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Abstract: A new generation of parton distribution functions with increased precision

and quantitative estimates of uncertainties is presented. This work significantly extends

previous CTEQ and other global analyses on two fronts: (i) a full treatment of available

experimental correlated systematic errors for both new and old data sets; (ii) a systematic

and pragmatic treatment of uncertainties of the parton distributions and their physical

predictions, using a recently developed eigenvector-basis approach to the hessian method.

The new gluon distribution is considerably harder than that of previous standard fits. A

number of physics issues, particularly relating to the behavior of the gluon distribution, are

addressed in more quantitative terms than before. Extensive results on the uncertainties of

parton distributions at various scales, and on parton luminosity functions at the Tevatron

RunII and the LHC, are presented. The latter provide the means to quickly estimate the

uncertainties of a wide range of physical processes at these high-energy hadron colliders,

based on current knowledge of the parton distributions. In particular, the uncertainties on

the production cross sections of the W , Z at the Tevatron and the LHC are estimated to

be ±4% and ±5%, respectively, and that of a light Higgs at the LHC to be ±5%.
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1. Introduction

Progress on the determination of the parton distribution functions (PDF’s) of the nu-

cleon, from global quantum chromodynamics (QCD) analysis of hard scattering processes,

is central to precision standard model (SM) phenomenology, as well as to new physics

searches, at lepton-hadron and hadron-hadron colliders. There have been many new devel-

opments in recent years, beyond the conventional analyses that underlie the widely used

PDF’s [1, 2, 3]. These developments have been driven by the need to quantify the uncer-

tainties of the PDF’s and their physical predictions [4]–[12]. We report in this paper on

a comprehensive new global QCD analysis based on the most current data, and on the

recently developed methods of uncertainty study of [10, 11, 12]. This new analysis includes

a full treatment of all available correlated experimental errors, as well as an extensive

exploration of the parametrization of the input non-perturbative PDF’s.

Although this work is built on the series of previous CTEQ parton distributions [2], it

represents more than an evolutionary updating of previous work to incorporate new exper-

imental data sets. The methodology of [10, 11, 12] goes beyond the traditional paradigm

of producing some subjectively chosen “best fits.” It introduces a set of efficient and prac-

tical tools to characterize the parton parameter space in the neighborhood of the global

minimum. This allows the systematic exploration of the uncertainties of parton distribu-

tions and their physical predictions due to known experimental errors and due to the input

theoretical model parameters.

There are many complex issues involved in a comprehensive global parton distribu-

tion analysis. Foremost among these on the experimental side is the “imperfection” of

real experimental data compared to textbook behavior — for instance, some experimental

measurements appear to be statistically improbable because the χ2 /N deviates from 1

substantially more than the expected ±
√
2/N ; or different precision experimental mea-

surements of the same physical quantities appear to be statistically incompatible in all

regions of the model parameter space. The methods of [10, 11, 12] cannot resolve these

problems — no global analysis method can — but the tools developed in this formalism

make it possible to look deeper into some of these problems, in order to assess the accept-

ability and compatibility of the affected data sets in more practical terms, and to suggest

pragmatic ways to deal with the apparent difficulties. These detailed studies were not

possible in the conventional analyses [1, 2, 3, 13]. On the theoretical side, the uncertainties

on the perturbative QCD (PQCD) calculations of the various physical processes included

in the global analysis are not easily quantified in a uniform way. We do not address that

problem here.

Section 2 summarizes the experimental and theoretical input to the global analysis,

emphasizing the new elements in data sets and in methodology. Section 3 presents results

on the new generation of PDF’s: the “standard” CTEQ6 sets, as well as the eigenvector

sets that characterize the uncertainties. It also includes discussions of various physics is-

sues relating to these global fits. Section 4 presents some general results on uncertainties of

physics predictions due to PDF’s, in the form of parton-parton luminosity functions for the

Tevatron RunII and for the LHC. Section 5 compares this work to previous studies of PDF
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uncertainties [4]–[7] (primarily on DIS experiments), and to a recent general PDF analy-

sis [13]. Four appendices concern: (A) detailed information on the new standard parton

distribution set CTEQ6M; (B) new formulas and tools for understanding the significance

of χ2 values for individual experiments and estimating ranges of uncertainties in the com-

parison of fits with data; (C) assessing the need for higher-twist (power-law) contributions

to the theory model; and (D) studying the impact of the flexibility associated with the

choice of parametrization for the non-perturbative PDF’s.

2. New input and methodology

The next-to-leading order (NLO) global QCD analysis carried out in this work is built

on the same basis as the previous CTEQ parton distribution sets [2]. In this section, we

describe the new experimental input and the new theoretical techniques, which together

have enabled substantial progress in this generation of global analysis.

2.1 Experimental data sets

Since the CTEQ5 analysis, many new experimental data sets have become available for

an improved determination of parton distributions. Particularly noteworthy are the recent

neutral current deep-inelastic scattering (DIS) structure function measurements of H1 [14]

and ZEUS [15], and the inclusive jet cross section measurement of DØ [16] (in several rapid-

ity bins, up to a rapidity of 3). The greater precision and expanded (x,Q) ranges compared

to previous data in both processes provide improved constraints on the parton distribu-

tions. Other recent data used in the analysis are the updated E866 measurements of the

Drell-Yan deuteron/proton ratio [17] and the re-analyzed CCFR measurement of F2 [18].

These new results complement the fixed-target DIS experiments of BCDMS [19, 20],

NMC [21], CCFR F3 [22], the Drell-Yan measurement of E605 [23], the CDF measurement

of W -lepton asymmetry [24], and the CDF measurement of inclusive jets [25], which this

study shares with the earlier CTEQ5 analysis. Even for these older experiments, our

new analysis, by including correlated systematic errors (cf. section 2.2 and appendix B.1),

incorporates more details than previous [1, 2] and recent [13] analyses. For instance,

for the BCDMS and NMC experiments we now use the data sets measured at separate

energies (which contain full information on correlated errors) instead of the combined data

sets (which, due to re-binning of data points, retain only some effective point-to-point

uncorrelated errors of uncertain statistical significance).

2.2 χ2 function and treatment of correlated systematic errors

The very extensive and precise DIS data from fixed-target and HERA experiments provide

the backbone of parton distribution analysis. In order to make full use of the experi-

mental constraints, it is important to incorporate the available information on correlated

systematic errors [4]–[7] and [10, 11, 12]. The same is true for recent data on inclusive

jets [16, 25], where the experimental uncertainties are dominated by systematics. Thus,

for the first time in the CTEQ series of analyses, we have included the correlated errors

– 3 –
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wherever available. Our analysis is simplified by a novel way of treating systematic er-

rors, formulated in [12] (cf. also the recent review [26]). As an introduction to subsequent

discussions based on this method, we mention its basic ideas and main features here. A

more complete summary of this method is given in appendix B.1, as needed to explain the

detailed comparison between data and fits discussed in that section.

In global fits not including correlated errors, one would minimize a naive global χ2

function defined simply as χ20 =
∑

expt.

∑Ne

i=1(Di − Ti)
2/σ′2i , where Ne is the number of

data points in experiment e, Di is a data value, Ti is the corresponding theory value

(which depends on the PDF model), and σ ′2i = σ2i +Σ
2
i is the statistical (σ

2
i ) and point-to-

point systematic (Σ2
i ) errors added in quadrature. The function χ

2
0 provides the simplest

means to search for candidates of “good” global fits, but has rather limited use in assessing

uncertainties of the resulting fits.

If there are K sources of correlated systematic errors, specified by standard deviations

{β1i, β2i, . . . , βKi}, in addition to an uncorrelated systematic error ui for data point i, then
a standard method to improve the treatment of experimental errors is to construct the

covariance matrix Vij = α2i δij+
∑K

k=1 βkiβkj, from which a global χ
2 function is defined by

χ2 =
∑

expt.

∑Ne

i,j=1(Di−Ti)V −1ij (Dj−Tj). (Here α2i = σ2i +u
2
i .) An alternative method is to

add K parameters, each associated with one systematic error, and to minimize an extended

χ2 function with respect to the combined set of experimental and theoretical parameters

(denoted by χ′2 in appendix B.1, eq. (B.2)). These well-known methods are equivalent.

Both face some practical, even formidable, problems in the context of global QCD analysis

because of the large number of data points (which can make the inversion of the covariance

matrix numerically unstable) and the large number of fitting parameters (which becomes

unmanageable when all systematic errors from all experiments are included).

The method formulated in [12] overcomes these difficulties by solving the problem of

optimization with respect to the correlated systematic errors analytically. The result is an

effective χ2 minimization problem with respect to only the theory parameters, as for the

simple case. The resulting χ2 function has the form (cf. eq. (B.5)):

χ2 =
∑

expt.





Ne∑

i=1

(Di − Ti)2
α2i

−
Ke∑

k,k′=1

Bk
(
A−1

)
kk′

Bk′



 , (2.1)

where {Bk} is a Ke-component vector, {Akk′} is a Ke ×Ke matrix, and

Bk =

Ne∑

i=1

βki (Di − Ti)
α2i

, Akk′ = δkk′ +

Ne∑

i=1

βkiβk′i
α2i

. (2.2)

Not only is the matrix inversion simpler and more stable (Ke×Ke with Ke ≤ 10, compared
to Ne × Ne with Ne as large as 300, in the correlation matrix approach), the explicit

formula for the contribution of the various sources of systematic errors in eq. (2.1) provides

a useful tool to evaluate the uncertainties in detailed analysis of the fits — as explained in

appendix B.1 and used in discussions in subsequent sections — which is not available in

the traditional approach.
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Figure 1: Illustration of the eigenvector basis sets for uncertainty analysis of parton distribution

functions.

2.3 Methods for analysis of uncertainties

The widely used parton distributions [1, 2, 3, 13] are obtained from global analyses using a

“best-fit” paradigm, which selects the global minimum of the chosen χ2 function. However,

the “best” PDF’s are subject to various uncertainties. Within this paradigm, the prob-

lem of estimating uncertainties of the PDF’s can only be addressed in an ad hoc manner,

usually by examining alternative fits obtained by subjective tuning of selected degrees of

freedom. Recent efforts to assess the uncertainties objectively, using established statistical

methods, have been mostly concerned with the precision DIS experimental data [4]–[7],

rather than the global analysis of all hard scattering data. As mentioned in the intro-

duction, there are formidable complications when standard statistical methods are applied

to global QCD analysis. The basic problem is that a large body of data from many di-

verse experiments,1 which are not necessarily compatible in a strict statistical sense, is

being compared to a theoretical model with many parameters, which has its own inherent

theoretical uncertainties.

