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Abstract

When a data point, measured over a bin of finite width, is to be compared to theoretical or model frequency distributions,
neither the central vaiue of the bin nor the weighted mean vaiue (the barycenire) of the abscissa within the bin is the appropriaie
place to plot the data point. It is shown that such data points ought to appear where the value of the predicted function is
equal to its mean value over the wide bin. Some consequences of commonly used but incorrect alternative data presentation

methods in particle physics are discussed.

1. Introduction

It often occurs in high energy particle physics experiments
that measurements are made of physical variables whose fre-
quency distributions vary rapidiy (e.g. exponentiaily) over
the experimentally accessible range. Measurements in re-
gions of low frequency are often of considerable interest.
One example would be transverse momentum spectra with
respect to jet axes, where there is much to be gained in mak-
ing the measurements out to as large values of iransverse
momentum as possible. Another example is the measure-
ment of a fragmentation function, the momentum fraction
of a quark or gluon jet carried by a particular species of
particle. Here too, the measurements at high values of mo-
mentum fraction, where the rates for light quark and gluon
fragmentation are relatively low, are likely to be the most
interesting.

One consequence of a rapid variation in rate with the
variable of interest is that the experimenter is often forced to
choose wide bins for the data in regions of low frequency in
order that statistical errors are kept reasonably small. Care in
presentation of the data is then needed since the underlying,
and presumably unknown, frequency distribution in the data
will be changing sharply over the wide bins.
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2. Measuring frequency distributions

In a sample of real events, suppose that the measured num-
ber of entries in a bin of some variable x, of width Ax from
X1 — X2, IS Nmeas. The usual way to define a measurement
of the true frequency distribution g(x) is

Bmeas = nmezm//Ax . ( l)

It is important to bear in mind that gme.s iS not a genuine
measurement of the function g(x) at any particular value
of x, but its expectation value is related to this underlying
function by
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Only in the limit Ax — O does {gmes) — g(x); for a
bin of non-zero width (gmeas) gives the average value of
g(x) within the bin. Nevertheless, it is common practice
to present such measurements, fimeas/AX, s measurements
of differential rates dN/dx, or after efficiency corrections

as differential cross sections do/ dx, and to plot them at a
particular value of x.
2.1. Plotting the measured frequencies

At which value of x within the bin should g..s be regarded

as a measurement of g(x)? A number of possible answers
to this question have been used in the presentation of data
in the literature, and we give a few examples below. The
two most common methods are to plot the data either at the
centre of the bin
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xe =X + Ax/2 3)

as, for example, in Ref. [ 1], or at the mean value of x for
the entries within the bin

f:}z xg(x) dx

—ETTTTT 4
fx; g(x) dx )

X =

An example of the latter, often called the barycentre, may
be found in Ref. [2]. In one paper this latter guantity is
described as “the centre of gravity of the corresponding
bin” [3], and in another paper as the “weighted aver-
ages” [4]. In general a vertical error bar will be included
to represent the measurement error on the function value,
but a horizontal “error bar” across the bin may [5], or may
not [6], appear.

It is shown below that unless g{ x) is linear in x or may
be considered in practice to be linear over the width of the
bin, then none of these methods are strictly correct and that
they may give a quite misleading impression of the trends
in the data. Before introducing the position xn., which we
show to be the correct value of x to plot the data, we give
an example.

2.2. Example: an exponential frequency distribution

As a simple example to illustrate the problem let us as-
sume that the function g(x) = ae " represents the true
frequency distribution in a given data sample. This expo-
nential form for g(x) gives a good representation of hadron
fragmentation functions in high energy jets, as well as of
transverse momentum distributions of hadrons with respect
to jet axes. To be specific let us consider the function g(x) =
10% x e~ with the data binned in the ranges of x from
0.0-0.1, 0.1-0.3, 0.3-0.6 and 0.6-1.0. For each bin, Table 1
gives the expected values for: the average number of entries,
{Mmeas); the corresponding value of {gmeas); the statistical un-
certainty o ( gmeas) i gmess; the centre of each bin (xc): and
the mean value of x, or the barycentre, for the entries within
the bin (X).

