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Abstract 
When a data point, measured over a bin of finite width, is to be compared to theoretical or model frequency distributions, 

neither the central value of the bin nor the weighted mean value (the barycentre) of the abscissa within the bin is the appropriate 

place to plot the data point. It is shown that such data points ought to appear where the value of the predicted function is 
equal to its mean value over the wide bin. Some consequences of commonly used but incorrect alternative data presentation 

methods in particle physics are discussed. 

1. Introduction 2. Measuring frequency distributions 

It often occurs in high energy particle physics experiments 

that measurements are made of physical variables whose fre- 
quency distributions vary rapidly (e.g. exponentially) over 
the experimentally accessible range. Measurements in re- 

gions of low frequency are often of considerable interest. 
One example would be transverse momentum spectra with 

respect to jet axes, where there is much to be gained in mak- 

ing the measurements out to as large values of transverse 
momentum as possible. Another example is the measure- 

ment of a fragmentation function, the momentum fraction 
of a quark or gluon jet carried by a particular species of 
particle. Here too, the measurements at high values of mo- 
mentum fraction, where the rates for light quark and gluon 
fragmentation are relatively low, are likely to be the most 
interesting. 

In a sample of real events, suppose that the measured num- 
ber of entries in a bin of some variable x, of width Ax from 
XI --+ x2, is nmeas. The usual way to define a measurement 
of the true frequency distribution g(x) is 

gme, = nmeas/Ax (1) 

It is important to bear in mind that g,c, is not a genuine 
measurement of the function g(x) at any particular value 

of x, but its expectation value is related to this underlying 
function by 

I? 

bheas) = &-g(x) dx. 

One consequence of a rapid variation in rate with the 
variable of interest is that the experimenter is often forced to 
choose wide bins for the data in regions of low frequency in 
order that statistical errors are kept reasonably small. Care in 
presentation of the data is then needed since the underlying, 
and presumably unknown, frequency distribution in the data 

will be changing sharply over the wide bins. 

Only in the limit Ax + 0 does (gmeas) + g(x); for a 
bin of non-zero width (g,,) gives the average value of 
g(x) within the bin. Nevertheless, it is common practice 
to present such measurements, nmeas/Ax, as measurements 
of differential rates dN/ dx, or after efficiency corrections 

as differential cross sections da/ dx, and to plot them at a 
particular value of x. 
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(2) 

2.1. Plotting the measuredfiequencies 

At which value of x within the bin should g,as be regarded 
as a measurement of g(x)? A number of possible answers 
to this question have been used in the presentation of data 
in the literature, and we give a few examples below. The 
two most common methods are to plot the data either at the 
centre of the bin 
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x, = XI f Ax/2 t3) 

as, for example, in Ref. [ 
the entries within the bin 

I], or at the mean value of x for 

(4) 

An example af the latter, often called the barycentre, may 
be found in Ref. [ 21. in one paper this latter quantity is 
described as “the centre of gravity of the corresponding 
bin” [ 31, and in another paper as the “weighted aver- 
ages” [ 41. In general a vertical error bar will be included 
to represent the measurement error on the function value, 
but a horizontal “error bar” across the bin may [ 51, or may 
not [ 61, appear. 

It is shown below that unless g(x) is linear in x or may 
be considered in practice to be linear over the width of the 
bin, then none of these methods are strictly correct and that 
they may give a quite misleading impression of the trends 
in the data. Before introducing the position x/,~. which we 
show to be the correct value of x to plot the data, we give 
an example. 

2.2. Example: an expo~ential~eq~ency d~~tri~~~~~~ 

As a simple example to illustrate the problem let us as- 
sume that the function g(x) = ae-“+ represents the true 
frequency dis~bution in a given data sample. This expo- 
nential form for g(x) gives a good representation of hadron 
fragmentation functions in high energy jets, as well as of 
transverse momentum distributions of hadrons with respect 
to jet axes. To be specific let us consider the function g(x) = 
lo4 x ever. with the data binned in the ranges of x from 
0.0-O. i, O.l-0.3,0.3-0.6 and 0.6-I .O. For each bin, Table 1 
gives the expected values for: the average number of entries, 
{rimeas); the corresponding value of jgmzas); the statistical un- 
certainty u(gmeas) in g,,,; the centre of each bin (xc); and 
the mean value of x, or the barycentre, for the entries within 
the bin (X). 