In recent papers [10, 11, 12], we have formulated two methods, the hessian and the

lagrange, which overcome a number of long-standing technical problems encountered in

applying standard error analysis to the complex global analysis problem. We are now able

to characterize the behavior of the χ2 function in the neighborhood of the global minimum

in a reliable way. This provides a systematic method to assess the compatibility of the

data sets in the framework of the theoretical model [27], and to estimate the uncertainties

of the PDF’s and their physical predictions within a certain practical tolerance. The basic

ideas are summarized in the accompanying illustration, adapted from [11]. The behavior of

the global χ2 function in the neighborhood of the minimum in the PDF parameter space is

encapsulated in 2Np sets of eigenvector PDF’s (where Np ∼ 20 is the number of free PDF
parameters), represented by the solid dots in the illustration. These eigenvectors are ob-

tained by an iterative procedure to diagonalize the hessian matrix, adjusting the step sizes

1For our analysis, there are ∼ 1800 data points from ∼ 15 different sets of measurements with very

different systematics and a wide range of precision.
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of the numerical calculation to match the natural physical scales. This procedure efficiently

overcomes a number of long-standing obstacles2 encountered when applying standard tools

to perform error propagation in the global χ2 minimization approach. Details are given

in [10, 11].

The uncertainty analysis for our new generation of PDF’s makes full use of this method.

The result is 2Np+1 PDF sets, consisting of the best fit S0 and eigenvector basis sets in the

plus and minus directions along each eigenvector. From these PDF sets we can calculate

the best estimate, and the range of uncertainty, for the PDF’s themselves and for any

physical quantity that depends on them. The uncertainty can be computed from the

simple master formula

∆X =
1

2




Np∑

i=1

[
X(S+i )−X(S−i )

]2



1/2

, (2.3)

where X is the observable, and X(S±i ) are the predictions for X based on the PDF sets

S±i from the eigenvector basis.

2.4 Perturbative QCD parameters and input

The fundamental parameters of perturbative QCD are the coupling αs and the quark

masses. In principle, these parameters can be determined in the global fit, along with

the non-perturbative parton distribution functions. In practice, they are determined more

precisely and definitively in dedicated measurements. We therefore treat these parameters

as input to our global analysis. For αs, we use αs(MZ) = 0.118, the Particle Data Group

average [28]. (However, cf. the discussion on leaving αs free in the fitting in sections 3.3.4

and section 5.2.) The light quarks u, d, s are treated as massless, as usual. In the MS

scheme, the evolution kernels of the PDF’s are mass-independent: charm and bottom

masses enter only through the scales at which the heavy quark flavors are turned on in the

evolution. We take mc = 1.3GeV and mb = 4.5GeV.

The hard matrix elements that enter into the PQCD calculations are all taken to be

at NLO (except for the LO fit, of course). Although it is now possible to incorporate

charm and bottom mass effects in the NLO hard cross sections, in the so-called variable

flavor number scheme (VFNS) [29]–[32], we have decided to use the conventional (zero-

mass parton) hard cross sections in our standard analysis for three practical reasons. First,

hard cross-section calculations in the VFNS (with non-zero parton masses) are not yet

available for processes other than DIS. Second, even in DIS, there are different ways to

implement the VFNS. This introduces yet another type of “scheme dependence”, and

hence a source of confusion for users of PDF’s. (A recently proposed “natural” imple-

mentation of the VFNS [33], if widely accepted, could alleviate this source of confusion.)

Finally, since most users of PDF’s only have at their disposal the standard hard cross

2The obstacles are due to difficulties in calculating physically meaningful error matrices by finite differ-

ences, in the face of (i) vastly different scales of eigenvalues (∼ 107) in different, a priori unknown, directions

in the high-dimension parameter space, and (ii) numerical fluctuations due to (multi-dimensional) integra-

tion errors in the theoretical (PQCD) calculation and round-off errors.
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sections for zero-mass partons, it is preferable to have PDF’s determined by a global anal-

ysis calculated in the same way as they are used. In a subsequent paper, we will study

the heavy quark mass effects in global analysis in detail, and publish PDF’s determined

in the VFNS with a full treatment of quark mass effects, using the natural implementa-

tion of [33].

2.5 Parametrization of non-perturbative input PDF’s

The non-perturbative input to the global analysis are PDF’s specified in a parametrized

form at a fixed low-energy scale Q0 = 1.3GeV.
3 The particular functional forms, and the

value of Q0, are not crucial, as long as the parametrization is flexible enough to describe

the range of behavior permitted by the available data at the level of accuracy of the

data. Intuitive notions of smoothness may be built into the input functions. The PDF’s

at all higher Q are determined from the input functions by the NLO perturbative QCD

evolution equations.

The functional form that we use is

x f(x,Q0) = A0 x
A1 (1− x)A2 eA3x

(
1 + eA4 x

)A5
(2.4)

with independent parameters for parton flavor combinations uv ≡ u− ū, dv ≡ d− d̄, g, and
ū+ d̄. We assume s = s̄ = 0.2 (ū+ d̄) at Q0. The form (2.4) is “derived” by including a 1:1

Padé expansion in the quantity d[log(xf)]/dx. This logarithmic derivative has an especially

simple form for the time-honored canonical parametrization x f(x) = A0 x
A1 (1−x)A2 . For

our parametrization there are poles at x = 0 and x = 1 to represent the singularities

associated with Regge behavior at small x and quark counting rules at large x, along with

a ratio of (linear) polynomials to describe the intermediate region in a smooth way.

Equation (2.4) provides somewhat more versatility than previous CTEQ parametriza-

tions. For some flavors, it has more freedom than needed, so that not all of the parameters

can be determined by the present data. In those cases, some parameters are held fixed,

guided by the hessian method in the final fitting process as discussed in section 3.2 and

in ref. [11]. In the future, more data may find even this parametrization too restrictive —

first for the very well constrained u(x) — and it will be natural to proceed to a 2:2 Padé

form. To distinguish the d̄ and ū distributions, we parametrize the ratio d̄/ū, as a sum of

two terms:
d̄(x,Q0)

ū(x,Q0)
= A0 x

A1 (1− x)A2 + (1 +A3 x) (1− x)A4 . (2.5)

Altogether we use 20 free shape parameters to model the PDF’s at Q0.

An extensive study of the sensitivity of the global fits to the choice of parametrization

has been carried out in the process of this analysis, by trying different parametrizations, and

by using different values of Q0 (which is equivalent to changing the functional forms). In

3In CTEQ5 and other recent global fits, the slightly lower value Q0 = 1GeV was used. Because QCD

evolution is quite rapid in the Q ∼ 1−2GeV range, one gets enhanced sensitivity to the parameters when

starting from a relatively low scale. However, that rapid variation, which occurs below the region of

applicability of PQCD, can produce unusual behavior of the functions at small Q, which may have no

physical significance. Cf. the discussions in section 5.2 and appendix D.
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Figure 2: Overview of the CTEQ6M parton distribution functions at Q = 2 and 100GeV.

the main body of this paper, we concentrate on results obtained with the standard choices

described above. Comments on the effects of parametrization on the physics results will

be made in the text as appropriate. Some studies of results obtained with alternative

parametrizations are described in appendix D.

3. Results on new parton distributions

With the theoretical and experimental input, methods, and parametrizations described

above, we arrive at a standard set of parton distributions (the nominal “best fit”) together

with a complete set of eigenvector parton distribution sets that characterizes the neigh-

borhood of acceptable global fits in the parton parameter space. The study is carried out

mainly in the MS scheme.4 We now discuss the salient features of the results and the

related physics issues.

3.1 The new standard PDF sets

The standard set of parton distributions in the MS scheme, referred to as CTEQ6M,

provides an excellent global fit to the data sets listed in section 2.1. An overall view of

these PDF’s is shown in figure 2, at two scales Q = 2 and 100GeV. The overall χ2 for the

CTEQ6M fit is 1954 for 1811 data points. The parameters for this fit and the individual

χ2 values for the data sets are given in appendix A. In the next two subsections, we discuss

the comparison of this fit to the data sets, and then describe the new features of the parton

distributions themselves. Quantitative comparison of data and fit is studied in more depth

in appendix B.

4For the convenience of certain applications, we also present one standard set each of parton distributions

in the DIS scheme and at leading order. Cf. section 3.1.3.
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Figure 3: Comparison of the CTEQ6M fit to the H1 data [14] in separate x bins. The data points

include the estimated corrections for systematic errors. The error bars contain statistical only.

3.1.1 Comparison with data

The fact that correlated systematic errors are now fully included in the fitting procedure

allows a more detailed study of the quality of fits than was possible in the past. We can

take the correlated systematic errors into account explicitly when comparing data and

theory, by using the procedure discussed in section B.2 of appendix B. In particular, based

on the formula for the extended χ2 function expressed in the simple form eq. (B.6), we

obtain a precise graphical representation of the quality of the fit by superimposing the

theory curves on the shifted data points {D̂i} containing the fitted systematic errors. The
remaining errors are purely uncorrelated, hence are properly represented by error bars. We

use this method to present the results of our fits whenever possible.

Figure 3 shows the comparison of the CTEQ6M fit to the latest data of the H1 exper-

iment [14]. The extensive data set is divided into two plots: (a) for x < 0.01, and (b) for

x > 0.01. In order to keep the various x bins separated, the values of F2 on the plot have

been offset vertically for the kth bin according to the formula: ordinate = F2(x,Q
2)+0.15k.

The excellent fit seen in the figure is supported by a χ2 value of 228 for 230 data points.

Similarly, figure 4 shows the comparison to the latest data from ZEUS [15]. One again

sees very good overall agreement. The χ2 value is 263 for 229 data points. This is 2σ

(σ =
√
2N = 21) away from the ideal value of N = 229. A closer inspection of figure 4

does not suggest any systematic disagreement. To assess the significance of this 2σ effect,

we examine in detail the systematic shifts obtained in the fit in appendix B.3. We find

that they are all quite reasonable, thus giving us confidence that the fit is indeed of good

quality.

– 9 –
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Figure 4: Comparison of the CTEQ6M fit to the ZEUS data [15]. Same format as figure 3.

The new PDF’s also fit the older fixed-target DIS experiments well — similar to pre-

vious global analyses. Figure 5 shows the comparison to the fixed-target neutral cur-

rent experiments BCDMS and NMC. Because we are incorporating the fully correlated

systematic errors, the data sets used for these experiments are those obtained at each

measured incoming energy, rather than the “combined” data sets that are usually shown.

This more detailed and quantitative comparison is important when we try to evaluate the

statistical significance of the fits in our uncertainty analysis (cf. appendix B). The χ2

per data point for these data sets are 1.11 (378/339) for BCDMS and 1.52 (305/201)

for NMC. The fit to the BCDMS data is clearly excellent, both by inspection of fig-

ure 5a and by the normal χ2 test. For the NMC data, figure 5b shows rather good

overall agreement, but with some notable large fluctuations away from the smooth the-

ory curves. The most noticeable fluctuations — points with almost the same (x,Q)

values — are from data sets taken at different incoming energies.5 This is reflected in

the χ2 value which is quite a bit larger than expected for a normal probability distribu-

tion. This raises two issues: (i) Is the fit acceptable or unacceptable? (ii) Can the fit

be substantially improved by a different theoretical model, e.g. the inclusion of higher-

twist terms? The first question is addressed in section B.3, where the excess χ2 is shown

to be attributable to larger-than-normal fluctuations of the data points (which is unre-

lated to the viability of the theory model), and that the shifts due to systematic errors

5These fluctuations are smoothed out by re-binning and other measures in the combined data set [21],

which is not used here.

– 10 –



J
H
E
P
0
7
(
2
0
0
2
)
0
1
2

Figure 5: Comparison of the CTEQ6M fit with the BCDMS [19] and NMC [21] data on µp DIS.