In Fig. 1 the function g(x) is compared with the expec-
tation values of gmess. Various possible choices are shown

Table 1

For the function g{x} = 10* x e is given the expected values in each
bin of: the average number of entries, {fmeas}: the corresponding value of
(gmeas ); the statistical uncertainty o(gmeas) iD gmeas: the centre of each
bin (xc): the mean value of x for the entries within the bin (), and the
value xp,, at which the function is equal to its average value over the bin

X

bin range 0.0-0.1 0.1-0.3 0.3-0.6 0.6-1.0
(Pmeas) 752.0 639.2 2300 414
{emeas) 7519.8 31959 766.5 103.5
o gmeas) 2742 126.4 505 16.1

X 0.050 0.200 0.450 0.800
¥ 0.045 0.180 0.407 0.727
She 0.048 0.190 0.428 0.762
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Fig. 1. The function g(x) = 10% x ¢~ with three sets of points showing
different possible choices for the abscissa value. The bin ranges, g{x)
values and the various x values are given in Table 1.

for the x coordinate within the bin at which the data may
be plotted. Since the expected average number of entries
per bin, and thus the {gmess) values given in Table 1, have
been calculated assuming a precise knowledge of the true
g{x) then the plotted points might naively be expected to
lie exactly on the curve of g(x). However, the figure shows
clearly that the choice of the barycentre ¥ (the squares) or
the bin centre x. (the triangles), to be found frequently in
published literature, both give a misleading impression and
suggest systematic deviations from the frequency distribu-
tion to which the data actually correspond. In this particu-
lar example the choice of barycentre gives data points lying
systematically below the curve, while the choice of bin cen-
ire gives points above the predicted curve. The size of these
deviations becomes larger as the bins become wider to ac-
commodate increasing statistical errors.

2.3. The correct position for plotting measured frequencies

For the data properly to represent the true frequency dis-
tribution in Fig. 1, the points should lie on the curve of g(x}.
They should therefore be plotted at the value of x at which
the function value g(x) is equal to the expectation value of
Zueas; as we observed above, {gmess) corresponds to the av-
erage value of g(x) within the bin. It becomes particularly
important to use this correct value of x, which we will refer
to as X, when the data are measured in bins of large width
{subscript Iw). The equation defining xy, is therefore

glxp) = El—jfg(x) dx (5)
X
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The appropriate values of x;, for our specific example are
given in the last row of Table 1 and are plotted as the circles
in Fig. 1.

Eq. (5) cannot in general be solved, since g(x) is usually
unknown and is indeed what one is trying to measure. How-
ever a theory or model, for example a Monte Carlo simula-
tion, may be available to predict a distribution f(x) thatis a
reasonable approximation, at least in shape, to the true fre-
quency distribution g{ x). If a linear relation between g(x)
and f(x) can be assumed, viz. g(x) = af{(x) + B, then
Eq. (5) can easily be shown to be equivalent to

X2
Flxm) = Zl;/f(x) dx (6)
Xy

and this can now in principle be solved for x5, either ana-
lytically or numerically.

A possible alternative to the use of x, would be to plot
the data at X¥ or xc and to calculate a correction to the or-
dinate gmeas such that a point corresponding to the expecta-
tion value {gmess) for a particular bin would lie on the curve
g(x). We do not recommend this alternative for a number
of reasons. The values gmeas within the bins represent the
primary experimental measurements. They can be used for
many purposes for which the above problem is irrelevant.
For example, they can be integrated over x to give the total
number of entries and, as will be seen in Section 2.6, they
can be compared directly with model predictions if these are
calculated in the same bins as used for the data. It would in
any case be rather confusing to have a different set of values
gmeas for the graphical representation of the data than for all
others purposes. A much more satisfactory solution is to plot
the data at the correct value of x (i.e. x;,) in the first place.

