
Event Classification Using Weighting Methods 

I lt~parrrnmt of Phy.tirs. Munrhesrrr L'nircr.\lry, iMant.lie.r/er, England 

Recei~ed  August I ? .  1985; revised December 29, 1986 

This paper considers the general method of estimating the numbers of diITercnt classes of 
events in a sample by use of a weighting technique, with particular reference t o  high energy 
physics experiments, and shows how to construct the optimal weight function to d o  this in 
any situation. Results using this funct~on are ;~lways better than the imposition of a cut and 
can be as  good ;IS a mas~mum-likelihood technique. V;~rious userul formulae are given 
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The problem of assigning members of a sample to different species, somctimes 
referred to as taxonomy, is common to many disciplines and was considered long 
ago by Fisher 111. In high encrgy physics experiments i t  often arises in a form 
ahere  one wishes to estimate the numbers of members of various species in a sam- 
ple even though the classification of individual members ("events"-) is ambiguous; 
one then speaks of "statistical separation" rather than "separation on an event by 
event basis." This has lately become rclevant in the study of the properties of L: 
quarks produced in c ' e  annihilation 12, 3, 41, and will be discussed in this con- 
text here. though the techniques can be applied to other separation problems such 
as particle identification and separating quark and gluon properties. Generally 
events arc divided into two classes, the wanted "signal" and the unwanted 
"background." 

T h ~ s  is illustrated in Fig. 1, which is typical of many figures found in experimental 
papers. The value of some discriminator variable x has been histogrammed for all 
events, and the signal emerges as a clear peak standing out from a sloping 
background. In such a situation, the traditional approach is to impose a cut al 
some value of x, say at  x =0.6, and the number of signal events is given by the 
number that survive the cut, after (small) corrections for the loss of signal events 
that lie outside the cut, and the contamination of background events that survive. 

Unfortunately, for b quark signals and many other cases, the situation is more 
like that shown in Fig. 2; again the signal and background are visible, but they 
merge into each other. Any cut imposed must remove a n  appreciable number o l  
signal events and/or include an appreciable number of background events; isolating 
a reasonably pure signal sample is impossible without unacceptably savage 
selection cuts. 
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FIG. I .  A typical HEP figure. Signal events stand out from a background when some variable x is 
histogrammed, and can be separated by some cut in x. 

Application of a cut in such a case seems undesirable, as  it entails throwing away 
a large number of wanted events-data just outside the cut contain a sizable 
proportion of signal events-but accepting the data  just inside, which contain a 
sizable amount of unwanted background. A more satisfactory approach is to  apply 
some weight function ~ ( x )  which is large in the regions where the signal is high, 
small in the regions where there is little signal, and of intermediate size in the region 
where both signal and background are important. 

This note offers a complete prescription for reconstituting signals from the data, 
using such weighting techniques. Faced with a distribution like that of Fig. 2, from 
which the signal contribution is to  be extracted, one would want to  know: 

What are the results of using a particular weight function? 
What is the best weight function to use? How good is it? 
Where is the best place to put a cut? 
Which gives better results, the best weight or the best cut? 
Is there any better technique? 

This paper answers all these questions. 

FIG. 2. A situation similar to Fig. 1, but a clean separation is not possible 



Consider the typical data shown in Fig. 2; x is a discriminator variable whose 
behaviour is well understood for both signal and background, though not in itself 
of any interest. Note that x can and probably will be a vector containing more than 
one variable (e.g., p ,  and jet mass for b quarks [ 2 ] ) ;  it is presented here as a single 
variable for the sake of simplicity, but this need not be so. We suppose that the 
data in the plot consist of Ns signal and N ,  background events, and that the 
problem is to estimate the expected value of N ,  on the basis of the information in 
the plot. The figure might actually contain all the data taken, and N ,  would then be 
the total number of signal events and could be used to give a cross section, or it 
could contain events which have already been histogrammed under some more 
interesting variable (e.g., for b quarks, the impact parameter or  the polar angle 
[3,4])  and consist of the contents of one bin of such a histogram. 

