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Production of a prompt photon in association with a charm quark
at next-to-leading order in QCD
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A second ordeO(ag) calculation in perturbative quantum chromodynamics of the two particle inclusive
cross section is presented for the reacgonp— y+c+ X for large values of the transverse momentum of the
prompt photon and charm quark. The combination of analytic and Monte Carlo integration methods used here
to perform phase-space integrations facilitates the imposition of photon isolation restrictions and other selec-
tions of relevance in experiments. Differential distributions are provided for various observables. Positive
correlations in rapidity are predicte50556-282(96)04415-3

PACS numbgs): 12.38.Bx, 12.38.Qk, 13.85.Ni, 13.85.Qk

[. INTRODUCTION ticle production processes as well as the one-l@ia?)
corrections to the lowest order subprocgss- yc.

More precise examination of the expectations of perturba- We are interested ultimately in the fully differential two-
tive quantum chromodynami¢QCD), including dynamical  particle inclusive cross sectioB,E.da/dp,d%p., where
correlations inherent in the hard-scattering matrix elements;E, p) represents the four-vector momentum of theor ¢
is made possible by the observation of inclusive productiomyuark. For each contributing subprocess, this calculation re-
of two particles or jets, each carrying a large value of transquires integration over the momentum of the unobserved fi-
verse momentum. Because they couple in a pointlike fashiopal parton in the two-to-three particle subprocesses
to quarks, the observation of photons with large values o{g, c, q, or g). Collinear singularities must be handled ana-
transverse momentum in a high energy hadron collision hagtically by dimensional regularization and absorbed into
long been regarded as an incisive probe of short-distancearton momentum densities or fragmentation functions. In
dynamics. In the case of inclusive production of heavythe theoretical analysis reported here, a combination of ana-
quarks, the large mass of the quark and/or the fact that thigtic and Monte Carlo integration methods is used to perform
quark carries large transverse momentum justifies use of ghase-space integrations over unobserved final-state partons
perturbative short-distance approach. In this paper, we corand the momenta of the initial partons. This approach facili-
tinue our examination of the associated production of aates imposition of photon isolation restrictions and other
prompt photon along with a heavy qud. Data are begin-  selections of relevance in experiments. We work in the mass-
ning to become available on the associated production of gss approximatiorm,=0. To warrant use of perturbation
photony carrying large transverse momentum along with atheory and the massless approximation, we limit our consid-
charm quarkc whose transverse momentum balances a suberations to values of transverse momenta of the photon and
stantial portion of that of the photdi2]. An intriguing pos-  charm quark ofp°>10 GeV.
sibility is that the data may be used to measure the charm |n the lowest order direct subprocesgc— yc, the
quark density in the nucleon. prompt photon emerges in isolation from the only other par-

In this paper we report results of a full next-to-leadingticle in the hard scattering, the charm quark. Long-distance
order perturbative QCD calculation @f+p—y+c+X at  quark-to-photon and gluon-to-photon fragmentation pro-
high energy. For values of the transverse momenpjnof  cesses have been emphasized theoreti¢allyand param-
the charm quark much larger than the magsof the quark, etrized phenomenologically in leading orddt, and evolved
only one direct hard-scattering subprocess contributes inin next-to-leading ordef5,6]. These terms may account for
leading order: the quark-gluon Compton subprocessnore than half of the calculated inclusive single-photon
gc— yc. The initial charm quark and the initial gluon are cross section at modest values of transverse momentum at
constituents of the initial hadrons. In addition, there is a leadthe Fermilab Tevatron collider. Photons originating through
ing orderfragmentationprocess in which the photon is pro- fragmentation are likely to emerge in the neighborhood of
duced from quark or gluon fragmentation, egg— cc fol- associated hadrons. An experimental isolation restriction is
lowed byc— yX or qc—qc followed by q— y. At next-to-  needed before a clean identification can be made of the pho-
leading order in QCD, several subprocesses contribute to then and a measurement made of its momentum. Isolation
y+c+X final state: gc—gcy, gg—ccy, qg—ccy, reduces the size of the observed fragmentation contribution.
gqc—qcy, qc—qcy, cc—ccy, andcc—ccy. A full next-  Photon isolation complicates the theoretical interpretation of
to-leading order calculation requires the computation of theesults, however, since it threatens to upset the cancellation
hard-scattering matrix elements for these two-to-three paref infrared divergences in perturbation thedr]. In this
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paper, we include the fragmentation contributions, and we q+g—c+c+y, (2.10