Same format as figure 3. (The offset for the kth Q value in (b) is 0.2k.)

(which is related to the goodness-of-fit) are all within the range of normal statistics. The

second question is addressed in section 3.3.2 and appendix C, where we show that the

inclusion of higher-twist contributions does not result in a substantial improvement of

the fit.

The charged-current DIS data from the CCFR experiment are also used in our global

analysis. The agreement between data and theory for the CCFRmeasurements of F2 and F3
is good, comparable to previous analyses. Because of the important role of the charm quark

in the quantitative treatment of this process, and the lack of information on correlations

between the current F2 and F3 data,
6 we defer a detailed study of the charged-current DIS

fit to the forthcoming global analysis including heavy quark mass effects.

Of the new experimental input, perhaps the most interesting and significant in its

impact on the parton distributions is the one-jet inclusive cross section from DØ [16].

These new data represent a considerable expansion in kinematic range over the previ-

ous jet measurements, by providing measurements in 5 separate rapidity bins, with η

up to 3.0. Our fits agree extremely well with these data, in both shape and magnitude

over the full kinematic range, as shown in figure 6a. Comparison to the corresponding

CDF measurement in the central rapidity region is also shown in the parallel plot, fig-

ure 6b.

The agreement between theory and experiment is made even clearer in figure 7 where

the difference between data and theory is plotted. The χ2 value for the fit to the jet data,

including all systematics, is 118/123, combining the two experiments. In figures 6 and 7,

6The CCFR F2 measurements have been re-analyzed in a model-independent way [18]. The new data

are presented in a such a way that correlations with the old F3 measurements [22] are no longer available.

– 11 –



J
H
E
P
0
7
(
2
0
0
2
)
0
1
2

100 200 300 400 500
pT @GeVD

0.00001

0.001

0.1

10
dΣ

�dp T
@nb�Ge

V
D

D0 Jet
cross section

Figure 6: Comparison of the CTEQ6M fit to the inclusive jet data. (a) DØ (the boundary values

of the 5 rapidity bins are 0, 0.5, 1.0, 1.5, 2.0 and 3.0) [16]; (b) CDF (central rapidity, 0.1 < |η| <
0.7) [25].

the error bars are combined statistical and diagonal systematic errors.7 The ratio plot

comparing to the CDF data is not shown; it is similar to that of previous global fits, such

as CTEQ5HJ. A detailed study of the impact of these jet data on the determination of

gluon distributions and the potential for observing signals for new physics at the Tevatron

and the LHC will be carried out in a separate study.

3.1.2 The new parton distributions in the MS scheme

Figure 8 shows an overview of the comparison between the new PDF’s and the previous

generation of CTEQ PDF’s, the CTEQ5M1 set, at Q = 2GeV. In order to exhibit the

behavior of the PDF’s clearly for both large and small x in one single plot, we choose the

abscissa to be scaled according to x1/3. Correspondingly, we multiply the ordinate by the

factor x5/3, so that the area under each curve is proportional to the momentum fraction

carried by that flavor in the relevant x range. We see that the most noticeable change

occurs in the gluon distribution.

The gluon distribution. Figure 9 gives a more detailed picture of the changes in the

gluon distribution atQ = 2 and 100GeV. For low and moderate values of x, say 10−5 < x <

0.1, the most important constraint is due to the rate of Q2-evolution of the DIS structure

functions. The HERA data in this region are ever improving in accuracy, but the new

data has not made a sizable change in the gluon distribution, as seen in figures 8 and 9a.

(Below Q = 2GeV, one may find larger deviations between the new and old distributions,

7The DØ jet data involve partially correlated systematic errors which can only be characterized by a

full N ×N covariance matrix V . Our method of correcting for systematic errors on the data points, which

depends on writing V in a separable form in terms of the K × N coefficients {βji}, eqs. (2.1) and (2.2),

cannot be apply in this case.
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Figure 7: Closer comparison between CTEQ6M and the DØ jet data as fractional differences.

Figure 8: Comparison of CTEQ6M (dashed) to CTEQ5M1 (dot-dashed) PDF’s at Q = 2GeV.

(The unlabeled curves are ū and s = s̄.)

but extrapolation of PDF’s into that low-Q region is well known to be unstable. We will

return to this point in section 5.2.)

In the moderate to high x range, x > 0.01, the inclusive jet data are now playing a

very important role. The combined effects of the precision DIS and jet data have made
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Figure 9: Comparison of CTEQ6M (dashed) to CTEQ5M1 (dot-dashed) gluon distributions at

Q = 2 and 100GeV. (a) The small-x region; (b) the large-x region.

a significant shift in the shape of the gluon distribution, as seen in figures 8 and 9b. The

new gluon distribution is significantly harder than for CTEQ5M1 and all MRST PDF

sets (cf. section 5.2) at all Q scales. This behavior is mainly dictated by the inclusive

jet data, which lie in the range 50 < Q < 500GeV and 0.01 < x < 0.5. The DØ data

in the higher η bins now allow a higher x reach than the central jet data from previous

measurements. The hard gluon distribution becomes amplified at lower Q scales, due to

the nature of QCD evolution and the fact that there is no direct experimental handle

on the gluon at large x and low Q. The enhanced gluon at large x is similar to the

CTEQ4HJ and CTEQ5HJ distributions. However, there is an important difference in the

significance of the current result: whereas the “HJ” PDF sets were obtained specifically

for fitting the high pT jet data, by artificially inflating the weights of those points in

the global fit, the CTEQ6M gluon distribution results naturally from the new global fit

without any such special emphasis. The visually good fits seen in figures 6 and 7 are

quantitatively substantiated by the small χ2/N value of 118/123 for the jet data sets.

Since CTEQ6M represents the “best fit” in the global analysis, this gluon behavior is

also fully consistent with all DIS and Drell-Yan data sets used in the fit, as discussed

previously.

3.1.3 DIS and LO parton distributions

For most applications, the MS parton distributions are the most appropriate. But for

certain applications, PDF’s in the NLO-DIS scheme are preferred. For these purposes we

have obtained CTEQ6D by performing independent global fits in the NLO-DIS scheme.

Although, in principle, one could obtain NLO-DIS parton distributions by a simple trans-

formation from a NLO-MS set, the reliability of such a procedure is uncertain in x regions

where the numerical values of the PDF’s for different flavors (which transform into each
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other) are orders of magnitude apart.8 It is thus preferable to perform an independent fit.

The quality of fit for the NLO-DIS fit is comparable to that of the MS case.

Leading-order (LO) parton distributions are most useful for Monte Carlo (MC) event

generator applications, and also for simple estimates of high-energy cross sections. In

performing leading-order fits, one uses tree-level formulas for the hard cross sections,

and parton distribution functions evolved with leading-order splitting functions. For the

αs(Q) function, one can either use the LO formula for formal consistency, or use the

NLO formula which is arguably more appropriate for MC applications in which many

higher-order effects are included by the event-generator program. For this reason, we

present two sets of LO fits: (i) CTEQ6L uses the same αs(Q) function as the standard

NLO fits (CTEQ6M, CTEQ6D, and the eigenvector sets) with αs(MZ) = 0.118; and (ii)

CTEQ6L1 uses the LO formula for αs(Q) with Λ
(4flavor)
QCD = 0.215GeV (which corresponds

to α
(1)
s (MZ) = 0.130). When used with the corresponding (i.e. NLO or LO, respectively)

αs(Q), both of these are good fits to the global data, within the uncertainty range of

our analysis.

3.2 Eigenvector PDF sets for uncertainty analyses

As mentioned in the Introduction and in section 2.3, an important goal of this work is

to advance global QCD analysis to include systematic and quantitative estimates of un-

certainties — on both PDF’s and their physical predictions. For this purpose, we char-

acterize the behavior of the global χ2 function in the neighborhood of the minimum by

a set of eigenvector PDF sets, according to the method of [11] (cf. the illustration in

section 2.3).

The eigenvector sets are obtained in two steps. First, the full set of parameters de-

scribed in section 2.5 is probed with the iterative procedure of [10, 11], in order to identify

those parameters that are actually sensitive to the input data set.9 With current data,

and our functional form, 20 such parameters are identified. We then generate the eigen-

vector PDF sets in the 20 dimensional parameter space as described in [10, 11], with the

remaining parameters held fixed. This results in 40 PDF sets, a + (up) and a − (down) set
for each eigenvector direction in the parameter space, in addition to the central CTEQ6M

set. Ideally, in the quadratic approximation of the hessian approach, the χ2 curves would

be symmetric around the minimum, so that only one displacement would be needed for

each eigenvector. However, we observe some asymmetry in certain directions in practice,

so we have decided to generate both up and down sets in each eigenvector direction; this

provides more information on the behavior of constant-χ2 surfaces in the neighborhood of

8A recently discovered [34] error in the QCD evolution of DIS scheme PDF’s in previous CTEQ analyses

has been corrected in this work. This error has negligible practical consequences in physical applications

in the current energy range, because the small deviation in evolution was naturally compensated by the

fitted PDF’s. As long as the same DIS hard cross sections are used in the fitting and in the applications,

as is indeed the case, the same physical cross sections will be reproduced. We thank G. Salam for useful

communications on this issue.
9The sensitive parameters are those that are not close to “flat” directions in the overall parameter space,

as mapped out by the iterative diagonalization procedure of [10].
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Figure 10: Uncertainty bands for the u- and d-quark distribution functions at Q2 = 10GeV2. The

solid line is CTEQ5M1 and the dotted line is MRST2001.

the minimum.10 The up/down sets, called S+1 , S
−
1 , . . . , S

+
20, S

−
20, correspond to a tolerance

of T = 10 (cf. ref. [11]); i.e. their χ2 value is greater than the minimum by T 2 = 100.

The range of uncertainty corresponding to the choice T = 10 represents our estimate of

the range of PDF behavior that is consistent with the current data. Details of the error

analysis that leads to this estimate are described in appendix B.4.

3.2.1 Uncertainties of PDF’s

We use the eigenvector PDF sets {S±i } to estimate the uncertainty range of physical quan-
tities (and of the PDF’s themselves) according to the master eq. (2.3) which is derived

in [11]. In figures 10 and 11 we show fractional uncertainty bands for the u-quark, d-quark,

and gluon distributions, respectively, at Q2 = 10GeV2. In these plots, the shaded region is

the envelope of allowed variation of the parton distribution, independently for each value

of x, with tolerance T = 10. The ordinate is the ratio of the extreme value (up or down)

to the standard CTEQ6M value. For comparison, the curves are CTEQ5M1 (dashed) and

MRST2001 (dotted), plotted in ratio to CTEQ6M.

The u distribution is the most accurately known of the parton distributions, since

deep-inelastic scattering by photon exchange, being proportional to the square of the quark

charge in leading order, is most sensitive to the u quark. The d-quark distribution is very

much affected by the various data sets that are sensitive to u-d differences: the NC and

CC DIS measurements with proton and deuteron targets, the DY p/d asymmetry and the

W-lepton asymmetry experiments. The d-quark uncertainty band is seen to be noticeably

wider than that of the u quark, particularly at large x where there are few constraints

on the ratio between the two flavors. This result provides quantitative confirmation of a

10This asymmetry has been encountered in some applications, e.g. ref. [35].
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Figure 11: Uncertainty band for the gluon distribution function at Q2 = 10GeV2. The curves

correspond to CTEQ5M1(solid), CTEQ5HJ (dashed), and MRST2001 (dotted).

previous study [36], addressing the issue of the behavior of the d-quark distribution at large

x raised in [37].