Suppose a weight function tc(x) is chosen which enhances the signal. w(.l-) = x  
obviously serves this purpose, as does w(x) = (x  - 0.5)2; the latter looks to be more 
effective, but as yet we have no way of quantifying this. There are N u  events in the 
histogram, and when each is multiplied by its appropriate w, the weighted total is 
N,. The s distributions for signal and background are presumed to be well 
understood, so the mean value of the weight for signal events, q, and for 
background events, M., can be calculated. 

For a g~vcn N ,  and N,, the expected values for the unweighted and weighted 
totals are given by 

So if the data give some values for N ,  and N,, the estimate for the desired number 
N ,  is 

which can also be written as 

where the sum is over all events in the sample. 
gs is unbiased, as can be seen by considering the expectation for 

N w - q N u  
N s -  - - w, - M'B 

which is zero. 
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3. STATISTICAL ERRORS FROM USING WEIGHTS 

In finding the variance for the estimate of Eq. ( I ) ,  one has to consider carefully 
the actual conditions of the experiment and what one is seeking to estimate. Dif- 
ferent arrangements can give different variances, though the data they record are 
  den tical. We consider three such types of estimation: for ( i )  the actual number, (ii) 
the proportion, and (iii) the Poisson mean. T o  give an example, suppose that in 1 
day an experiment collects 100 events, and when analysed the number of b quark 
events, fi,, is 10. One can then say that ( i)  there are 10 b quark events in this sam- 
ple, or (ii) 10 % of events contain b quarks, or (iii) 10 b quark eventslday are 
produced under these conditions. All of these are valid, though an error should be 
quoted on the 3 measured quantities (IOevents, 10 O h ,  lOevents/day) and this 
error, the variance of the estimate R,, is different in the 3 cases. 

( i )  The actual r7urnher. If the numbers of signal and background events 
which one wishes to estimate are regarded as fixed, then the expected variance on 
x, ts, is due to the variances of tv for the N, signal and N ,  background events 

and the variancc on the estimate for N s  is 

(ii) TIze pruportiurz. Alternatively the total number of events may be fixed, 
but the signal and background numbers occur randomly, according to the binomial 
distribution. One is then measuring the proportion of signal events in the mixture. 
The variance in N, is larger than for the first case, being given by the variance of 
ths distribution of w for the whole sample, and this gives 

( i i i )  The Poisson mean. Another possible experimental arrangement is to 
take data for a fixed period of time, collecting events which are generated ran- 
domly, according to Poisson distributions with some values for the mean numbers 
N ,  and N,, and it is these mean numbers which are to be estimated. Due to the 
additional uncertainty, the variance is again larger than that in the previous case. 
For a set of data generated according to the Poisson distribution, it can be shown 
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where A is the noise/signal ratio NB/Ns. F is the factor which multiplies f i  to 
give errors. If it is 1 then the separation is complete. Otherwise the effectiveness of 
the separation can be judged by how close F is to 1. Although this note does not 
address the problem of the choice of the discriminator variable(s) x (this has been 
considered first by Fisher [ I ]  and recently, with specific applications to b quarks, 
by Marshall [2]), it does tell one how to use the variable(s) once chosen. The num- 
ber F-Eq. (5)-provides a clear way of expressing how effective the choice of 
variable is and can be used to compare the merits of alternatives and express how 
well the separation is achieved. 

Signal-Buckground Corr~.lations 

The values of the unweighted and weighted totals can also be combined to give 
the number of background events, N,, 

The variance of this is 

as is apparent from the symmetry of the algebra. If both N ,  and NB are evaluated 
then there is a correlation between the two results. This is negative and is given by 

This can be proved directly, by the same method as used in the Appendix to find 
the variance or by observing that the variance of N u  is given by 

As the events are generated by a random (Poisson) mechanism, this variance on the 
total number of events, N u ,  must be equal to N u .  The covariance term must 
therefore be such as to exactly cancel the second terms in the expressions for ~ ( f i , )  
and ~ ( f i , ) .  