2.4. Comparison with the bin centre and barycentre
Let us return to the example of an exponential frequency
distribution f(x) = ae~*. Application of Eq. (6) gives
i —bA
xie = x1+ 5 {In (bAx) —In (1 —e™")} . N

From Eq. (4) the mean value of x for the entries within the
bin, or the barycentre, is

xi+ 1= (x4 e s g
1 - e—hA.t " ( )

X =

The bin centre, x. = x1 + Ax/2, gives the third possible
location for plotting a data point. For a wide bin these three
values of x may differ significantly from one another, as was
demonstrated in Table 1 and Fig. 1.

A particular example (taken as representative from many
in the literature) of a wrong choice of x position for plot-
ting data points may be found in Fig. 4 of Ref., [7]. Here
a measured fragmentation function for 7-mesons is com-
pared with a Monte Carlo model prediction. The largest x

z (o)

A Originol dota points (ot x,)
& Lorgest x point moved {o x,,

23

~2

® Originat data points (ot X}
1 Lorgest x point moved to x,.

Fig. 2. Examples from the published literature to illustrate the effect of
incorrect choice of x value for plotting data: fragmentation functions in
ete™ annihilation for (a) n-mesons [7] and (b) K*(892)O-mesons [8].

bin covers the range 0.229-0.686 and the data point is plot-
ted at the bin centre, x. = 0.457, with a horizontal bar to
cover the full bin width. The measured point lies over one
standard deviation above the model curve which has a shape
proportional to e ™%, In this case, the corresponding value
of xp, would be 0.395, and at this value of x the measure-
ment would lie almost exactly on the prediction. From the
data given in Ref. [7] we have reproduced, in Fig. 2a, the
data points and the curve. Fig. 2a also shows the effect of
using xp, as the position of the highest-x data point.
Another example of data points that have been plotted in
the wrong place may be found in Fig. 9 of Ref. [8], showing
fragmentation functions for ¢( 1020) and K* (892)" mesons
in Z° decay. In this case, the bin barycentres have been
chosen, with the result that data points at high x appear
further to the left of the predicted curve than they ought to
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Fig. 3. The function g(x) = 10% x €75 with three sets of points showing
different possible choices for the abscissa value. The data have been rebinned
with respect to Fig. | in order to reduce the difference between the values
of X, ap, and xe.

be. The impression is then given of a more steeply falling
experimental spectrum than is actually the case. For the K*
spectrum, for example, the highest x bin covers the range
0.3-1.0 with the barycentre at 0.45. Since the Monte Carlo
curve falls approximately as e 5%, the value of xy, in this
case is 0.54. Again we have reproduced, in Fig. 2b, the data
for the K* as plotted in Ref. [8] together with the curve of
the tuned JETSET Monte Carlo prediction and the effect of
shifting the highest-x point to its proper position, Xy,

In the special case that g{ x)} varies linearly with x, g(x) =
ax 4+ b, then ¥ = x), = x. and there is no ambiguity as to
where to plot the data points. It follows for any arbitrary
g( x) that if the width of a bin is sufficiently small that g(x)
may be taken to vary approximately linearly over the bin
then the error caused by plotting the data at ¥ or x, may
be small. For example, Fig. 3 shows the data of Table |
and Fig. 1 plotted with narrower bins in order to reduce the
difference between the values of X, xp, and x.. However, the
requirement that the bin widths be kept small in the above
sense may then preclude measurements being given in the
region of low frequency because the observed number of
entries per bin is too small. Examples of this approach may
be found in Refs. [9].