In Fig. 1 the function g(x) is compared with the expec- 
tation values of gmea.. Various possible choices are shown 

Table I 
For the function K(X) = ItI4 x Chx IS given the expected values in each 
bin of: the average number of entries, (n,,); the corresponding value of 
(gmcas); the statistical uncertainty g(gmeas) in fimeas; the centre of each 
bin (xc); the mean value of x for the entries within the bin (7). and the 
value x,iV at which the function is equal to its average value over the bin 

0.0-0.1 0.1-0.3 0.3-0.6 0.6-l .o 

152.0 639.2 230.0 41.4 
7519.8 3 195.9 766.5 103.5 
274.2 126.4 50.5 16.1 
0.050 0.200 0.450 0.8@J 
0.045 0.180 0.407 0.727 
0.048 0.190 0.428 0.762 

m data at barycentre, ic 

* data at xh (see text) 

A data at bin centre, x, 

d 
1 

x 

Fig. I I The function g(x) = IO4 x es’-’ with three sets of points showing 
different possible choices for the abscissa value. The bin ranges, R(X) 
values and the various x values are given in Table I. 

for the x coordinate within the bin at which the data may 
be plotted. Since the expected average number of entries 
per bin, and thus the (gmeas) values given in Table 1, have 
been calculated assuming a precise knowledge of the true 
g(x) then the plotted points might nafvely be expected to 
lie exactly on the curve of g(x). However, the figure shows 
clearly that the choice of the barycentre is (the squares) or 
the bin centre xc (the triangles), to be found frequently in 
published literature, both give a misleading impression and 
suggest systematic deviations from the frequency distribu- 
tion to which the data actually correspond. In this patticu- 
tar example the choice of barycentre gives data points lying 
systematically below the curve, while the choice of bin cen- 
tre gives points above the predicted curve. The size of these 
deviations becomes larger as the bins become wider to ac- 
commodate increasing statistical errors. 

2.3. The correct position for plotting measured frequencies 

For the data properly to represent the true frequency dis- 
tribution in Fig. 1, the points should lie on the curve of g( x). 
They should therefore be plotted at the value of x at which 
the function value g(x) is equal to the expectation value of 
gmrus; as we observed above, (g,,,& corresponds to the av- 
erage value of g(x) within the bin. It becomes particularly 
impo~ant to use this correct value of x, which we will refer 
to as xi,,,. when the data are measured in bins of large width 
(subscript Iw ). The equation defining xtw is therefore 

*2 

g( X/w) = & .I g(x) dx 
s I 

(5) 
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The appropriate values of xlw for our specific example are 
given in the last row of Table 1 and are plotted as the circles 
in Fig. 1. 

Eq. (5) cannot in general be solved, since g(x) is usually 
unknown and is indeed what one is trying to measure. How- 
ever a theory or model, for example a Monte Carlo simula- 
tion, may be available to predict a dist~bution f(x) that is a 
reasonable approximation, at least in shape, to the true fre- 
quency distribution g(x). If a linear reiation between g(x) 
and f(x) can be assumed, viz. g(x) = cuf( x) + p. then 
Eq. (5) can easily be shown to be equivalent to 

and this can now in principle be solved for xl,,, either ana- 
lytically or nume~cal~y, 

A possible alternative to the use of xlu would be to plot 
the data at X or x, and to calculate a correction to the or- 

dinate gmeas such that a point corresponding to the expecta- 
tion value (g,,& for a particular bin would lie on the curve 
g(x). We do not recommend this alternative for a number 
of reasons. The values g,,,, within the bins represent the 
primary experimental measurements. They can be used for 
many pm-poses for which the above problem is irrelevant. 
For example, they can be integrated over x to give the total 
number of entries and, as will be seen in Section 2.6, they 
can be compared directly with model predictions if these are 
calculated in the same bins as used for the data. It would in 
any case be rather confusing to have a different set of values 
gmo for the graphical representation of the data than for all 
others purposes. A much more satisfactory solution is to plot 
the data at the correct value of x (i.e. xiw) in the first place. 