impose isolation requirements through our Monte Carlo

method. g+c—qg+c+y, (2.19
A combination of analytic and Monte Carlo methods

similar to that we employ in this paper has been used to carry q+c—q+c+y, (2.18

out next-to-leading order QCD calculations of other pro-

cesses including inclusive prompt phof@j and photon pair c+coc+cty, (2.1)

[9] production in hadron collisions, and singt&0] and pair

production of heavy gauge bosofisl]. Prompt photon plus ct+c—cHcty. (2.19

associated charm production at large values of transverse

momentum has also been addressed in REZ], but our The matrix elements integrated over the mutually exclu-

analysis differs from theirs. The calculation in Rgf2] is  sive soft and collinear regions of phase space are not the full
done in lowest order while ours is done at next-to-leadingwo-to-three body matrix elements but, instead, specific ap-
order. In lowest order, the subprocessgg— ycc and proximate versions. In the soft-gluon case the approximate
gg— ycc contribute in the massive case, wherea@s—yc  version is obtained by setting the gluon energy to zero ev-
plus fragmentation processes contribute in the massless caggywhere it occurs in the matrix elements, except in the de-
In a forthcoming paper, we intend to examine the massivenominators. For the collinear singularities, each invariant
case in detail and to discuss comparisons with the masslegisat vanishes is in turn set to zero everywhere except in the
case in the regions of phase space of their respective appliienominator. This form is the leading pole approximation.
cability. As remarked above, our massless approach shoulfhe phase-space integrals are performed with these approxi-
be appropriate and applicable in the domain in which there isnate expressions, and only the terms proportional to loga-
effectively only one large scal@i>m;. rithms of the cutoff parameters are retained. Terms propor-
In Sec. Il, we describe the combination of analytic andtional to positive powers of the cutoff parameters are set to
Monte Carlo methods we use to carry out the next-to-leadingero. In order for the method to yield reliable results, the
order calculation. The next-to-leading order calculation itselfcutoff parameters must be kept small; otherwise, the approxi-
is presented in Sec. lll. Differential cross sections and othemations would not be valid.
numerical results are discussed in Sec. IV. Summary remarks After the two-to-three particle phase space integrals are
are collected in Sec. V. An appendix is included in which weperformed analytically over the singular regions and the soft
derive analytic expressions for some of the parton level crosand collinear poles are exposed, mag) virtual gluon-
sections we use. exchange loop contributions, if any, are added, and all
double poles and single poles of sdiihfrared origin are
verified to cancel, as they should. The remaining collinear
singularities are factored into parton distribution and frag-
The combination of analytic and Monte Carlo techniquesmentation functions at an appropriate factorization or frag-
used here to perform the phase-space integrals is documentégntation scale. We work in the modified minimal subtrac-
and described in detail elsewhd®-11], and so our discus- tion (MS) scheme. One is left with a set of matrix elements
sion will be fairly brief, highlighting features important to for effective two-body final-state processes that depend ex-
our calculation. For the two-to-three particle hard-scatteringlicitly on Ing; and In5;. In addition, the nonsingular regions
subprocesses, the technique consists in identifying those ref phase space yield a set of three-body final-state matrix
gions of phase space where soft and collinear singularitieslements which, when integrated over phase space by Monte
occur and integrating over them analytically in-2¢ di-  Carlo techniques, have an implicit dependence on these same
mensions. In this way the singularities are exposed as poldegarithms. The signs are such that the dependencesfn In
in €. These regions are isolated from the rest of the threeand Inj. cancel between the two-body and three-body con-
body phase space by the imposition of arbitrary boundarietributions. The physical cross sections are independent of
through the introduction of cutoff parameteisandd.. The  these arbitrary cutoff parameters over wide ranges. In our
soft-gluon region of phase space is defined to be the regionumerical work, we varied; and 8, over suitable ranges
in which the gluon energy, in a specified reference frameand found quite stable results, as is shown in Sec. IV.
usually the subprocess rest frame, falls below a certain At the level of two-body final-state matrix elements, as in
thresholds,\/s/2, whered, is the cutoff parameter arglis  leading-order calculations, it is a simple matter to impose
the center-of-mass energy in the initial parton-parton systenselections on kinematic variables similar to those made in
Labeling the momenta for the general three-body process bgxperiments and to calculate different observables. The same
pi+p,—Ps+Ps+Ps, we define the general invariants by is not the case when we consider three-body final-state pro-
sijz(pi+pj)2 and tijz(pi—pj)z. The collinear region is cesses. The standard analytic techniques required to obtain
defined as the region in which the value of an invariant fallsdifferential cross sections of empirical interest often involve
below the values,s. complex Jacobian transformations, and the phase-space inte-
The full set of three-body final-state subprocesses is  grals can sometimes be done analytically only when specific
limits of integration are involved. Fully analytic methods of
2.13 performing calculations for physical processes, aIthc_)ugh in
' some cases desirable, can be rather restricted in their useful-
ness when it is desirable and sometimes even unavoidable
g+g—c+c+y, (2.1  that kinematic selections be made to model experimental