The gluon distribution is the most uncertain of the PDF’s — notwithstanding the

increased constraints from recent precision DIS and inclusive jet data discussed earlier

— as shown in figure 11. The uncertainty is of order ±15% for x values up to ∼ 0.3,

and then it increases rapidly for large x. This uncertainty is of much interest for the

physics programs of the Tevatron and the LHC, and it has been the subject of several

previous studies [38]. With the new quantitative tools at hand, we have found that it is

important to use a sufficiently flexible parametrization of the initial distribution, in order

to obtain a reliable estimate of the range of uncertainty of the gluon distribution. This

point will be relevant when we compare the above result with other recent studies of the

gluon distribution (cf. section 5.2). Some details are given in appendix D.

The uncertainties shown in figures 10 and 11 are significantly smaller than those ob-

tained in our previous study [11] based on CTEQ5 inputs. The reduced uncertainty, which

can be seen by comparing figures 10 and 11 with their counterparts ref. [11, figures 3 and 4],

is a consequence of the new DIS and jet data.11

An important point in the interpretation of figures 10 and 11 is that the uncertainty

ranges correspond to the envelopes of possible parton distributions that are consistent with

the data. A distribution function that produces the extreme at any particular value of x

is generally not extreme at other values of x. Thus, a PDF that follows the upper or lower

boundary of the uncertainty band at all x would definitely not be consistent with the data.

The CTEQ5M1 and MRST2001 distributions, plotted as ratios to CTEQ6M, are also

shown on figures 10 and 11, for comparison. Both these PDF sets are generally within the

current uncertainty bounds. The hard gluon distribution in the CTEQ6M fit, discussed

11One must be aware that the uncertainties shown in [11] are for a higher value of Q = 10GeV. The

uncertainties decrease when evolved to higher Q.
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Figure 12: Comparison of the CTEQ5M1 predictions to the recent H1 data. Cf. format of figure 3.

earlier, manifests itself in the fact that both CTEQ5M1 and MRST2001 curves are close to

the lower limit of the uncertainty band at large x. For comparison, we have also included

the gluon distribution of CTEQ5HJ in figure 11. It is even harder than that of CTEQ6M at

x > 0.3, but still within the uncertainty band. Comparisons of CTEQ6M and CTEQ5M1

fits are discussed in the next subsection (3.3.1). The MRST2001 distributions are rather

similar to CTEQ5, except at very small x where the gluon is smaller and the quarks

are larger, both slightly outside the uncertainty ranges. Differences between CTEQ6 and

MRST2001 fits are discussed in some detail in section 5.2.

3.3 Issues and comments

3.3.1 How much progress has been made?

The fact that the new PDF’s, especially the quark distributions, do not appear to dif-

fer much from the CTEQ5 functions testifies to the steady convergence of QCD analysis

of PDF’s. Progress in this undertaking must be measured in more precise terms than

previously, because of the increasing demands for quantitative applications in precision

SM studies and new physics searches. To illustrate this point, we first compare the predic-

tions of the preceding generation of PDF’s, CTEQ5M1, with two key new experiments, H1

and DØ, in figures 12 and 13. Plots like these are often used in the literature as evidence of

good or acceptable fits. Careful comparison with the corresponding results for CTEQ6M

(figures 3 and 7) reveals that the new fit is discernably better.

The improvement in the quality of the fits can be quantified by examining the χ2 values.

With the inclusion of correlated systematic errors these numbers now carry more statisti-

cal significance than before. The accompanying table lists the CTEQ6M and CTEQ5M1
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Figure 13: Comparison of the CTEQ5M1 predictions to the recent DØ data as in figure 6.

χ2’s for the full data sets used in the current global analysis, and for the two represen-

tative experiments, H1 and DØ, shown in figures 12 and 13. The overall χ2 is greater

by 268 (for 1811 data points) for the previous generation of PDF’s than the current one.

The difference is not very large,12 but it is outside our estimated tolerance of T = 10

(∆χ2 = 100).

The increases in the individual χ2’s for the two precision experiments, although not

very large, do lie outside the 90% probability range according to the uniform way we

adopt for evaluating the uncertainty ranges, discussed in appendix B.4. These numbers

provide a quantitative measure of the improvement achieved. The precise interpretation

of these numbers is still open to discussion, however, and further progress is still needed

(cf. appendix B.4).

χ2 Total H1 DØ

(# data pts.) (1811) (230) (90)

CTEQ6M 1954 228 69

CTEQ5M1 2222 285 110

3.3.2 Higher twist terms?

There have been several studies of higher-twist (HT) effects in DIS experiments [5, 39, 40].

If power-law corrections to leading-twist PQCD are needed, they will introduce additional

12In evaluating these χ2 numbers for the two fits, the overall normalizations of all the data sets are

allowed to re-adjust, within errors, between the two calculations. Otherwise, the difference in χ2 would be

larger.
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non-perturbative degrees of freedom in the global analysis. This would complicate PDF

analysis considerably, because the extracted PDF’s would then depend on the HT model.

Because there is no accepted theory of HT, and HT terms are probably non-factorizable

and process-dependent, PDF’s obtained with the inclusion of HT terms would no longer

be universal.

In the absence of firm theoretical guidance, we first limit the possible size of higher-

twist terms by placing reasonable cuts on the kinematic range of data utilized in the fitting

program. We then study phenomenologically the need for HT corrections by comparing

the quality of fits with and without HT parameters. Using the same kinematic cuts as

in previous CTEQ analyses (in particular, Q ≥ 2GeV and W ≥ 3.5GeV for DIS data)

we find that the inclusion of simple phenomenological HT factors, of the type used in the

previous literature [5, 39, 40], does not produce discernable improvement in the quality

of the fit. We conclude that HT corrections are not needed, and therefore stay within

the twist-2 PQCD formalism for our analysis.13 Our study of this issue is summarized in

appendix C. We believe, for the reasons mentioned in the previous paragraph, that should

there be evidence for HT effects, it would be more desirable to raise the kinematic cuts

and preserve the universal PDF’s, rather than to introduce ad hoc HT terms that would

reduce the usefulness of the PDF’s.

3.3.3 Signs of anomalies at large x or small x?

One of the important goals of quantitative global analysis of PDF’s is to provide stringent

tests of the validity, and the efficacy, of PQCD. Anomalies observed in one or more of the

hard processes in the global analysis could indicate signs of new physics.

Among the hard processes in current global analyses, the high-ET jet cross section

measured by CDF and DØ probes the smallest distance scales, and hence provides the

best window to discover new physics at large energy scales. There was some excitement

when CDF first measured a possible excess in the high-ET jet cross section, compared

to conventional PDF predictions of that time [41]. This excitement has abated with the

advent of the “PDF explanation” [42] (the CTEQ4HJ and CTEQ5HJ type of gluon distri-

butions [2]) and the subsequent DØ measurements [43] (which do not show as pronounced

an effect). However, the issue remains an interesting one since the CTEQ4HJ/5HJ gluon

distributions have not been universally accepted as the PDF of choice. Where does the

issue stand in view of the recent data and global analyses?

As already mentioned in section 3.1.2 above, the CTEQ6M central fit arrives at a

gluon distribution that is considerably harder at high x than the conventional ones (such

as CTEQ5M and MRST2001). It is more like CTEQ4HJ and CTEQ5HJ, although ob-

tained without giving any extra weight to the jet data. This change comes about from

three developments: (i) the statistical power and the expanded range of the new DØ jet

data set in the five separate rapidity intervals [16]; (ii) the increased flexibility of the

13This conclusion may appear to contradict some common lore about HT. We note that most of the

previous studies either were not done with as wide a range of data sets, or did not incorporate the full

correlated systematic errors. Also, we use a relatively high Q2 cut of 4GeV2, precisely to reduce the HT

effects.
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non-perturbative gluon distribution in the new parametrization adopted for this global

analysis (cf. sections 2.5, 5.2 and appendix D); (iii) the fact that the harder gluon is

needed to provide a better fit to the DØ data. On one hand, this result provides further

support for the PDF explanation of the high-ET jet cross section. On the other hand,

by the more quantitative uncertainty analysis shown in figure 11, there is still a large

range of possible behavior for the high-x gluon, allowing both the conventional and the

“HJ-like” shapes. Further work will be required to draw a firm conclusion on this im-

portant issue. Continued search for signs of new physics must be pursued with vigor in

all channels.

Signals for a departure from conventional PQCD could also appear in the very small

x region. Our analysis is based on the standard NLO DGLAP formalism. The impressive

agreement between the fits and all the data sets shows no indication of a breakdown of

conventional PQCD; nor do we detect any necessity for including NNLO corrections [44].

This does not mean that effects beyond the simple theoretical model are not present. It does

mean that the search for these effects must depend on even more precise, and extensive,

experimental and theoretical input.

3.3.4 Determination of αs?

As mentioned in section 2.5, for our standard analysis we input the strong-coupling strength

αs(mZ) = 0.118, based on dedicated measurements from QCD studies at e
+e− colliders and

sum rules in lepton-hadron processes. It is desirable to check that this value is consistent

with our global analysis, and, beyond that, to see whether the global analysis can provide

a useful independent measurement of αs.

For this purpose, we have repeated the fitting with different choices of αs(mZ). The

resulting variation of the global χ2 is shown in figure 14. The minimum in χ2 occurs

at a value of αs(mZ) ' 0.1165, somewhat lower than the world average from precision

measurements. For our choice of αs(mZ) = 0.118, χ2 is greater than the minimum by

about 5. This difference is completely insignificant with respect to our estimated tolerance

of ∆χ2 < T 2 ≈ 100. Thus, the value of αs(mZ) favored by global PDF analysis is in

excellent agreement with the world average. Furthermore, according to figure 14 and our

adopted tolerance, the allowed range of αs(mZ), as measured in global PDF analysis,

is about 0.110 to 0.123 (i.e. αs(mZ) = 0.1165 ± 0.0065). This is not competitive with
other dedicated measurements. The basic reason is well known: the uncertainty of αs
determination in QCD analysis of parton distributions is strongly tied to the uncertainty

of the gluon distribution, which still has substantial uncertainties.

We also note that the definition of NLO αs(µ) in perturbative QCD is subject to an

ambiguity relating to the solution of the renormalization group equation (RGE). We have

used the conventional MS formula for αs(µ), obtained by solving the NLO RGE as an

expansion in inverse powers of lnµ [28]. An alternative definition, favored by some, and

more convenient for higher-order extensions, is to numerically solve the truncated RGE

equation for µdα/dµ at NLO. The dotted curve in figure 14 shows χ2 versus αs(mZ) using

this alternative definition of αs(µ). The difference between the two treatments is seen to

be within the range of uncertainties.
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Figure 14: χ2 vs. αs(mZ) curve, with two alternative definitions of the NLO αs.