2.4. Comparison with the bin centre and barycentre 

Let us return to the example of an exponential frequency 
distribution f(x) = a e-*I. Application of Eq. (6) gives 

.x ,,,, = xl + k {in (bAx) - In (1 - ewbAx)) . 

From Eq. (4) the mean value of x for the entries within the 
bin, or the barycentre, is 

x- = XI + $ - (x2 + b) ewbA+ 
, _ e-hA.x (8) 

The bin centre, xc = XI + Ax/Z, gives the third possible 
location for plotting a data point. For a wide bin these three 
values of x may differ significantly from one another, as was 
demonstrated in Table 1 and Fig. 1. 

A particular example (taken as representative from many 
in the Iiterature) of a wrong choice of x position for plot- 
ting data points may be found in Fig. 4 of Ref. [7], Here 
a measured fragmentation function for n-mesons is com- 
pared with a Monte Carlo model prediction. The largest n 

Fig. 2. Examples from the published literature to illustrate the effect of 
incorrect choice of x value for plotting data: fragmentation functions in 
e+e- annihilation for (a) r)-mesons 171 and (b) K*(892)“-mesons 181. 

bin covers the range 0.229-0.686 and the data point is plot- 
ted at the bin centre, xc = 0.457, with a horizontal bar to 
cover the fulf bin width. The measured point lies over one 
standard deviation above the model curve which has a shape 
proportional to e-7.9X. In this case, the corresponding value 
of xfw would be 0.395, and at this value of x the measure- 
ment would lie almost exactly on the prediction. From the 
data given in Ref. [7] we have reproduced, in Fig. 2a, the 
data points and the curve. Fig. 2a also shows the effect of 
using XI,,, as the position of the highest-x data point. 

Another example of data points that have been plotted in 
the wrong place may be found in Fig. 9 of Ref. [ 81, showing 
fragmentation functions for Q, ( 1020) and K’ ( 892) ’ mesons 
in Z” decay. In this case, the bin barycentres have been 
chosen, with the result that data points at high x appear 
further to the left of the predicted curve than they ought to 



m doto ot barycentre. f 

l dota at x,. (see text) 

A dota at bin centre, x, 

x 

Fig. 3. The function g(x) = IO3 x e-‘-’ wtth three sets of points showing 
different possible choices for the abscissa value. The data have been rebinned 
with respect to Fig. I in order to reduce the difference between the values 
of X .khv and xc, 

be. The impression is then given of a more steeply falling 
experimental spectrum than is actually the case. For the K’ 
spectrum, for example, the highest x bin covers the range 
0.3-l .O with the barycentre at 0.45. Since the Monte Carlo 
curve falls approximately as e-6.2X, the value of ,x/~~ in this 
case is 0.54. Again we have reproduced, in Fig. 2b, the data 
For the K’ as plotted in Ref. JS J together with the curve of 
the tuned JETSET Monte Carlo prediction and the effect of 
shifting the highest-x point to its proper position, x/,,.. 

in the special case that g(x) varies linearly with x, g( x) = 
as + b, then f = ~1,~ = x, and there is no ambiguity as to 
where to plot the data points. It follows for any arbitrary 
g(x) that if the width of a bin is sufficiently small that g( x) 
may be taken to vary approximately linearly over the bin 
then the error caused by plotting the data at Y or xc may 
be small. For example, Fig. 3 shows the data of Table I 
and Fig. I plotted with narrower bins in order to reduce the 
difference between the values of X, xi,,. and xc. However, the 
requi~ment that the bin widths be kept small in the above 
sense may then preclude measurement being given in the 
region of low frequency because the observed number of 
entries per bin is too small. Examples of this approach may 
be found in Refs. [ 91. 