An optimal weight function is a function ~ ( x )  for which v(N,) is minimum, 
given N,, N,, and the signal and background distributions in the discriminator 



206 ROGER BARLOW 

(see the Appendix) that the variance on the estimate of a weighted sum is the sum 
of the squares of the weights, so the variance of the estimate of N ,  is given by 

In a particular situation the expected value of this, with a little rearranging, is 

which we can rewrite as 

with 

The difference between these three arrangements and their associated variances 
can be seen by considering the case of clear-cut separation, when the weight 
functions for signal and background are sharply peaked, so 2-q2 and - 
14,,'-&* are both zero and X vanishes. The variance for the fixed-number 
arrangement is zero, because you know exactly how many of your sample are 
signal. The variance in the second viewpoint is N,N,/N,, which is the variance of 
the binomial distribution with proportions N,/N,  and N,/N,. The variance for 
the fixed-time, Poisson, arrangement is N ,  , because although you know the number 
in the sample exactly, this is still only an estimate of the mean of the Poisson dis- 
tribution which generated it, and the error associated with a Poisson distribution is 
,fi. 

The third, Poisson, case describes the experimental arrangement appropriate for 
high energy physics experiments, which take data for some period of time, during 
which events are accumulated on a random, Poisson, basis. For this reason the rest 
of this paper will work in the framework of the fixed-time arrangement, and the 
variance given by Eq. (3). However, in all three cases the expression X given by 
Eq. (4) contains the excess on the variance due to the presence of a background 
which cannot be cleanly separated, and the problem of minimising the variance is 
the same: the "best" weight function is that which minimises X. It should be a 
function for which the signal and background each have a sharply peaked dis- 
tribution, so that 7 2  tc2, and also that these peaks are widely separated, so 
- 
\t., 7t. ll:B 

Another useful number is the ratio: 
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Rearranging this gives the requirement for w(x) :  

From this it can be seen that ~ v ( x )  has to have the form 

where the constants P and Q can be determined by inserting this form for w(x) into 
the above requirement. When this is done the result is very simple; writing various 
quantities in terms of P and Q, and remembering s(.x) dx = 1 b(x) dx = 1 

The right-hand side of Eq. (6) becomes 

which is 

and this is equal to the left-hand side for any values of P and Q; the requirement is 
satisfied automatically (unless P = - N, PIN,, when = 6 and X is infinite). 
This arbitrariness in ~ ( x )  is to be expected. If any weight function is multiplied by a 
constant, or has a constant added to it, then this will not change its effect. 

We choose to take P = N,, and Q = 0. This gives the optimal weight function 

Choosing these values for P and Q gives w(x) a nice physical interpretation: all 
weights lie between 0 and 1, and for an event in the data at a given value of x, it is 
the probability that that event originated from the signal rather than the 
background sample. It is zero in regions where s (x )  is zero-i.e., events that are 
 definite!^ not signal have weight zero a n d  one if b (x)  is zero e v e n t s  that are 
certainly signal have weight one. 



variable .u. Denote these by s (x )  and b(x)-they are normalised to unity and are 
known, perhaps from theory (for example, if one is studying a resonance one might 
know that s(.u) is a Breit--Wigner with known parameters) or perhaps from the 
results of Monte Carlo programs. 

In terms of the functions s(x),  b( r ) ,  and w(x), Eq. (4)  becomes 

If u,(.u) is to be optimal then X must be a minimum, i.e., if an arbitrary smaii 
function 6(x)  is added to iu(x), the change in X must be zero. 

The change resulting in, for example, 6 is 

A&) = (a , (x)  + 6(x))  s ( r )  dx - tv(x) S(X) dx = S(X) 6 ( r )  dx. i I 
The change in the denominator of the above expression for X is 

The change in the numerator is 

which is 

Combining these two expressions to give the change in X, setting it to zero, and 
eliminating some common factors give the requirement 

As it is required that this be true for an arbitrary function 6(x),  the functions 
multiplying 6 in the two integrands must be equal for all x, 
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- 2 - 1 0 1 2 
Log A assumed l n  weight 

FIG. 3. The dependencc of F on the value of A used in the weight function, for signal and 
background mixtures of the form of Fig. 2, for various signal: background ratios. 