IIl. MONTE CARLO METHOD

g+c—g+c+y,
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cuts. The combined analytic and Monte Carlo method is par- In a fully consistent next-to-leading calculation, one
ticularly versatile in that it provides a means to calculateshould calculate the subprocesses in E3jl) to O(aﬁ),
cross sections differential in many variables at once and tgince the photon fragmentation functions that are convoluted
apply cuts on the kinematic variables to match those made iwith the hard subprocess cross sections ar®@f /).
the experiments. The phase-space integrals are performegr simplicity, we include them i®(«2) only. In fact, next-
numerically after all singularities have been handled analytito-leading order fragmentation contributions to single
cally. prompt photon production have been included only once be-
Our calculation of photon plus charm quark productionfore [13]. We expect the next-to-leading order corrections to
proceeds along lines similar to that for inclusive direct pho-the fragmentation contributions to be insignificant numeri-
ton production described in Ref8], but with a few impor-  cally especially after isolation cuts are imposed.
tant differences. Since we are interested in observing a final
chgrm quark as well as the _photon: we .cannc.)t integrate ana- B. Next-to-leading order contributions
lytically over phase space in the limit in which the charm o ) ]
quark is collinear to a hard gluon or a charm antiquark. This There are two classes of contributions in next-to-leading
situation occurs in theg-, cc-, andqg-initiated processes of order. First there are the virtual gluon-exchange corrections
Eq. (2.1). The expression in the appendix of RES] for the 1O the lowest order processg— yc. Examples are shown in
sum of all effective two-body contributions cannot be used inFig. 1(b). These amplitudes interfere with the Born ampli-
our calculation. We recalculated this expression using théudes and contribute aD(aene2). They were calculated
three-body matrix elements and virtual gluon-exchange contwice before[8,13]. At next-to-leading order there are also
tributions from Ref[13], and we provide the results in the three-body final-state contributions, listed in Eg.1). The
Appendix. We also discuss and present in the Appendix th&hatrix elements for these are also taken from R&B|,
final-state collinear remnants that give the charm quark mowhere they are calculated for single inclusive prompt photon
mentum distribution in the limit that the charm quark is pro- production.
duced collinearly with an anticharm quark or a gluon. The The main task of our calculation is to integrate the three-