2.5. Errors on the value of the correct position 

will introduce an uncertainty in the correct value of xl,,.. As 
an example let us consider again the values of gmcas given in 
Table 1. Let us further assume that previous measurements 
have firmly established the functional form g(x) o< emh.’ 
in the range x < 0.6, but that the value given in the last 
column of Table 1 represents the first measurement in the 
range x > 0.6. If the functional Form g(x) 0: e-lr.’ is 
assumed to be valid also in the range x > 0.6 then the ap- 
propriate value of x/,~ can be calculated precisely. However. 
if a possible vacation in the shape of g(x) in this region 
is considered then an unc~~ainty in the correct value of 
xfX is introduced. This is demonstrated in Fig. 4. The solid 
curve shows g(x) cc e-“’ and the plotted full circle shows 
the corresponding value of x/,~$ = 0.762, which has been 
given in Table 1 and can be calculated from Eq. (7). The 
dashed curve shows g(x) IX ee4.” in the range x > 0.6 
and the plotted diamond shows the corresponding value of 
xfrr = 0.769. The dotted curve shows g(x) c( e-7.6w in the 
range x > 0.6 and the plotted triangle shows the corre- 
sponding value of nt,‘* = 0.753. The functions g(x) oc e-‘s’ 
and g(x) cy e-7.6r have been chosen because the associated 
“measured” points lie off of the curves by approximately 
one standard deviation. It would therefore be consistent 
with the given assumptions to represent the measurement 
by a point plotted at x/,~, = 0.762 with a horizontal error bar 
extending over the range 0.753 < xlw < 0.769. By compar- 
ing the plotted circle in Fig. 4 with the dashed and dotted 
curves it can be seen that if the uncertainty in xilV had not 
been taken into account then these curves would have been 
excluded at the level of more than one standard deviation. 
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It has been demonstrated above that a knowledge of 
the shape of the underlying frequency distribution g(x) is 
needed in order to calculate the correct position at which to 
plot a measured data point within a wide bin in x. If, as will 
generally be the case, g(x) is not precisely known then this 

Fig. 4. Demonstration of the uncertainty in xl,,. that can result from an 
uncertainty in the shape of the underlying frequency distribution. The solid 
cwve and the plotted circle correspond to the assumption g(r) cx e -(rr . 
The dashed curve and the ptotted diamond correspond to the assumption 
g(x) o( .--4.*x. ‘Ike dotted curve and the plotted triangle correspond to 
the assumption g(x) cx e-7.h-r. 
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Fig. 5. Some alternative ways of presenting a histogram of the valuer of 
gmeas given in Table 1. 

2.6. Presenting data and predictions in the form of 
histograms 

In order to make a quantitative comparison between a set 
of experimental data and the predictions of a theory or model 
then an alternative, and perhaps simpler, procedure is often 
used. The model predictions can be calculated for the same 
bins in which the data am presented using 

(9) 

Data and predictions can then be considered as two his- 
tograms, which can be compared directly, perhaps by a fit 
to free parameters in the theory or model. For the purposes 
of this quantitative compa~son the question of choosing the 
correct x value within the bin is then irrelevant. 

However, for the purposes of a graphical presentation then 
a histogmm of the model predictions within wide bins does 
not give a very useful representation of the shape of the un- 
derlying distribution. For example see Fig. 5a which shows 
the values of gme, given in Table 1. Many possible guesses 
at the undetlying frequency distribution might be drawn as 
curves that at first sight roughly follow the shape of the his- 
togram. Of course, the curve representing the true underlying 
frequency distribution g(x) crosses the horizontal line for 
each bin at the appropriate value of xl,,,. Therefore, a more 
useful ~presen~tion of tbe shape of the underlying distri- 
bution may be obtained by adding a point at the appropriate 
value of xlw within each bin as in Fig. 5b. By removing the 
vertical lines from Fig. 5b we arrive at an ~temative method 
of presenting the histogram (see Fig. SC). The horizontal 
lines in Fig. 5c are then a purely conventional device to in- 
dicate the bin ranges and are not generally to be interpreted 
as error bars; if they were, then they would render impotent 
any quantitative comparison between the points and possi- 
ble model curves. We may therefore note that their presence 
is not an acceptable excuse for plotting the points at an in- 
correct value of x (for example Z or xc) ! Indeed, these hor- 
izontal bars serve to give the eye a somewhat misleading 
impression of agreement between data and predicted curves, 
as was the case in Fig. 2a above. 