Conzparison with the Use of Cuts; Optin~al Cuts 

The method of cuts can be considered as a weight function. If a cut is applied at  
x, then one counts the number of events within the cut, this is equivalent to 
calculating N w  with 

W ( X )  = 0 (x < x,) 

The effects of a cut can be conveniently described by the fraction of signal and 
background events which remain after it, Cs and C,. Then 6 = 2 = C, and = - 
\I,,~ = C,. The estimate of Ns  obtained from the number in the cut by correcting for 
loss of signal and inclusion of background is just Eq. ( I ) ,  and the error is given by 
Eq. (3), which becomes 

The optimal cut is that which maximises this quantity. Again, reasonable guesses at 
N ,  and N ,  will give good results. 
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If these optimal weights are used then various simple uscful relations are true: 

Furthermore, having minimised ~ ( f i , )  by minimising the quantity X, one has also 
minimised ~ ( f i , )  and cov(fi,, T?,). These weights are therefore optimal in this 
respect also. 

lVc.ar.1~~ Optimal Weiglzts 

The problem with the above recipe for optimal weights is that it involves N, and 
N,, which are unknown. However, this is not a fatal difficulty. Equation ( 7 )  can be 
rewritten as 

and the ratio A ( =  N,/N,) is not known exactly. However, one probably has a 
reasonably good initial estimate; in a particular problem the relative size of the 
signal expected is usually roughly known to within a factor of 2 or so, and this is 
adequate. Provided the value of A used in the weight function is not very different 
from the true N,: N, ratio, F and ~ ( f i , )  are not significantly different from their 
ideal values. 

This slow dependence can be seen as the second derivative at the optimum point 
1s 

(The first derivative is of course zero.) If the separation is working at  all then 
and must be small and very small compared to 5, so this expression is at least 
s~nallL compared to F2. 

The effects of this are shown in Fig. 3 for the data of the type of Fig. 2 which, in 
fact, consists of a Gaussian signal of mean 0.5 and standard deviation 0.1, on top of 
a background falling exponentially with slope 1 to zero at x = 1. The value of F is 
shown as a function of the value of A used in the weight function, for various actual 
N,: N, ratios. It can be seen that if the guessed ratio is correct to within about a 
factor of 10, then the increase in F is insignificant. 

It should be stressed that if the weight function does not use the correct value for 
N,/N, this does not invalidate the result obtained. This is given by Eq. ( I ) ,  which 
is true for any weight function ~ ( x ) .  The actual error will be given by Eq. (2), which 
is also correct. The only penalty paid for a wrong guess is that the error is (slightly) 
larger than it need be. 
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- 2 - 1 0 1 2 
Log A 0ss~rned i n  weight 

FIG 3. The dependence or F on the value or A used in the weight lunctlon, Cor s~gna l  and 
background rnlxlures o i  the rorrn or Fig. 2, ior various slgnal: background ratios. 

Compurison with the Use of Cuts, Oplimal Cuts 

The method of cuts can be considered as  a weight function. If a cut is applied at  
s, then one counts the number of events within the cut, this is equivalent to  
calculating N w  with 

w(x)  = 0 ( x  < x,) 

= 1 ( x  ax , ) .  

The effects of a cut can be conveniently described by the fraction - of signal and  
background - events which remain after it, C, and C,. Then 6 = w S 2  = C, and w, = 
w B 2 =  C,. The estimate of N ,  obtained from the number in the cut by correcting for 
loss of signal and inclusion of background is just Eq. ( I ) ,  and the error is given by 
Eq. (3), which becomes 

The optimal cut is that which maximises this quantity. Again, reasonable guesses a t  
N S  and N ,  will give good results. 
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As such a weight distribution is not  the optimal onc, the error rrom this cut must 
be larger than the error from the optimal weights. However, a cut is simpler to  use^ 
and some would say safer, and if the benefit to be obtained from using weights is 
only small a cut rnay be w refer red. This can be investigated by a simple analysis ,, 
the given problem. Figure 4 shows the results obtained from distributions of the 
gaussian on a n  exponential type of Fig. 2. The  value o f  F is shown as  a function ,, 
N,: N, for optimal weights and optimal cuts, and  it can be seen that the weightin .! 
method offers a considerable advantage over the cuts, particularly when the signal 
is relatively small. In Fig. 4a both use the correct value or NH/Ns for A and in 
Fig. 4 b  a value of 1.0 is used; the difference is small, as  expected. 