3.4 User interface

All PDF sets described above will be available (at http://cteq.org) in the usual CTEQ

format, using external data tables. These can be used in the same way as previous

CTEQ PDF’s.

In addition, to facilitate progress toward a universal user interface, we are preparing

a new format, which uses an evolution program and small external files containing only

the coefficients for the initial parton distributions, following the “Les Houches Accord on

PDF’s” [45].

4. Physical predictions and their uncertainties

The main utility of the new parton distribution functions is to make predictions on physical

cross sections and their uncertainty ranges — both for precision SM studies and for new

physics searches. Detailed applications go beyond the scope of this paper. We will, how-

ever, present some general results on estimated uncertainties of various parton luminosity

functions for the Tevatron (RunII) and the LHC. From these results, one can easily estimate

the expected uncertainties of a variety of physical processes of interest for these hadron

collider programs: W/Z cross sections, Higgs, and top (both single and pair production)

rates due to various production mechanisms, etc.

Figure 15a shows the fractional uncertainties of the gluon-gluon and quark-antiquark

luminosity functions, to final states with the quantum numbers of W ±, W−, γ∗ and Z0,

at the Tevatron. Figure 15b similarly displays the quark-gluon luminosity functions for
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Figure 15: Uncertainties of the luminosity functions at the Tevatron.

W+, W−, γ∗, Z final-state quantum numbers. As expected, the gluon-gluon luminosity

has the greatest uncertainty, especially at large
√
ŝ, reflecting the uncertainty of the gluon

distribution at large x. The qq̄ → W+,W−, γ∗, Z luminosity uncertainties are almost

constant throughout the range of
√
ŝ plotted, at the ±4% level. The qG→W+,W−, γ∗, Z

luminosity uncertainties resemble the geometric mean between those for GG and qG. The

four qG uncertainty bands are very similar to one another, but close examination shows

that they are not identical, because of the differences in quark flavor mix.

Similarly, figure 16 shows the fractional uncertainties of the corresponding luminosity

functions for the LHC. The qq̄→ W± luminosity uncertainties are also fairly constant, be-

ing ±5% for qq̄ → W+ and ±4% for qq̄ →W− for 100 <
√
ŝ < 200GeV. The gluon-gluon

luminosity uncertainty is ±3% at the narrowest point (
√
ŝ ∼ 250GeV), increasing to ±10%

at both ends of the
√
ŝ range shown. From this, one can estimate that the uncertainty

on the production cross section of a light mass Higgs particle (say, 100–200GeV) at the

LHC due to PDF’s is on the order of ±5%. The uncertainty of the gluon-gluon luminosity
function at the LHC is seen to be generally smaller than for the Tevatron case. The differ-

ence results from the combination of two effects: the uncertainty decreases with evolution,

and the contributing x ranges for the two cases are somewhat different. The luminosity

uncertainties for the Compton processes at the LHC, figure 16b, are again rather similar

to one another. The uncertainties range from around ±6% at low energies to ±2 − 3% at√
ŝ ∼ 500GeV.
The W cross section can be measured with great precision at hadron-hadron col-

liders. The cross section is large and the backgrounds are relatively small. In addi-

tion, the theoretical uncertainties are small. This makes the W cross section an ideal

benchmark with which to normalize other cross sections, especially as there remains a

significant uncertainty as to the value of the total inelastic cross section at the Teva-

tron. (The inelastic cross section is used by the experimental collaborations to normalize
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Figure 16: Uncertainties of the luminosity functions at the LHC.

all luminosity calculations. CDF and DØ currently assume values for this cross section

that differ by 6%, producing cross-section differences between the two experiments of the

same amount.) The simple estimates of the W cross section uncertainty the PDF un-

certainties at the Tevatron and the LHC, given above, can be improved by including

NLO terms and by using the more precise lagrange method [12]. Using the 40 hessian

eigenvector sets, the uncertainty for any cross section can be calculated. This proce-

dure will be made more straightforward with the adoption of the Les Houches accord

on PDF’s.

5. Comparison with other parton distribution analyses

5.1 Previous uncertainty studies

The quantitative analysis of uncertainties of PDF’s, taking into account the experimental

systematic errors, was pioneered by [4, 5, 6], in the context of detailed study of the precision

DIS experiments. These studies were based on χ2 minimization techniques. The methods

that we developed in [10, 11, 12], and used in this paper, have extended this approach to

a global analysis (cf. the recent review [26].) Because the scope of the experimental data

used in the earlier studies is different from ours, direct comparison with those results is

not possible.

Giele et al. (GKK) advocate a more general approach, using a pure probabilistic analy-

sis with random sampling of the parton parameter space [7]. While theoretically appealing,

the proposed method encounters difficulties when confronted with real experimental data

sets, which either do not meet the strict statistical criteria or are mutually incompatible

according to a rigorous probabilistic interpretation of the errors. As a result, although the

methodology is clearly established, it has not yet produced practical results that can be

generally used.
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Figure 17: CTEQ6M PDF’s compared to MRST2001. (The unlabeled curves are ū and s = s̄.)

In an ideal world, where all experimental data sets are self-consistent and mutually

compatible, the GKK method is equivalent to the one we use, provided, in addition, the

gaussian approximation underlying the χ2 approach is valid. If, however, χ2 is not approxi-

mately quadratic in the neighborhood of the minimum, and if the precise response functions

for all experiments in the global analysis are known, then the GKK method would be supe-

rior. Minimization of χ2 could still be useful in that case, but the accuracy is only as good

as the gaussian approximation. In reality, of course, the detailed experimental response

functions are rarely, if ever, known. So realistically the study of PDF uncertainty will

necessarily consist of quantitative statistical analysis supplemented by pragmatic choices

based on physics considerations and experience.

5.2 Comparison to MRST2001

Our results can be compared more directly to those of the recent MRST2001 analysis [13].

An overview of the comparison between the CTEQ6M and MRST2001 parton distributions

is shown in figure 17. Significant differences appear in the gluon distribution, similar to

the differences between CTEQ6 and CTEQ5 described in section 3.1.2. Unlike CTEQ5,

the MRST analysis uses essentially the same recent experimental input as CTEQ6. Thus

it is natural to seek the sources of the observed differences.

Although most of the experiments used in the CTEQ6 and MRST2001 analyses are

the same, there are some differences both in data sets and in the way that experimental

error information is utilized. The CTEQ6 analysis uses the separate-energy data sets of

the BCDMS and NMC experiments (for which information on correlated systematic errors

is available) whereas MRST uses the combined-energy sets for these experiments. The

CTEQ6 analysis does not use SLAC experiments, because that data lies in the region of

very low Q2. Also, CTEQ6 does not use the HERA charm-production data, because the

errors are still large, and because a proper theoretical treatment of this process requires the
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full inclusion of charm mass effects in the matrix elements.14 In addition, the kinematic

cuts on data selection are somewhat different.

There are several differences in methodology. In the analysis of data, the published

experimental correlated systematic errors are fully incorporated in the CTEQ6 global fitting

procedure. In the theoretical calculations, we use the conventional (zero-mass parton)

Wilson coefficients for DIS structure functions for reasons explained in section 2.4, whereas

MRST uses the Thorne-Roberts version of the VFNS calculation [30]. Finally, the two

groups use different functional forms for the parametrization of the non-perturbative input

parton distributions.

Beyond a visual inspection of the PDF’s, insight can be gained by comparing the two

fits for data sets used in both analyses. In principle, one might just compare the χ2 values

of the corresponding experiments for the two fits, cf. χ2 numbers given in appendix A and

ref. [13, table 1]. In practice, a direct comparison between the DIS experiments is not possi-

ble because the two analyses have different treatments of the experimental systematic errors

and different choices of Wilson coefficients mentioned above. Among experiments that can

be directly compared, two differences are noticeable. The first experiment is E605 (Drell-

Yan): χ2/N is given as 232/136 in MRST2001 [13], and 95/119 for CTEQ6M.15 However,

the seemingly large MRST number was due to their use of statistical errors only for this

experiment. The two fits are actually comparable for this experiment. The second is the

combined DØ and CDF jet cross section measurements: χ2/N is 170/113 for MRST2001,

and 118/123 for CTEQ6M. This difference is statistically quite significant, and it is respon-

sible for the rather distinct gluon distributions obtained by the two groups. We believe

that this difference is primarily due to the parametrization of the non-perturbative parton

distributions, especially the gluon, as will be discussed below and in appendix D. We now

comment more specifically on a number of issues highlighted in the MRST paper [13] from

the perspective of the current study.

Large-x gluon behavior. The inclusive jet data have a strong influence in the deter-

mination of the gluon distribution at medium and large x. The MRST analysis found a

rather significant competition between the jet data and the Drell-Yan (E605) data in the

context of their global fit. This requires either a compromise, the MSRT2001 set, or a good

fit to the jet data with a much poorer Drell-Yan fit (and a rather unusual gluon shape),

the MRST2001J set [13].

This dilemma is not observed in our analysis. The CTEQ6M fit to both the jet data

and the Drell-Yan data appear nearly “ideal” (i.e. χ2/N ∼ 1), and the gluon shape is

rather smooth. This clear difference results mainly from the parametrization of the PDF’s,

especially that of the gluon. We are led to this conclusion by a study where we adopt the

MRST parametrization for the gluon and repeat the global fit. We then obtain a “best

fit” in which the gluon has a shape similar to MRST2001J. The gluon distributions at

Q = 2GeV for CTEQ6M, MRST2001, MRST2001J, and the MRST-like fit that we obtain

14Work is under way for inclusion of charm production in a separate global analysis.
15The differences in the number of data points are due to slightly different kinematic cuts in the two

analyses.
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Figure 18: Comparison of the gluon distributions at Q = 2GeV, for CTEQ6M (solid), MRST2001

(long-dashed), MRST2001J (short-dashed) and the MRST-like fit (dotted).

by adopting the MRST parametrization are compared in figure 18. The “wiggle” of the

gluon function observed in the latter two fits (which led MRST to reject the MRST2001J

fit [13]) is clearly due to the particular functional form. More details, including other

examples and results at Q = 1GeV (which are more sensitive to the differences), are

presented in appendix D on the question of parametrization.

Gluon behavior at small x and small Q. The MRST study found a strong prefer-

ence for a negative gluon distribution at small x and small Q. It has been known for a

long time that QCD evolution is extremely rapid at small Q. This makes extrapolation

backward to Q = 1GeV quite unstable [46], even though the behavior of the PDF’s at

Q > 2GeV is rather tightly constrained by the experimental data. It is generally agreed

that there is no theoretical requirement that parton distributions be positive definite at

any particular Q, as long as cross section predictions stay positive. The issue is, thus, only

a phenomenological one.

We have chosen Q0 = 1.3GeV for the CTEQ6 fit, and find no indication for G(x,Q)

going negative in the region Q > 1.3GeV. To consider lower values of Q, we have made

alternative fits with Q0 down to 1.0GeV which are described in appendix D. The results

can be summarized as follows: (i) Whether or not the gluon distribution tends to go neg-

ative is strongly dependent on the choice of Q0 — it will always go negative at some low

Q, as anticipated in [46]. (ii) With Q0 = 1GeV, parametrizations that allow for a negative

gluon at small x can yield slightly lower χ2 than those with positive-definite gluons. This

has no phenomenological significance, however, since the difference between the resulting

gluon distributions is much smaller than its uncertainty in this region. The uncertainty as-

sessment is closely related to the study of parametrization described in appendix D. Note,

in particular, figure 25b.