2.5. Errors on the value of the correct position

It has been demonstrated above that a knowledge of
the shape of the underlying frequency distribution g(x) is
needed in order to calculate the correct position at which to
plot a measured data point within a wide bin in x. If, as will
generally be the case, g( x) is not precisely known then this

will introduce an uncertainty in the correct value of x;,. As
an example let us consider again the values of gmeas given in
Table 1. Let us further assume that previous measurements
have firmly established the functional form g(x) o e~
in the range x < 0.6, but that the value given in the last
column of Table 1 represents the first measurement in the
range x > 0.6. If the functional form g(x) x e is
assumed to be valid also in the range x > 0.6 then the ap-
propriate value of x7, can be calculated precisely. However,
if a possible variation in the shape of g(x) in this region
is considered then an uncertainty in the correct value of
X 1s introduced. This is demonstrated in Fig. 4. The solid
curve shows g(x) oc e~% and the plotted fuil circle shows
the corresponding value of xn = 0.762, which has been
given in Table 1 and can be calculated from Eq. (7). The
dashed curve shows g(x) oc e** in the range x > 0.6
and the plotted diamond shows the corresponding value of
Xne = 0.769. The dotted curve shows g(x) « e~ "% in the
range x > 0.6 and the plotted triangle shows the corre-
sponding value of x5 = 0.753. The functions g(x) x ¢~
and g{x) ¢~ 7% have been chosen because the associated
“measured” points lie off of the curves by approximately
one standard deviation. It would therefore be consistent
with the given assumptions to represent the measurement
by a point plotted at xy. = 0.762 with a horizontal error bar
extending over the range 0.753 < x; < 0.769. By compar-
ing the plotted circle in Fig. 4 with the dashed and dotted
curves it can be seen that if the uncertainty in x;, had not
been taken into account then these curves would have been
excluded at the level of more than one standard deviation.
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Fig. 4. Demonstration of the uncertainty in xj, that can result from an
uncertainty in the shape of the underlying frequency distribution. The solid
curve and the plotied circle correspond to the assumption g(x) o et
The dashed curve and the plotted diamond correspond to the assumption
glx) e~485 The dotted curve and the plotted triangle correspond to

the assumption g{x) o ¢ 0%,
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Fig. 5. Some alternative ways of presenting a histogram of the values of
2meas given in Table 1.

2.6. Presenting data and predictions in the form of
histograms

In order to make a quantitative comparison between a set
of experimental data and the predictions of a theory or model
then an alternative, and perhaps simpler, procedure is often
used. The mode! predictions can be calculated for the same
bins in which the data are presented using

x3
Ppred =/f(x) dx. ¢
Xy

Data and predictions can then be considered as two his-
tograms, which can be compared directly, perhaps by a fit
to free parameters in the theory or model. For the purposes
of this quantitative comparison the question of choosing the
correct x value within the bin is then irrelevant.

However, for the purposes of a graphical presentation then
a histogram of the model predictions within wide bins does
not give a very useful representation of the shape of the un-
derlying distribution. For example see Fig. 5a which shows
the values of gmeas given in Table 1. Many possible guesses
at the underlying frequency distribution might be drawn as
curves that at first sight roughly follow the shape of the his-
togram. Of course, the curve representing the true underlying
frequency distribution g(x) crosses the horizontal line for
each bin at the appropriate value of x;,. Therefore, a more
useful representation of the shape of the underlying distri-
bution may be obtained by adding a point at the appropriate
value of x;, within each bin as in Fig. 5b, By removing the
vertical lines from Fig. 5b we arrive at an altemative method
of presenting the histogram (see Fig. 5¢). The horizontal
lines in Fig. 5c are then a purely conventional device to in-
dicate the bin ranges and are not generally to be interpreted
as error bars; if they were, then they would render impotent
any quantitative comparison between the points and possi-
ble model curves. We may therefore note that their presence
is not an acceptable excuse for plotting the points at an in-
correct value of x (for example X or x.)! Indeed, these hor-
izontal bars serve to give the eye a somewhat misleading
impression of agreement between data and predicted curves,
as was the case in Fig. 2a above.