Comparisor~ with Maxirn~trn-Likelihood Filling 

In this method N, and N, are found by maximising the likelihood: 

9 = 1 ln(iV,~(x,) + N H  b(r , ) )  - 1 (N,s (x)  + N,h(r ) )  dx, 
J 

where the sum is taken over all events. The  integral is included in accordance with 
the principle of extended maximum likelihood, [ S ]  and ensures that the sum of the 
fitted values, fis + iq,, is the total number of events. (It  contains the log likelihood 
for all the values of .u at  which no event occurred.) 

For  a large number of events, the variance is given by the inverse or the matrix of 
expectation values of second derivatives [6] 

- 2 - 1 0 1 2 
LoglO NB: NS 

FIG. 4 ( A )  Dependence of F on the actual signal: background ratio for situations like that of Fig.1, 
showing the F achieved by the optimal weight and by the optimal cut, assuming that the value of A used 
is the true one. ( B )  As Fig. 4A, except that the value of A used is 1.0 throughout. 
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(which is obtainable by treating the normalisation condition for s ( x )  in the same 
way as  that for h (x)  was treated above). This gives 

This holds for any N,, N,, a n d  normalised s ( x )  and  b(x), where ~ ( x )  as  given by 
Eq. ( 7 )  is a function formed from these quantities. The dependence of the result on 
the signal and background distributions is contained in their average values for ,v, 

If this function is also being used as  a weight function, then the variance on the 
estimate of N ,  is given by Eq. (8) ,  and the two expressions are seen to be identical, 

S o  for large numbers of events, the maximum likelihood ( M L )  and optima/ 
weighting methods are  equally effective, and either can be used. Only if a good 
guess at  the N,: N ,  ratio is impossible will the M L  method have a significantly bet- 
ter error. If such a guess is possible, then the power of the two methods is the same, 
and the weighting method is much easier to use-values and errors are  given by 
simple formulae ((1)  and (2), o r  (8 ) )  and n o  litting is needed. There are also advan- 
tages in the weighting method when it comes to determining the Monte Carlo dis- 
tributions-a problem which is not discussed here, but can be quite tricky, par- 
ticularly if x in fact consists of many variables ("many" - more than I) .  For the 
weighting method one needs to  parametrise the ratio rc(x); for maximum likelihood 
one parametrises s ( x )  and b(x). The  function w(x) is smoother than s (x)  and b(x )  
because these latter contain various lumps and bumps due t c  kinematic and other 
factors. Also, if the parametrisation of w(x) is inaccurate then the validity of the 
method, as  expressed in Eqs. (1 )  and (2) ,  is not  affected; the only penalty is that the 
weights are not quite optimal, whereas inaccuracies in the s (x )  and b ( x )  functions 
may have serious systematic effects o n  the maximum likelihood fit. 

For  small numbers of  events the variance o n  the maximum likelihood estimator 
is n o  longer given by the asymptotic form of Eq. ( I  I ) .  It is suggested [7, p. 2141 
that things are worse for small samples than the asymptotic theory indicates; if this 
is so then the optimal weights will perform better than the maximum likelihood 
fitting for sinall samples. Also, for small samples the bias in the result of the 
maximum likelihood fit is not  negligible, and  the weighting method may be 
preferred for this reason. 

Use of More than One Weight Function 

One might consider the use of two or more independent weight functions but, 
surprisingly, this does not give any better result. This can be seen as  follows. 

Use of extra weight functions can only be beneficial if they are independent, and 
the best one could possibly d o  would be to use a n  (infinite) set of independent 
weight functions forming a basis for functions of  x--e.g., { l ?  X, x2, x3, ...} or the I 
Chebyshev polynomials. All such infinite basis sets must be equivalent for our pur- I 
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pose as  they can be transformed into each other. So we can consider only one, 
namely the set of delta functions 

I 

/ &ere { X , )  is the (infinite) set of all points in the range of x. Each such functlon 
only one point, X,,  a t  which the number of events will be either one or  

, zero. O n e  therefore has to adjust fis and fi, to satisfy, a s  best one can, the 
/ 
I 

N S s ( x i )  + f i ,h(xi)  = 1 for all Xi with a n  event 

N,S(X,) + fi, b ( ~ , )  = 0 for all Xi with no event. 