Measurement of αs. MRST performed an analysis to determine αs(mZ) from their

global fits, obtaining αS(mZ) = 0.119 ± 0.002 (expt.) ± 0.003 (theory). As discussed in
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section 3.3.4, our study obtained a lower central value and a substantially larger error

estimate. The latter (±0.002 vs. ±0.0065) is mainly due to the different choices of allowed
∆χ2tot (20 vs. 100). In fact, in order to achieve ∆αS(mZ) = ±0.002 (expt.) from figure 14,
we would have to use ∆χ2tot ∼ 10. In view of our study of the overall tolerance parameter
discussed in section B.4, we cannot justify having such a narrow range for αs(mZ), since

many perfectly acceptable global fits exist within the full range αS(mZ) = 0.1165±0.0065,
even without including theoretical uncertainties.

6. Concluding remarks

In this paper, a new generation of parton distribution functions has been presented, making

full use of the constraints of both the old and new data. This global analysis significantly

expands the scope of the currently used PDF analyses on two fronts: (i) a full treatment

of available experimental correlated systematic errors, and (ii) a systematic treatment

of uncertainties of the parton distributions and their physical predictions, using a recently

developed eigenvector-basis approach to the hessian method. Thus, in addition to obtaining

new best-fit PDF’s, the ranges of uncertainties of the PDF’s and their physical predictions

are systematically assessed.

Among the improvements made in PDF determination, progress on the gluon dis-

tribution is particularly worth noting. The new DØ jet data play a significant role in

obtaining a hard gluon distribution at large x — quite different from previous stan-

dard fits. We have shown that, at Q2 = 10GeV2, its uncertainty has been narrowed

by recent precision data to ±10% at small x (up to x ' 0.3). The uncertainty then

increases quite rapidly (in spite of the improved constraints), reaching a factor of 2 by

x ∼ 0.5. The need for additional precise data to pin down the gluon distribution over

a larger x range is obvious. The excellent agreement between the new DØ non-central

jet cross sections and the precision DIS and DY data sets, within the PQCD framework

using the new CTEQ6 PDF’s, is significant. It lends credence to the PDF explanation

of the earlier CDF high pT jet measurement. A crucial element in achieving this consis-

tent picture is to allow sufficient flexibility in parametrizing the non-perturbative parton

distributions, in order to accommodate a range of possible behaviors at both low and

high x.

The eigenvector basis PDF’s obtained by this analysis allow the calculation of the

uncertainty of any physical quantity that depends on the PDF’s. We have presented results

on parton-parton luminosity function uncertainties for both the Tevatron and the LHC.

From these, uncertainties of a wide range of SM and new physics signals and backgrounds

can be inferred. For instance, the uncertainties on the production cross sections of W ,

Z at the Tevatron and the LHC are estimated to be ±4% and ±5%, respectively, and
that of a light Higgs at the LHC to be ±5%. More detailed calculations on the predicted
cross sections and their uncertainties for processes of interest can easily be done, using

the standard CTEQ6M and its associated eigenvector basis PDF’s, or using the lagrange

method described in ref. [12].
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This work marks only the first step in the effort to advance the global analysis of PDF’s,

incorporating the systematic treatment of uncertainties. Improvements and applications of

the results discussed in this paper are worth pursuing. It is also important to advance the

theoretical input to the global analysis, including resummation effects, improved treatment

of heavy quarks, and higher-order corrections. The current analysis is carried out at NLO

and achieves a satisfactory fit to all of the data sets over a wide kinematic range. In the

future, an extension to NNLO will be possible but this must wait until more cross-section

calculations are available at the higher order, and until the precision of the experimental

measurements makes it useful. In the near future, new data from both the Tevatron

and HERA, along with further theoretical development, will allow for even more precise

determinations of PDF’s, leading to more useful predictions for LHC physics.
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A. Details of the CTEQ6M fit

The coefficients for the non-perturbative PDF’s at Q0 = 1.3GeV, as defined in section 2.5,

for the CTEQ6M fit are:

A0 A1 A2 A3 A4 A5

dv 1.4473 0.6160 4.9670 −0.8408 0.4031 3.0000

uv 1.7199 0.5526 2.9009 −2.3502 1.6123 1.5917

g 30.4571 0.5100 2.3823 4.3945 2.3550 −3.0000
ū+ d̄ 0.0616 −0.2990 7.7170 −0.5283 4.7539 0.6137

s = s̄ 0.0123 −0.2990 7.7170 −0.5283 4.7539 0.6137

d̄/ū 33657.8 4.2767 14.8586 17.0000 8.6408 –

The best fit to data is obtained with the following normalizationfactors for the experi-

ments:16

16 H1a and H1b refer to H1 data sets for low-Q and high-Q measurements, respectively, [14].
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data set Ne χ2e χ2e/Ne

BCDMS p 339 377.6 1.114

BCDMS d 251 279.7 1.114

H1a 104 98.59 0.948

H1b 126 129.1 1.024

ZEUS 229 262.6 1.147

NMC F2p 201 304.9 1.517

NMC F2d/p 123 111.8 0.909

DØ jet 90 68.94 0.766

CDF jet 33 48.57 1.472

Table 1: Comparison of the CTEQ6M fit to data with correlated systematic errors.

Expt.(e) BCDMS H1a H1b ZEUS NMC CCFR E605 DØ CDF

Norm(e) 0.976 1.010 0.988 0.997 1.011 1.020 0.950 0.974 1.004

Table 1 shows the χ2 values for those experimental data sets for which detailed infor-

mation on systematic errors is available and used in the CTEQ6M fit. For each data set

(e), we show: the number of data points (Ne), the χ
2 value for that experiment in the

CTEQ6M fit (χ2e), and χ
2
e/Ne. These results form the basis for much of the quantitative

uncertainty analysis discussed in this paper. The interpretation of the ZEUS and NMC

χ2’s are studied in some detail in section B.3.17

Data sets with only effective uncorrelated errors are CCFR,18 E605, E866, and CDF

W-lepton asymmetry. The nominal χ2e / Ne for these data sets for the CTEQ6M fit are

(150/156, 95/119, 6/15, 10/11), respectively.

B. Comparison of theory and data with correlated errors

This appendix consists of (i) a brief summary of the formalism used in our error analysis

— both for the χ2 calculations in performing the global fits and for the interpretation

of the results of those fits; (ii) an examination of the significance of the observed higher-

than-nominal χ2 ’s for two of the DIS experiments; (iii) a discussion of the estimated

tolerance for our uncertainty estimates. Further details of the formalism can be found in

ref. [12].

17The fairly large value of χ2
e/Ne for the CDF data has been studied extensively by the experimental

group [25]. A substantial part of the excess χ2 is due to fluctuations of a few points at moderate pT . The

best value of χ2
e/Ne that can be achieved for this data set (using a high order polynomial curve fit to the

data) is approximately 1.3.
18See footnote 6, section 3.1.1.
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B.1 Useful formulas for χ2 and the analysis of systematic errors

The simplest χ2 function, used in most conventional PDF analyses, is

χ20 =
∑

expt.

Ne∑

i=1

(Di − Ti)2
σ′2i

, (B.1)

where Di is a data value, Ti is the corresponding theory value (which depends on the PDF

model parameters {a}), and σ′i is the combined statistical and systematic errors (assumed
uncorrelated and usually added in quadrature) on the measurement Di. This effective χ

2

function provides a simple measure of goodness-of-fit, convenient for the search for candi-

date PDF sets by minimization. However, it is not useful for estimating the uncertainties

associated with those candidates because it does not contain enough information to allow

a meaningful statistical inference based on the increase in χ2 away from the minimum.

Most DIS experiments now provide more detailed information on measurement errors.

For each data point i, we have the statistical error σi, uncorrelated systematic error ui,

and several (say, K) sources of correlated systematic errors {β1i, β2i, . . . , βKi}. The best
fit to the data (i.e. the fit with least variance) comes from minimizing the χ2 function,19

χ′2({a}, {r}) =
∑

expt.



Ne∑

i=1

1

α2i

(
Di − Ti −

K∑

k=1

rkβki

)2

+
K∑

k=1

r2k


 , (B.2)

where α2i = σ2i + u2i is the combined uncorrelated error. The fitting parameters are (i) the

PDF model parameters {a}, on which Ti depends, together with (ii) random parameters

{r} associated with the sources of correlated systematic error. The point of eq. (B.2) is
that Di has a fluctuation

∑
k rkβki due to systematics. The best estimate of this shift is

obtained by minimizing χ′2 with respect to the set {rk}. In practice, the total number
of such parameters for all experiments included in the global analysis can be quite large.

Adding these to the already large number of PDF parameters {a} (which represent the real
goal of the analysis) one encounters a formidable minimization task, involving a parameter

space of dimension close to 100. The practical difficulties have considerably hindered past

efforts using this approach. The stability and reliability of results obtained this way can

also be questioned.

We pointed out in ref. [12] that the minimization of the function χ2 with respect to {r}
can be carried out analytically. This simplifies the global analysis to its irreducible task

of minimization with respect to the PDF parameters {a} only. In addition, the analytic
method provides explicit formulas for the optimal values of {rk, k = 1 . . . K} due to the
systematic errors k = 1 . . . K that are associated with the fit. These optimal shifts are

obtained from the condition ∂χ2/∂rk = 0, and the result is

rk({a}) =
K∑

k′=1

(
A−1

)
kk′

Bk′ . (B.3)

19The prime is to distinguish it from the its simplified — but equivalent — form, χ2, derived below in

eq. B.5.
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Here {Bk} and {Akk′} are given by

Bk({a}) =
Ne∑

i=1

βki (Di − Ti)
α2i

, and Akk′ = δkk′ +

Ne∑

i=1

βkiβk′i
α2i

. (B.4)

Substituting the best estimates (B.3) back into χ′2, we obtain a simplified χ2 function,

χ2({a}) ≡ χ′2({a}, {r({a})}) =
∑

expt.





Ne∑

i=1

(Di − Ti)2
α2i

−
K∑

k,k′=1

Bk
(
A−1

)
kk′

Bk′



 . (B.5)

Minimizing χ2({a}) with respect to the PDF model parameters {a} is equivalent to min-
imizing χ′2({a}, {r}) with respect to both {a} and {r}. This procedure provides a much
more streamlined way to obtain the best PDF fit. This formalism, quoted in the main text

as eq. (2.1), forms the basis of our global analysis.

Assuming the measurements Di, αi and βki are in accord with normal statistics, the χ
2

function defined by eq. (B.5) (or (B.2)) should have a standard probabilistic interpretation

for a chi-squared distribution with Ne degrees of freedom, for each experiment.

B.2 Useful tools for evaluating fits and interpreting results

Even when the real experimental errors do not behave in the textbook manner, as is

often the case, the formalism developed above provides useful tools for evaluating the

quality of the fits and interpreting their results. It also provides hints on reasonable ways

to deal with less-than-ideal cases. We describe some of these tools which are used in

the presentation of our fit results throughout this paper, and in the error analyses to be

discussed in subsequent sections.