In Fig. 6 we propose an alternative way to indicate the
bin ranges, by means of short vertical lines at the edges of
the plot. This has the advantage of clearly separating the
primary information, the data and their genuine errors, from
such secondary details as the bin ranges. The potentially
misleading effect of the horizontal bars is thus avoided.

The results of two experiments may be compared most
easily if they both use the same binning to present their
data. Unfortunately this will not normally be the case. If the
comparison is to be made on the basis of points in g(x)
measured over wide bins then a consistent calculation of the
relevant values of xp, for the two datasets must be ensured.



546 G.D. Laffersy, TR, Wyant/Nucl. Instr. and Meth, in Phys. Res. A 355 (1995) 541547

FPIPININ IFIRTEVN APAPRPIYS UPUPIVITITVITUTED IRURUVITYS IR P APIN YO Pl PR A

0 01 02 03 04 05 06 07 08 08
X

Fig. 6. Our prefered way of presenting the values of gmess given in Table 1.
The bin ranges are indicated by means of the short vertical lines at the
edges of the plot. This avoids the potentally misleading effect of using
horizontal “error bars” for this purpose.

3. More complicated situations

We have so far considered the measurementof a frequency
distribution g(x) as a function of a single variable x. We
have shown that within a wide bin the observed frequency
gmeas Should be regarded as a measurement of g(x) at the
position xp,. given by Eq. (5). It is important to stress that
more complicated situations may arise, in which x;, is not
the correct position at which to plot data within a wide bin.
However, in such cases some thought along the lines that led
to Eq. (5) should allow the correct position to be deduced.

As an example of a more complicated situation, let us
consider that in the presence of the varying frequency distri-
bution g(x) we wish to measure the functional dependence
of a second variable g(x) as a function of x. A specific ex-
ample, as in for example Ref. {10], is the measurement of
the average transverse momentum component of tracks with
respect to the jet axis, as a function of the momentum com-
ponent parallel to the axis. A second example is the mea-
surement in Ref. [11] of spin-density matrix elements for
quasielastic photoproduction of vector mesons in bins of the
four-momentum transfer, ¢, from the photon to the meson.
The cross section, do/dt, falls exponentially with 7, neces-
sitating the use of wide bins at large values of ¢; there is in
addition a slow variation of the measured spin-density ma-
trix elements with ¢.

The expectation value for the measured g(x) for the en-
tries within a bin in x, of width Ax from x; — x; is given
by

;:2 g(x)g(x) dx
I g(x) dx

(Gmeas) =G = {10}

Only in the limit Ax — 0 does (gmess) — g(x); for a bin
of non-zero width we have to decide at which value of x
within the bin gmeas should be regarded as a measurement of
q(x}. By analogy with the discussion that led to Eq. (5) we
can easily see that the correct value of x is that point (x},,)
at which the function g(x},) is equal to the average value
of g(x) for the entries within the bin. Thus the defining
equation for xJ,, is

;2 g(x)g(x) dx

; 1
Jolstx) dx (h

g{xy,) =

In general, x,, will not be equal to ¥, xp, OF X..
3.1. Example: exponential variation

For example let us consider an exponential form for
g(x) = ae ™ and for g(x) = ce™. Solution of Eq. (11)
for this case gives

;o I (b+d) —(br)A
Xpe = X1 + ;l—{ln ("'—b——‘) —In (1 - x)

+In(1—e™}. (12)

To be specific let us reconsider our previous example of
the frequency distribution g(x) = 10% x e =% with the data
binned in the ranges of x from 0.0-0.1, 0.1-0.3, 0.3-0.6 and
0.6-1.0, as given in Table 1 and Fig. 1. In addition let us take
g(x) = 10 x e~ ™. For each bin, Table 2 gives the expected
value of gmeas and the corresponding value of xj,. In Fig. 7
the function ¢{x) is compared with the expected values of
Gmeas Plotted as stars at x},,. For comparison the data are also
plotted as squares at X, as circles at xp, and as triangles at
x., showing that none of these three choices is appropriate
and that in this specific example they all lie systematically
above the function. We note that in this case the measurement
eITOTS 0N gmeas Will depend on the experimental conditions
and so we cannot show any error bars in the figure.