This is precisely the problem solved by the method of extended maximum likelihood 
[s]. Thus the use o f  extra weight functions leads to a method equivalent to the 

of maximum likelihood and cannot offer a better result. 

The Case of a Known Background 

In the situation described above it is assumed that there is no a priori knowledge 
of the size of the background. Indeed the terms "signal" and "background" are  
purely descriptive, it is a matter of choice which of the two species is regarded as  
which. 

However, the case can arise that although the signal size is (of course) unknown, 
the expected size of the number of background events is known (and the actual 
number in the experiment is given by the appropriate Poisson distribution). F o r  
example, Fig. 2 could represent the production of a particle, with a background for 
which the cross section is known from theory or  from other measurements. 

Using weights, one again writes 

with the difference being that this time, N, is the known expected number of 
background events. The equivalent of Eq. ( 1 )  is then 

and Eq. ( 3 )  becomes 
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A similar analysis to that used for the variance given by Eq. ( 3 )  shows that this it 
also a minimum when the weight function defined by Eq. ( 7 )  is used. SO the weighl 
function which was optimal in the previous case is also optimal for this one. 

The  variance obtained is, however, different. It  is smaller as  more information ,, 
- .u 

given. When the optimal weight function is used, Eq. (13 )  becomes, in analogy 
Eq. (8), 

The  maximum-likelihood fit, for which there is now only one free parameter, gives 
the same error. 

So  if the expected background is known a priori, then the optimal weight 
function is still given by Eq. ( 7 ) ,  and the method of  weights is as  good as a 
maximum-likelihood fit in this case also. 

The Weighling Me~hocifor Severill Species 

It may be that the sample contains r ~ o t  merely 2 species but several, separable 0" 
the basis of their different distributions in x. If there are n such species, then their 
separation requires n independent weight functions, w"), i=  1, ..., n. If the weighted 
totals from the sample are CV(", then these are produced by the numbers of the 
various species present, N(", according to 

where M ,  is the mcan value of weight i for events belonging to species j (a 
generalisation of and G). Given the W(' )  from the data and the elements of Mv 
from previous study of pure samples, the numbers present belonging to each species 
are estimated by 

where the sum over k is over all events, and wv) is the value o f  weight j for the kth 
event. Equation ( 1 )  can be seen to be a special case of this, where the 2 weight 
functions are the function w ( x )  discussed there and the constant weight of unity. 

The variance is again given by the sum of the squares of the elements in the 
summation 
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The optimal weight functions are, by analogy with Eq. ( 5 ) ,  

,, each M . ~ ( ~ ' ( x )  is the optimal weight function for the i th  species. 

~ ~ i ~ l z f i n g  and the Method of Mornenfs 

The estimator used in the weighting method-Eq. (1)--can be regarded as  a n  
application of the method of moments: the numbers of species in the sample are 
found by comparing the zeroth and first moments of the function w(x) for the sam- 

ple with those of the pure signal and background. The  use of the method of 
moments, of  maximum likelihood, and other techniques, for the separation of 
species has been considered by many authors-for a review, see [7]-albeit not in 
a form readily accessible to  most experimental physicists. Various comparisons of 
the method of moments and the maximum likelihood method have been made, 
however, the context of  their conclusions has to be carefully considered. Thus, when 
~ u b b s  and Coberly [8, p. 11201 conclude that the method of moments is inferior to 
the other methods they study, it should be noted that ( i )  they consider only 
simulation of a few cases of samples, (ii) they consider only samples generated by 
the Normal, Gaussian distribution, (iii) the moments they use are the first- and 
second-order moments of the discriminator variable x-there is no attempt to find 
a better function of which to take the moments, and tinally (iv) their criterion for 
judging the merits of the methods is not the size of the variance, but the sensitivity 
of the estimate to systematic changes in the species distribution functions. Similarly, 
the comparison of Odell and Basu [9, p. 11051, which prefers the maximum 
likelihood method to that of moments ( i )  refers to the method applied to the first 4 
moments of the discriminator variable, not those of a n  optimised function, (ii) con- 
siders only mixtures of two normal distributions, and  (iii) concerns the case where 
the individual species distributions are not  known and have also to be obtained 
from the data. Thus our  conclusion that the method of weights (or  moments) is as 
good as  the maximum likelihood method, for separation in the circumstances 
described here (which are those appropriate to high energy physics experiments), is 
not in conflict with statements to the contrary which can be found in the literature 
but apply to different circumstances and usually only to  moments of the dis- 
criminator variable. 