First, for any fit, eq. (B.3) provides a best estimate of each of the systematic errors

{rk, k = 1 . . . ,K}, which we shall denote by {r̂k}. For each k, the parameter r̂k should be
of order 1, because the probability for r̂k to beÀ 1 by a random fluctuation is small. If any

r̂k turns out to be noticeably large, the estimate of the systematic errors {βki} is suspect.
Second, once the parameters that minimize the χ2 functions have been determined,

we can streamline the comparison of the fit with data — thus evaluate the quality of the

fit — by rewriting eqs. (B.2) and (B.5) as follows:

χ̂2 ≡ χ2({â}) = χ′2({â}, {r̂}) =
∑

expt.



Ne∑

i=1

(
D̂i − Ti

)2

α2i
+

K∑

k=1

r̂2k


 , (B.6)

where {â} (like {r̂} above), are the PDF parameters {a} at the χ2 minimum, and

D̂i ≡ Di −
K∑

k=1

r̂kβki , (B.7)

are the data points adjusted by the systematic errors that give rise to the best fit.

Equation (B.6) has the simple appearance of the naive χ20 function (B.1); but it is

precise. We note: (i) The systematic shifts of the data points associated with the fit are
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Figure 19: (a) Histogram of ∆i in eq. (B.8) for the ZEUS data. The curve is a gaussian of width

1. (b) A similar comparison but without the corrections for systematic errors on the data points.

absorbed into {D̂i}. (ii) The denominator α2i consists of uncorrelated errors only. (iii) The
additional (last) term on the right-hand side is just a “constant” when we compare the

fit with data, since it is independent of the index i. When the theory curves (obtained

from {Ti}) are compared to the adjusted data points {D̂i} to assess the goodness-of-fit,
one can regard the uncorrelated errors αi as the only measurement error — clearly a

great simplification because these errors are random. Figures prepared in this way will

give a much more truthful picture of the quality of the fit than comparing theory directly

with {Di}, since effects due to the unseen correlated systematic errors are impossible to
visualize.

B.3 Error analysis of DIS data

The DIS experiments form the bedrock of global analysis of parton distributions. It is seen

in table 1 that the BCDMS and H1 data are within normal statistical expectations, having

χ2/N ∼ 1. The ZEUS data have a marginally larger-than-expected χ2/N , of 267/229. For
229 data points, the probability that χ2 ≥ 267 is 0.063. The NMC data has a much larger
χ2/N of 305/201. This corresponds to a nominal probability of very small magnitude

indeed — 3.1 × 10−6. (This fact was first observed in an early GKK study [47].) It is

important to understand the reasons for these numbers and to determine whether the fit

to these data sets is acceptable. In addition, in order to assess the uncertainty range of the

global analysis, we will need to adopt some uniform procedure for evaluating probabilities

among the experiments (cf. section B.4). To both these ends, it is useful to look a little

deeper into the χ2 values for the individual experiments, utilizing the tools developed in

the two preceding subsections. We use ZEUS as the first example, since its χ2 value is at

the boundary of being “normal”.

ZEUS data on F2p(x,Q
2). Figure 4 in section 3.1.1 shows the CTEQ6M F2p(x,Q

2)

(solid curves) compared to the ZEUS data (corrected by the systematic errors determined

by the fit). As noted there, the agreement between theory and data looks quite good. In

order to understand the larger-than-expected χ2 value mentioned above, we need to look
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deeper. Some insight is provided by figure 19. Part (a) of this figure shows a histogram of

∆i ≡
D̂i − Ti
αi

(B.8)

for the ZEUS data. The curve is a gaussian of width 1 with integral equal to N = 229, the

number of data points. This histogram is the so-called “pull distribution” — the difference

between data and theory in units of the statistical error. The experimental fluctuations

seen in figure 19a appear (i) gaussian, (ii) peaked near 0, and (iii) of the normal width.

Considering that there are 10 different sources of systematic errors, this test of statistical

consistency gives some confidence in the fit.

Next, we note that the net shifts of the data points due to systematic errors are

significant, but within the range expected by normal statistics. This is shown in figure 19b,

which is similar to figure 19a but without correcting the data points for systematic errors.

A displacement of . 0.5 units in ∆ is clearly seen, but that is not unreasonably large.

A detailed account of the corrections {r̂1, r̂2, . . . , r̂K} (with K = 10 for this ZEUS data

set) is shown in the following table:

k 1 2 3 4 5 6 7 8 9 10

r̂k 1.67 −0.67 −1.25 −0.44 −0.00 −1.07 1.28 0.62 −0.40 0.21

Assuming that each systematic error has a gaussian distribution with the published stan-

dard deviation, the probability distribution of rk should be P (r) = e−r
2/2/
√
2π. None

of the corrections listed in the table is far outside this distribution. We conclude that

the global fit is consistent with the experimental systematic errors, and the corrections

calculated from eq. (B.3) are reasonable.

NMC data onF2(x,Q
2) from µp scattering. The comparison of NMC data on

F2(x,Q
2) to the CTEQ6M fit has been shown in figure 5b, section 3.1.1. Data and the-

ory appear to be in general agreement — there are no systematic patterns of deviation.

However, there are clearly outlying points, showing large point-to-point fluctuations of in-

dividual data points around the smooth theory curves. To quantify this observation, we

again examine the pull distribution for this data set, shown in figure 20 in the same form

as figure 19 for the ZEUS data. Figure 20a shows that (i) the measurement fluctuations

appear fairly gaussian, (ii) the distribution is peaked around ∆ = 0, but (iii) the width

of the actual histogram appears broader than the normal distribution — there is an ex-

cess in outlying (large fluctuation) points, and a corresponding depletion in central (small

fluctuation) points.

Given the larger-than-normal fluctuations, how do the systematics of the fit measure

up? Comparing figures 20a and 20b, which shows the fluctuations of the uncorrected

data, indicates that the net shift in ∆ due to systematic errors is ∼ 0.3, which is quite
reasonable. The separate shifts associated with the 11 distinct systematic errors for this

fit are:

k 1 2 3 4 5 6 7 8 9 10 11

r̂k 0.67 −0.81 −0.35 0.25 0.05 0.70 −0.31 1.05 0.61 0.26 0.22
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Figure 20: (a) Histogram of ∆i in eq. (B.8) for the NMC data. (b) A similar comparison but

without the corrections for systematic errors on the data points.

We see that the individual deviations are all reasonable, just like the case for ZEUS.

The size of the fluctuations of the data points has very little to do with the viability

of the theory model — the excess χ2 due to such fluctuations cannot be reduced by any

improvement in the theory which produces smooth predictions. The quality of the fit is tied

much more closely with the systematics, which appear quite normal in the above compari-

son. As observed before, in section 3.1.1, the most noticeable fluctuations for the NMC data

— points with almost the same (x,Q) values — are from data sets taken at different incom-

ing energies. (They can be resolved experimentally, as in the combined data set [21] which

we do not use.) For these reasons, we consider the fit to the NMC data to be acceptable.

This example vividly illustrates the usefulness of the method of error analysis adopted

here, compared to the traditional one based on the covariance matrix. Equation (B.6) and

the plots based on it that we have shown allow a separate examination of the contributions

to χ2 from correlated and uncorrelated errors, which is useful for a more informed assess-

ment of the quality of the fit. The traditional approach, dealing only with the overall χ2, can

be rather limiting when the experimental errors do not conform to the ideal distributions.

B.4 The tolerance criterion

In this section, we describe the procedure to calculate the range of uncertainty for the

parton distributions. In the hessian approach we adopt, this range is characterized by

an overall tolerance parameter, T , that specifies the acceptable neighborhood around the

global χ2 minimum in the parton parameter space by the condition ∆χ2 < T 2. Uncer-

tainties of the PDF’s and their physical predictions are all linearly proportional to T . We

arrive at a quantitative estimate of T by examining the range of overall χ2 along each of

the eigenvector directions within which a good fit to all data sets can be obtained, and

then “averaging” the ranges over the 20 eigenvector directions. The range of acceptable

fits along a given direction is estimated by combining the constraints placed on acceptable

fits by each individual experiment included in the fit, as described below.

A key feature of this method (which makes the entire approach practical and reliable) is

the use of an orthonormal basis in the parton parameter space. An important consequence

is that the constant χ2 hypersurfaces are simple spheroids. It comes as no surprise, then,

– 35 –



J
H
E
P
0
7
(
2
0
0
2
)
0
1
2

-30

-20

-10

0

10

20

30

40

di
st

an
ce

Eigenvector 4

B
C

D
M

Sp

B
C

D
M

Sd

H
1a

H
1b

Z
E

U
S

N
M

C
p

N
M

C
r

C
C

FR
2

C
C

FR
3

E
60

5

C
D

Fw

E
86

6

D
0j

et

C
D

Fj
et

Figure 21: Uncertainty ranges (vertical lines) for the input experiments along the Eigenvector 4

direction. The horizontal lines indicate the tolerance T , as discussed in the text.

that when we carry out the mapping of the allowed ranges along the different eigenvector

directions, we find that they have the same order of magnitude, so that the averaging of

the results to obtain an overall T estimate makes sense. For this reason, we do not need

to show the details for all 20 eigenvector directions.

Let us consider the direction of Eigenvector 4 as an example. Consider points along

this direction in the neighborhood of the global minimum, labelled by D, the distance from

the minimum. These points are candidate fits. We first evaluate the acceptable ranges

of fits with respect to the individual experiments, according to the known experimental

uncertainties. For experiment (e), the individual χ2 function, χ2e, is a quadratic function

of D with minimum at some value De. Following ref. [12, section 4.1], we define the range

of fits acceptable with respect to experiment (e) by finding the upper and lower bounds of

D — denoted by D±e — using the criterion

∫ χ2
e
(D±e )

0
P (χ2, Ne) dχ

2 = 0.9 , (B.9)

where P (χ2, Ne) is the standard χ
2-distribution for Ne data points. The ranges for the

individual experiments obtained this way, each shown as a line with the minimum of

χ2e(D) marked by a dot, are displayed in figure 21. For Eigenvector 4 we see that the

strongest bounds on D come from the data sets H1a (low Q H1 data) and BCDMSd

(BCDMS deuteron target) on the negative D side, and from the data sets CCFRF3 (CCFR

measurements of F3) and ZEUS on the positive D side.

A practical problem must be resolved in producing the results shown in figure 21: how

does one obtain meaningful, and reasonably uniform, estimates of the acceptable ranges for

the various experiments when the values of χ2/N vary considerably among the data sets

— and in both directions, above and below the canonical value of 1.0? (Cf. table 1.) In

the preceding subsection, we considered some experiments with larger-than-normal values
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Figure 22: Same as figure 21, except for Eigenvector 18.

of χ2/N . The investigations there suggest that the deviations from normal statistical

expectations can be attributed mainly to unexplained fluctuations. In order to obtain

the acceptable ranges for the individual experiments in a uniform way, it is reasonable to

calculate the bounds D±e for experiment e using the renormalized variable χ
2
e/[χ

2
e(0)/Ne],

assuming that it obeys a chi-squared distribution with Ne degrees of freedom. Here χ
2
e(0)

is the χ2 of experiment e for the standard fit S0. This procedure provides a pragmatic

and uniform way to deal with the problems of acceptability and compatibility among the

experimental input encountered in the global analysis. It is often used in other situations

involving reconciling data from different experiments [28].