singularities in these cases are factored into charm quarRody matrix elements over the phase space of the unobserved
fragmentation functions. particle in the final state. The situation here is different from
the standard case of single inclusive particle production be-
cause we wish to retain as much control as possible over the
kinematic variables of a second particle in the final state,
while at the same time integrating over enough of the phase
A. Leading-order contributions space to ensure cancellation of all infrared and collinear di-
vergences, inherent when massless particles are assumed. All
subprocess contributes to the hard-scattering cross sectidff® Processes of E¢2.1), except the first, involve collinear
singularities but no soft singularities. These collinear singu-

the QCD Compton processg— yc, unlike the case for 9 : ?
single inclusive prompt photon production, where the annilarities must be exposed and factored as explained in Sec. II.

hilation processiq— yg also contributes. Since the leading- The resultzs of these ca!culatiqps are listed in j[he Appendix.
order direct partonic subprocess has a two-body final state, At O(«s) there are, in addition, fragmentation processes
the photon anat quark are produced with balancing trans- I which the hard-scattering two-particle final-state subpro-

verse momenta. In addition, there are effectively leading®€SS€s
order contributions in which the photon is produced by frag-

IIl. CONTRIBUTIONS THROUGH NEXT-TO-LEADING
ORDER

In leading order in perturbative QCD, only ortBrect

. , + +
mentation from a final-state parton. These are crg=yre
c+g—g+c, ctc—y+g,
are followed by fragmentation processes cX, in the case
c+g—c+q, of the first subprocess, argl—cX in the cases of the last
_ _ two. These should be included because we have factored the
c+g—c+q, collinear singularities in the corresponding three-body final-
state processes into nonperturbative fragmentation functions
c+c—c+c, for production of a charm quark from a particular parton. As
L s a first approximation, we estimate these fragmentation func-
c+c—c+c, tions by
q+g—c+c. (3.2 o as(p?)
Dse(z,u%)=—5 —Pyq(2) (33

If the photon is to be isolated from the observed charm
quark, it arises from fragmentation of the glugnand the and
noncharm quarlg, respectively, in the cases of the first,
third, and fourth processes. In the other cases it is produced
by fragmentation of one of th@nti)charm quarks.

2
Dc/g(Z,/.LZ)Z %qu(z)v (3.4
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' FIG. 1. (a) Lowest order Feynman diagrams
for y plus ¢ quark productionk,; andk, are the
four-vector momenta of the photon and charm
quark. (b) Examples of virtual corrections to the
lowest order diagramgc) Examples of next-to-
leading order three-body final-state diagrams for

(b) the gc initial state.
21 ky

(c)

whereP;;(2) are the lowest order splitting functions for par- quarks. We set\ ocp=0.239 GeV (the CTEQ3M valug
ton j into partoni [14] and as(x?) is the strong coupling Very similar differential distributions may be obtained if
strength. other parton sets are used instead, with quantitative differ-
ences reflecting differences among charm quark densities in
IV. NUMERICAL RESULTS the different set$1]. We set the renormalization, factoriza-

. . ) ) _tion, and fragmentation scales to a common valusep¥ in
In this section we present and discuss several d|fferentl% g Pt