3.2. Example: linear variation

In the case where g( x) may be taken to be varying linearly
over a bin, as would be appropriate in the examples [10,11]

Table 2

For the function g{x) = 10X e~ 7% measured in the presence of the varying
frequency distribution g(x) = 10% x e 8 is given in each bin: the expected
value of gmeas and the appropriate value of x;w. The corresponding values
of X, xpy or x¢ may be found in Table 1

bin range 0.0-0.1 0.1-0.3 0.3-0.6 0.6-1.0
(gmeas) 7.442 3.036 0.663 0.076
Xy 0.042 0.170 0.388 0.698
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Fig. 7. The function g(x} =10 x e~7% measured in the presence of the
varying frequency distribution g{x) = 10* x e~ with four sets of points
showing different possible choices for the abscissa value,

quoted above, the solution of Eq. (11) is x},, = ¥, indicating
the choice of the barycentre as the correct position of the
measured data point. Thus, while this choice has been shown
to be incorrect for plotting the underlying frequency, it turns
out to be appropriate for a second variable measured in the
presence of the varying frequency distribution. In fact it is
easy to show from Eq. (11) that this result remains true for
any functional form of the frequency distribution g(x) so
long as g(x) may be assumed to be a linear function of x
over the width of the bin.

4. Summary and conclusions

We now summarize the main conclusions we have
reached concerning the measurement of a frequency distri-
bution g(x) within wide bins in x.

- The expectation value for an experimental measurement
{gmeas} corresponds to the average value of g{x) within
the bin (Eq. (2)). Therefore the result of a particular
experiment, gmeas, Should be regarded as a measurement
of g(x) at the value x5 of x at which the function value
g{xny) is equal to the average value of g( x) within the bin
(Eq. (5)). It is particularly important to use the correct
value xn, when the data are measured in bins of large
width.

— Regarding gmeas as a measurement of g(x) at x., the bin
centre, or at X, the mean value of x for the entries within
the bin, is in general incorrect and can only be justified if
g(x) can be regarded as varying linearly over the width
of the bin. We give examples from the published literature
to illustrate this point (see Fig. 2).

~ The fact that one has to assume a shape for the underly-
ing frequency distribution in order to calculate x; has a
number of consequences:

- The assumptions made in a particular analysis should
be described in the associated publication.

- An uncertainty in the knowledge of the underlying
frequency distribution will result in an uncertainty in
the calculated values of x;,. This must be taken into
account when comparing experimental measurements
with a curve predicted by a theory or model.

« When comparing the results of two experiments a con-
sistent choice of how to calculate the appropriate values
of xp, must be ensured for the two sets of data.

- A quantitative comparison is simplified if the theoreti-
cal predictions are calculated for the same bins used to
analyse the experimental data. Similarly the compari-
son of two sets of experimental data is simplified if they
are both presented with the same binning. The values
within each bin can thus be compared directly and the
question of choosing the correct x value within the bin
is then irrelevant for this purpose.

- We note that the common practice of using horizontal
“error bars” to indicate bin ranges can sometimes give
a misleading impression of consistency in cases where
measurements and predictions actually disagree. In Fig. 6
we propose an alternative way to indicate the bin ranges
— by means of short vertical lines at the edges of the plot
— that avoids this problem.

— Although we mainly discuss the measurement of a fre-
quency distribution as a function of a single variable we
give examples of how more complicated situations may
be treated using a similar approach.

- It is clear that choosing bins to be as narrow as possible
within the constraints of limited data and Monte Carlo
statistics helps to minimize the ambiguity in the interpre-
tation of the resulting data points.
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