Eigenvector 4 was chosen for illustration purposes. The other cases are similar. Fig-

ure 22 shows results for the uncertainty ranges of the experiments along a different direction

in the parton parameter space — that of Eigenvector 18. In this case the strongest bounds

on the displacement come from the DY and jet experiments.

The next problem is to convert the individual ranges in figures 21 or 22 into a single

uncertainty measure. There is no unique way to do this, because the individual ranges

shown in these plots are not statistically independent — the candidate fits along the eigen-

vector direction are all obtained by global fits to the full set of experimental input. In

practice, we estimate the overall acceptable range along each eigenvector direction by us-

ing the two most restrictive experimental constraints on either side of the minimum. In this

way, we obtain the bounds |D| ∼ 10 for both Eigenvector 4 and Eigenvector 18, indicated
by the horizontal lines in figures 21 and 22. Note that these bounds come from differ-

ent experiments, since the eigenvector directions are sensitive to different features of the

parton distributions.

The above procedure for estimating the uncertainty of D was previously used in [12]

to estimate the uncertainties of specific physical predictions (such as cross sections at the

Tevatron and LHC colliders), using the lagrange multiplier method. Each physical variable

corresponds to a definite direction in the parton parameter space. The two examples shown

above, along two eigenvector directions, are typical for all the directions. Thus, an overall
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estimate for the tolerance of T = 10 follows, as an “average” over all directions in the

parton parameter space. This T corresponds to a range of variation of the global χ2 of

∆χ2 = T 2 = 100.

Representing the uncertainties of PDF’s and their physical predictions by one single

number T is clearly an oversimplification; it can only be approximate. But given the com-

plexity of the problem, it should be equally clear that attempting to be more precise than

this would be rather unrealistic at this stage. In addition to the practical (hence imprecise)

measures that need to be adopted to deal with the diverse experimental data sets with non-

uniform error specifications, there are additional theoretical uncertainties not yet included

in the analysis because they are not easily quantified. In spite of these shortcomings,

however, this method of estimating uncertainties is far more systematic and quantifiable

than the ad hoc procedures that have been used in the past. The important point is that

this method, based on the established hessian formalism, is fundamentally sound; its cur-

rent limitations are due to compromises in implementation necessitated by experimental

realities. The implementation can be systematically improved as both experimental and

theoretical input improve with time.

As already noted, the estimated tolerance of T = 10 contains experimental uncer-

tainties only. Uncertainties of theoretical or phenomenological origin are not included

because they are difficult to quantify. They might be significant. For instance, we have

seen throughout this paper that the parametrization of non-perturbative PDF’s has a big

influence on the results. Therefore in physical applications the criterion T = 10 must be

used with awareness of its limitations.

C. Study of higher twist effects

This appendix addresses the question whether it necessary to include higher-twist contribu-

tions in the global analysis. It provides the background study that leads to the conclusion

mentioned in section 3.3.2, that, with the kinematic cuts to data included in our global

analysis, higher-twist terms are not needed.

There have been several studies of the effects of higher-twist (HT) contributions, or

power-law corrections, to F2(x,Q
2) [4, 5, 39, 40]. These usually place some emphasis on

describing data in the small-Q range (say, 1GeV < Q < 2GeV) where higher-twist effects

are expected to be noticeable. In the global analysis of PDF’s, the emphasis is different:

in order to reliably extract the universal parton distributions, it is desirable to focus on

the twist-2 sector of PQCD, without the complications of any process-dependent (and

model-dependent) effects, such as HT. Thus, we adopt kinematic cuts of Q > 2GeV and

W > 3.5GeV to minimize HT effects. The question then becomes whether these kinematic

cuts are sufficient to render HT effects numerically insignificant.20 This question can only

be answered phenomenologically by investigating whether the inclusion of HT terms in

the theory model is needed to achieve a satisfactory fit, and whether the added degrees of

freedom lead to a statistically significant improvement in the fit.

20One would like to keep the kinematic cuts as low as is practical, in order to include as much high-

statistics data as possible (at relatively low Q) in the global analysis.
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To perform this study, we compare the results of our standard fits with those including

HT effects. The model adopted for the higher-twist term is similar to that used in the

literature [4, 5, 39, 40],

F2(x,Q
2) = FNLO

2 (x,Q2)

(
1 +

H(x)

Q2

)
, (C.1)

where

H(x) = h0 + h1x+ h2x
2 + h3x

3 + h4x
4 . (C.2)

The five parameters {h0, . . . , h4} are determined by minimizing χ2, along with the other
model parameters. For simplicity, and following the earlier higher-twist studies, we have

assumed that {h0, . . . , h4} are the same for all DIS processes.
The table below shows the results of our higher-twist study. The first column is the

standard fit CTEQ6M, with no higher twist, i.e. hk = 0. The second column is the best

fit with higher-twist corrections. The global χ2 is slightly lower with the higher-twist

correction (as it must be, since there are more parameters in this fit), but the reduction

∆χ2 = −23 (with 5 extra parameters) does not represent a real improvement of the fit
(considering our adopted tolerance). The table also lists the values of χ2/N for individual

DIS experiments.

CTEQ6M Higher-twist fit

χ2 1954 1931

χ2e/Ne

BCDMS proton 1.11 1.07

BCDMS deuteron 1.11 1.03

H1 A 0.95 0.94

H1 B 1.02 1.02

ZEUS 1.15 1.15

NMC 1.52 1.50

Note that the reduction of χ2 from inclusion of higher twist, comes mainly from an

improved fit to the BCDMS data on µp and µd DIS. The HERA experiments are not

affected by the higher-twist correction, as one would expect. The NMC experiment, which,

like BCDMS, has data points at low values of Q, is fit only slightly better by including

the higher-twist factor H(x). Figure 23 is a graph of the optimal function H(x). It is

qualitatively similar to that found in previous studies.

Because the NMC data has a large χ2 per point compared to other DIS experiments,

we have also studied whether a higher-twist function HNMC(x) can be found that would

significantly reduce the value of χ2/N for the NMC experiment. The best fit for the NMC

data, keeping the PDF’s unchanged but optimizing the higher-twist correction to the NMC

data, has χ2/N = 1.37. The associated function HNMC(x) is somewhat different from the

best global H(x) — more strongly negative for x < 0.5. However, this “best fit” for

NMC causes substantial increase in the χ2’s of the other DIS experiments — the total χ2

increases (from 1954 for CTEQ6M) to 2232. Thus, introducing HT contributions does not
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Figure 23: The function H(x) for the phenomenological higher-twist correction to DIS.

solve the apparent problem of larger-than-normal χ2 for the NMC experiment in the global

fit. This is not surprising, considering our relatively large cut in the minimum value of

Q2 = 4GeV2.

D. Study of parametrizations

We have noted in sections 2.5, 3 and 5.2 that parametrization of the non-perturbative QCD

PDF’s now has an important bearing on the results of the global analysis, given the much

improved experimental constraints and the newly developed theoretical methods. We have

rather extensively explored the influence of parametrization, using the functional forms de-

scribed in section 2.5 and the iterative hessian eigenvector method for matching the degrees

of freedom in the parametrization with applicable experimental constraints (cf. section 3.2).

Even with tools like these, the choice of parametrization still ultimately involves sub-

jective (i.e. physical) judgements. In this appendix, we shall give only one example of the

studies we have carried out, relating to the behavior of the gluon distribution at both small

and large x, as discussed in sections 3.2.1 and 5.2.

This study was motivated by an attempt to understand the results of CTEQ6 fits

described in section 3 in light of two issues raised by [13]: (i) Do the recent HERA data

imply a negative gluon distribution at small x at the scale Q = 1GeV? (ii) Do good fits to

the new DØ jet data necessitate an artificial-looking humped structure of the gluon at large

x at low Q? The seeming contradiction between the observations of [13], which give rise to

these questions, and the apparent good all-around CTEQ6 fits is resolved by this exercise.

First, the observations of [13] were confirmed when we performed a global fit using the

MRST2001 functional form for the gluon, but keeping our parametrization of the quark

degrees of freedom, and fitting to our full set of data with our definition (B.5) for the global

χ2. Figure 24a shows the resulting gluon distribution at Q = 1, 2, 5, 100GeV. At the scale

Q = 1GeV, both the negative gluon at small x and the humped structure at large x found

by the least-χ2 MRST2001J fits are reproduced. For comparison, figure 24b shows the same

distributions from a fit using our parametrization. (To make the comparison possible, this
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Figure 24: (a) The gluon distribution at Q = 1, 2, 5, 100GeV obtained from a global fit using the

MRST functional form for the initial gluon; (b) for comparison, the same gluon distributions from

the CTEQ6 parametrization with Q0 = 1GeV.

fit was done with Q0 = 1GeV in place of the CTEQ6 value Q0 = 1.3GeV.) In this case,

there is only a slight shoulder at large x for Q = 1GeV, and the distribution has become

completely smooth by Q = 2GeV. Hence the hump structure seen by MRST is an artifact

of the particular choice of the parametrization. The gluon distribution is constrained to be

positive definite in this parametrization. These two fits differ in overall χ2 by an amount

that is less than our tolerance estimate, so we do not find convincing evidence for a negative

gluon distribution even at the very low scale of Q = 1GeV, where the parton distributions

are ambiguous anyway because of higher-order and higher-twist corrections.

Since there is no firm theoretical requirement for a positive-definite gluon distribution

at Q as low as 1GeV, we also tried an alternative parametrization for the gluon in which the

CTEQ6 functional form is multiplied by an additional factor (1+A6/x) that allows G(x,Q0)

to go negative at small x. The resulting gluon distributions are shown in figure 25a. This

fit has one more fitting parameter, and hence it results in a slightly lower overall χ2 than

CTEQ6M, but the reduction is well within our tolerance range. An interesting feature

of this fit is, of course, that it does become negative at Q = 1GeV. But, like the case

in figure 24a, the distribution rapidly becomes positive under QCD evolution. No trace

of the negative region is seen at Q = 2GeV. Is the seeming preference for a negative

gluon at Q = 1GeV physically significant? We can answer this question quantitatively by

mapping out the range of uncertainty of the gluon distribution at Q = 1GeV using the

hessian method. The result is shown in figure 25b. The range of uncertainty, given current

experimental constraints, is very large at the Q = 1GeV scale, and it covers both positive

and negative territories at small x, as well as large x! Due to the nature of QCD evolution,

the uncertainty decreases rapidly with increasing Q, as shown in figure 26.
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Figure 25: (a) The gluon distribution at Q = 1, 2, 5, 100GeV obtained from a global fit in our

parametrization, but allowing for negative gluon at small x. (b) Gluon uncertainty band at Q =

1GeV, covering both + and − regions; dashed: CTEQ5, dotted: MRST2001.

Figure 26: Gluon uncertainty band at Q = 2GeV. Same format as figure 25.
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