Using the Method: A Brief Note on Systematic Errors 

In applying the method of weights t o  a data sample, the process falls into two 
parts: first, the choice of the weight function w(x); and second, its application to the 
data in order to  extract the number of signal events. 

As has been discussed, some weight functions are better than others, the best 
being that given by Eq. (7); this choice requires an assumed value for the ratio 
N , :  N,, but does not depend critically o n  it. It also requires parametr isat i~n of the 
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,Y dependence of the signal and background distributions or,  combining the two 
requirements, a parametrisation of the fraction of events that belong to the signal as 
a function of x.  

In the second stage of the process the given function is applied to the data, and 
Eq. ( 1 )  is used to extract the desired number of signal events. In this extraction, 
and are used. These numbers, the mean weights for a pure signal and  a pure 
background sample, are  obtained by applying the chosen weight function to such 
samples, which are typically obtained from Monte Carlo simulations. Although it is 
essential that these values are accurate, all that is necessary for this is that the Sam. 
ples used are  faithful representations of the real signal and  real background data, 
N o  assumptions about  N,: N,, a n d  n o  parametrisations, are necessary. ~h~ 
estimate of N, is unbiased  provided & and 5 are the correct mean weights for 
the weight function being used, whether o r  not  this weight function is optimal. 

Use of Monte Carlo programs to calculate the values of and is sometimes 
used as a ground for criticism for this approach, as  being too dependent o n  Monte 
Carlo prograins because any inaccuracies will give systematic effects. Against this 
criticism two points can be made. First, the variable .K is unexciting and well 
understood, and the Monte Carlo programs o r  theoretical models used are 
presumably well established and  known to describe the data  accurately. Second, in 
a situation like this the results of any cut require large corrections to account for 
the signal lost by the cut and/or  the background remaining in the selected sample. 
These corrections are also heavily dependent o n  the Monte Carlo programs used. 
So the use of cuts will also introduce large systematic errors if the Monte Carlo 
programs are inaccurate, just a s  with this method. 

The weighting method for extracting signals, as embodied in ( I ) ,  ( 2 ) ,  and (7) of 
this paper, is easy to understand and use, superior to cuts as no data  is wasted by 
throwing it away, and as  good as the more complicated maximum-likelihood fitting 
technique. It should find many useful applications in the analysis of high energy 
physics data ,  and perhaps elsewhere. 

APPENDIX:  VARIANCE OF A WEIGHTED SUM OF 

VALUES GENERATED BY THE POISSON DISTRIBUTION 

This is a simple derivation, but does not appear in most textbooks which treat 
the variance of a weighted sum o r  mean only in the context of Guassian errors. 
Suppose a number of events are recorded in a certain time, each of which has some 
weight w,  and the total C w ,  is formed. A practical example might be a compound 
radiactive source containing several sources with differing strengths and  emitting 
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rays of various energies which are  (precisely) measured. It is desired to find 
be total energy deposited, W, and the associated error. 

The best estimate of the total is clearly 

where w ;  is the measured gamma ray energy of the ith event. 
TO find the variance o n  this, divide the gamma ray energies into bins, the j t h  bin 

having energy w,  and expected number of events A]. Then the sum can be rewritten 

 here this sum runs over all bins. The number of events in each bin, n,, are all 
independent, and the variance of W is the sum of their variances, appropriately 
weighted 

The n, are generated by the Poisson distribution, so their variances are given by 
v(n,) = A,,; and as n, is an unbiased estimate of A], the estimate of the variance of 
W is 

V( W) = 1 w f n ,  
I 

which can be rewritten in a form which makes no reference to the binning used and  
is, therefore, true in general: 

V ( W ) =  C wf 
a l l  events 
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