In Fig. 6 we propose an alternative way to indicate the 
bin ranges, by means of short vefiicai lines at the edges of 
the plot. This has the advantage of clearly separating the 
primary information, the data and their genuine errors, from 
such secondary details as the bin ranges. The potentially 
misleading effect of the horizontal bars is thus avoided. 

The results of two experiments may be compared most 
easily if they both use the same binning to present their 
data. Unfortunately this will not normally be the case. If the 
comparison is to be made on the basis of points in g(x) 
measured over wide bins then a consistent calculation of the 
relevant values of xlw for the two datasets must be ensured. 
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Fig. 6. Our prefered way of presenting the values of g,,, given in Table I. 
The bin ranges are indicated by means of the short vertical lines at the 
edges of the plot. This avoids the potentially misleading effect of using 
horizontal “error bars” for this purpose. 

3. More complicated situations 

We have so far considered the measurement of a frequency 
distribution g(x) as a function of a single variable X. We 
have shown that within a wide bin the observed frequency 
g,, should be regarded as a measurement of g(x) at the 
position +x/,~ given by Eq. (5). It is important to stress that 
more complicated situations may arise, in which xi,* is not 
the correct position at which to plot data within a wide bin. 
However, in such cases some thought along the lines that led 
to Eq. (5) should afbw the correct position to be deduced. 

As an example of a more complicated situation, let us 
consider that in the presence of the varying frequency distri- 
bution g(x) we wish to measure the ~nctiona~ dependence 
of a second variable q(x) as a function of x. A specific ex- 
ample, as in for example Ref. ( IO], is the measurement of 
the average transverse momentum component of tracks with 
respect to the jet axis, as a function of the momentum com- 
ponent parallel to the axis. A second example is the mea- 
surement in Ref. i[ 1 I ] of spin-density matrix elements for 
quasielastic photoprodu~tion wf vector mesons jn bins of the 
four-momentum transfer, t, from the photon to the meson. 
The cross section, d=/dr, falls exponentially with t, neces- 
sitating the use of wide bins at large values oft; there is in 
addition a slow variation of the measured spin-density ma- 
trix elements with t. 

The expectation value for the measured q(x) for the en- 
tries within a bin in X, of width Ax from XI -+ x2 is given 

by 

f 10) 

Only in the limit AX + 0 does (qua) -+ q(x); for a bin 
of non-zero width we have to decide at which value of x 
within the bin qmeas should be regarded as a measurement of 
q(f). By analogy with the discussion that led to Eq. (5) we 
can easily see that the correct value of x is that point (xi,,) 
at which the function q(x(,) is equal to the average value 
of q(x) for the entries within the bin. Thus the defining 
equation far x;,~ is 

In general, xf,* will not be equal to 2, _u,, or x,. 

3.1. Example: exponential variation 

Far example let us consider an exponential farm far 
g(x) = aePDX and for q(x) = ceedX, Solution of Eq. ( 11) 
far this case gives 

.&.=xt +f{ln(vj _ln(l _e-(h+d)bx) 

+ In (1 - e-‘AX)} . (12) 

To be specific let us reconsider our previous example of 
the frequency dist~bution g(x) = IO4 x e-‘-’ with the data 
binned in the ranges of x from O.O-O.l,O.l-0.3,0.3-0.6 and 
0.6-I .O, as given in Table 1 and Fig. 1. In addition let us take 
q(x) = 10 x e-“. Far each bin, Table 2 gives the expected 
value of qmw and the corresponding value of xi,+,. In Fig. 7 
the function q(x) is compared with the expected values of 
qmcaY plotted as stars at .&. Far comparison the data are also 
plotted as squares at 7, as circles at n,, and as triangles at 
x,, showing that nwne of these three choices is appropriate 
and that in this specific example they ail lie systematically 
above the function. We note that in this case the measurement 
errors on q,. will depend on the experimental conditions 
and so we cannot show any error bars in the figure. 

