that keeps them from collapsing.
- When that's done, the outer layers get blown off (that's another talk), and you're left with Carbon and Oxygen.
- What's left is <1.4 solar masses, held up by electron degeneracy pressure
 - Left alone, this is very stable.
- If the mass gets bigger than 1.4 solar masses (by accreting from a nearby star?)
 - Too much gravity! Degeneracy pressure can't support the star
 - burning the Carbon and Oxygen to Nickel, plus a whole bunch of other stuff

 $C + O \rightarrow \text{stuff} \rightarrow^{56} \text{Ni}$

It will die, and give most of it's material to it's next of kin.

sun is tiny here

All that's left it a carbon & oxygen corpse.

 More Mass goes to the Dwarf

Very small. Much gravity. Electron Degeneracy keeps it alive.

Gravity

 More Mass goes to the Dwarf; more gravity

Very small. Much gravity. Electron Degeneracy keeps it alive.

Gravity

• Degeneracy Pressure Loses. Stars to Burn.

Very small. Much gravity. Electron Degeneracy keeps it alive.

Gravity

$C + O \rightarrow \text{stuff} \rightarrow^{56} \text{Ni}$

Ni

Other Stuff

• Composition depends on density and temp.

Very small. Much gravity. Electron Degeneracy keeps it alive.

Gravity

$C + O \rightarrow \text{stuff} \rightarrow^{56} \text{Ni}$

Ni

- Expands.
- Cools.
- **Nickel decays**, gives off an insane amount of light.

NICKLE DECYAY MAKES THE LIGHT.

The explosion happens before we see anything.

This is an image of the nickel decay.

Less Ni = less brightness,

also lower temperature, lower opacity, and faster decay.

DDT

- Stars off with the front carried by *thermal conduction* and is *subsonic*. This is DEFLAGRATION
- The density is a monotonically decreasing function of radius. At some threshold density, the flow becomes *supersonic*, and the burning is triggered by *compression*. This is DETONATION.

How are you for time? Consider skipping this.

The details of the burning are important for higher precision cosmology.

Foup Perio	$\rightarrow 1$	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(1 H	ЪΤ	'n	e B	ig E	Ban	g	"Цс	\ + "		Main Sequence Stars								
2 3 4 Li B				(eauilibrium)								"cool"			6	7 N	8 0	> ⁹ F	10 Ne
3	11 Na	12 Mg					b	urn	ing	,	burning			13 Al	14 Si	15- P)16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
			*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			* *	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

1d models, DDT, Layered structure

- Velocity=A*Radius
- T = T(R)

Resultant Spectra

One dimension works pretty well.

- But, stars aren't one dimensional
- And we know that there are instabilities: Rayleigh-Taylor being the most problematic.
- Low density accelerating into High Density,
 - Bubbles go up,
 - Spikes go down
 - Secondary Kelvin Helmholtz makes Mushrooms

3D models

- Rayleigh Taylor
- Tremendous Mixing.
- Pulls Carbon (not burned) down to the center

Composition, t = 1.79 sec Y-Z X-Y CO Si-group Fe-group X-Z

(Khokhlov 2000)

What does the sky show?

Andromeda!

(Fesen et al 2016)

Calcium is mixed: shouldn't be

Magnetic Fields are cool.

- It's know that Magnetic Fields suppress RT.
- Like rebar, fields have tension and pressure
- And White Dwarfs are plasma, and most stars host magnetic fields.

(enzo-project.org)

MHD Equations

- Hydro
- Energy input from Burning
- With Magnetic Fields
 - Tension

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} + \mathbf{I} P - \frac{\mathbf{B} \mathbf{B}}{8\pi} \right) = -\rho \mathbf{g}$$

• Pressure

$$\frac{\partial E}{\partial t} + \nabla \cdot \left[(E+P)\mathbf{v} - \frac{\mathbf{B}(\mathbf{B} \cdot \mathbf{v})}{4\pi} \right] = -\rho \mathbf{v} \cdot \mathbf{g} + \dot{Q}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$$

• Like vorticity

Outline

- RT linear theory
 - All modes reduced.
 - Some modes stabilized
 - Depends on field strength
- Sweet movies.
- Need to understand the non-linear effects.

Linear Theory

(the light is better over here)
 (Surface gravity waves, infinitely deep)

Linear Theory

 With field along plane: stability! (notation change: Omega is the growth rate, 2 is on top)

Linear Theory

With field perpendicular to: growth rate reduced!
 (eta = Omega * units)

Burning Rate

(note to self: Qdot-bw.gif)(gif should auto-play, give it a second)

Burned Fraction

Burned molar fraction projected along \hat{y} , $t\!=\!0.000s$

Burned Fraction

Burned molar fraction projected along \hat{y} , $t\!=\!0.500s$

Burned Fraction

Burned molar fraction projected along \hat{y} , $t\!=\!0.895s$

0.9

0.9

Cumulative energy from burning. The shaded area is the envelope of the lower B runs.

After Initial Transient

 Non-monotonic behavior belies complexity: front surface area

Light Curve

Larger B=1E4G, Dipole magnetic B=1E6G, Dipole -20B=1E9G, Dipole field traps B=1E4G, Turbulent B=1E6G, Turbulent positrons in B=1E9G, Turbulent mag] the center, B=1E9G, Dipole H+0.94^m -15 B=1E4G, Turbulent Brightness | -01 causing more ⁵⁶Ni, and a brighter curve at very late times Influence of the B-field on H & V -5 200 800 400 600 0 Time [days]

Summarize

- Supernovae are important for measuring the basic properties of the universe.
- Understanding the fine details requires understanding the burning.
- 1d simulations are successful at predicting brightness-decline relation, spectra
- Magnetic processes can possibly aid in suppression of mixing seen in 3d simulations; may alter front velocities in non-monotonic manner.