3.2. Example: hear variation 

In the case where g(x) may be taken to be varying linearly 
over a bin, as would be appropriate in the examples [ lo,11 ] 

Table 2 
For the function 4(x) = IO x ew7’ measured in the presence of the varying 
frequency distribution g(x) = 104 x ePti 1s given in each bin: the expected 
value of qmeas and the appropriate w&e of A;,. The corresponding values 
of 1 xfrv or xc may be found in Table 1 

bin range 0.0-O. I 0. I-0.3 0.3-0.6 0.6- 1 .O 

khea4 7.442 3.036 0.663 0.076 
x;,v 0.042 0.170 0.388 0.698 
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Fig. 7. The function q(x) = 10 x em’* measured in the presence of the 
varying frequency dis~~tion g(x) = IO4 x e-k with four sets of points 
showing different possible choices for the abscissa value. 

quoted above, the solution of Eq. ( 11) is xi,,, = 7, indicating 
the choice of the barycentre as the correct position of the 
measured data point. Thus, while this choice has been shown 
to be incorrect for plotting the underlying frequency, it turns 
out to be appropriate for a second variable measured in the 
presence of the varying frequency distribution. In fact it is 
easy to show from Eq. ( 11) that this result remains true for 
any functional form of the frequency distribution g(x) so 
long as q(x) may be assumed to be a linear function of x 
over the width of the bin. 

4. Summary and conclusions 

We now summarize the main conclusions we have 
reached concerning the measurement of a frequency distri- 
bution g(x) within wide bins in x. 
- The expectation value for an experimental measurement 

(g,,} corresponds to the average value of g(x) within 
the bin (Eq. (2)). Therefore the result of a particular 
expenment, gme,, should be regarded as a measurement 
of g(n) at the value xlw of x at which the function value 
g( xl,“) is equal to the average value of g( x) within the bin 
(Eq. (5) ). It is particularly important to use the correct 
value xlw when the data are measured in bins of large 
width. 

- Regarding g,,,as as a measurement of g(x) at x,, the bin 
centre, or at Y, the mean value of x for the entries within 
the bin, is in general incorrect and can only be justified if 
g(x) can be regarded as varying linearly over the width 
of the bin. We give examples from the published literature 
to illustrate this point (see Fig. 2). 

- The fact that one has to assume a shape for the underly- 
ing frequency dis~bution in order to calculate xjw has a 
number of consequences: 

The assumptions made in a particular analysis should 
be described in the associated publication. 

. An uncertainty in the knowledge of the underlying 
frequency distribution will result in an uncertainty in 
the calculated values of xlw. This must be taken into 
account when comparing experimental measurements 
with a curve predicted by a theory or model. 

’ When comparing the results of two experiments a con- 
sistent choice of how to calculate the appropriate values 
of xl,? must be ensured for the two sets of data. 

. A quantitative compa~son is simplified if the theoreti- 
cal predictions are calculated for the same bins used to 
analyse the experimental data. Similarly the compari- 
son of two sets of experimental data is simplified if they 
are both presented with the same binning. The values 
within each bin can thus be compared directly and the 
question of choosing the correct x value within the bin 
is then irrelevant for this purpose. 

- We note that the common practice of using horizontal 
“error bars” to indicate bin ranges can sometimes give 
a misleading impression of consistency in cases where 
measurements and predictions actually disagree. In Fig. 6 
we propose an alternative way to indicate the bin ranges 
- by means of short vertical lines at the edges of the plot 
- that avoids this problem. 

- Although we mainly discuss the measurement of a fre- 
quency dist~bution as a function of a single variable we 
give examples of how more complicated situations may 
be treated using a similar approach. 

- It is clear that choosing bins to be as narrow as possible 
within the constraints of limited data and Monte Carlo 
statistics helps to minimize the ambiguity in the interpre- 
tation of the resulting data points. 
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