cross sections for the joint production of a charm quark and ost of our calculations. Dependence anis examined in
J P q one of the figures below. Since there are two particles in the
a photon at large values of transverse momentum. All result§
. — Inal state, the charm quark and the photon, both of whose
are displayed fopp collisions at the center-of-mass energy ) : :
B . . 7 transverse momenta are large, an alternative choice might be
Js=1.8 TeV appropriate for the Collider Detector at Fermi- T functi Y and ot Th its of
lab (CDF) and DO experiments at Fermilab. To obtain the*~ Pt O_r some function ofpt an- Pr. Ihe resuc S ot our
differential cross sections presented in this paper, we convd:alculations show that the magnitudespdf and py tend to
lute our hard-scattering matrix elements with the CTEQ3MPe comparable and that dependence of the cross sections on
parton densitief15]. We use the standard two-loop formula w is slight. Therefore, choices qi different from u=py
for the strong coupling strength with four massless flavors ohould not produce significantly different answers, and we
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FIG. 2. Study of the dependence of the cross section on the FIG. 3. Cross sectiomo/dp; as a function of the transverse

Monte Carlo cutoff parameter&, and §.. Shown is the cross sec- momentum of the charm quark fqr-+ p—>y+c+_x at ‘@:1'8
tion for p+p— y+c+ X at s=1.8 TeV with the transverse mo- TeV. The transverse momentum of the photon is restricted to the
' 'pterval 15<p¥<45 GeV, and the rapidities of the photon and

menta of the photon and charm quark restricted to the the interva

P Arm q charm quark are restricted to the intervall.0<y<1.0. Four

10<p;<50 GeV and the rapidities of the photon and charm quark : . .
restricted to the intervak 3.0<y<3.0 curves are drawn. The solid curve shows the cross section with no
' e further restrictions. The dashed curve indicates the result after the

additional selection is made that-0.1; the ratioz is defined in the

ha\llﬁ ;’nglecrj] tth Isszusvﬁ)r?sﬂ?rlrlig rﬁg;isﬁn:ﬁgvfacasigjé and text. The dotted and dash-dot curves display the results after photon
on to showing distribu P isolation restrictions are applied, in addition to the cutzon

transverse momenta of the charm quark and the photon, we

also discuss distributions in the radpwherez is defined as tion of the transverse momentum of the charm quak,

pS.pZ having restricted the transverse momentum of the photon to
z=— T; 2T (4.1) therange 15p¥=<45 GeV typical of current hadron collider
(p7) experiments. The rapidities of the charm quark and photon

are restricted to the central regionl<y”°<1 in order to

fragmentation functions, Eq€3.3) and (3.4). In collider ex- mimic the central region coverage of major collider detec-

periments a photon is observed and its momentum is Weﬁors. The solid curve shows our prediction when no further

measured only when the photon is isolated from neighborin e.'e‘?“O’?S are made other than thoge mentlonec_j just above.
hadrons. In our calculation, we impose isolation in terms o istributions are presented in the figure for various selec-

. tions on other kinematic variables. For the dashed curve, the
the cone variabl&: variablez of Eq. (4.1) is restricted taz=0.1. This selection
(Ay)2+(Ad)2<R. (4.2) on z places the photon and charm quark in opposite hemi-
spheres and results in a modest reduction in overall rate.
In Eq. (4.2, Ay (A ¢) is the difference between the rapidity Retaining this cut orz, we examine the effects of isolation
(azimuthal angle in the transverse plané the photon and  ©of the photon and obtain the results shown by the dotted and
that of any parton in the final state. The photon is said to b&lot-dashed curves, for cone sizesRo# 0.4 and 0.7, respec-
isolated in a cone of sizR if the ratio of the hadronic energy tively.
in the cone and the transverse momentum of the photon does A common and notable feature of the curves in Fig. 3 is
not exceede=2 GeVfpY. We show distributions for the that slopes change ne@;=15 and 45 GeV. There is a
choicesR=0.7 andR= 0.4 typical of current experiments. Simple reason for this behavior. The contributions to the
Our first figure in this section, Fig. 2, is an examination of Cross section from two-particle final states produce kinematic
the numerical stability of the overall cross section when theconfigurations in which the photon and charm quark have
cutoff parameterss, and &, are varied over appropriate Values ofpy that are equal in magnitude but opposite in sign.
ranges. This figure indicates that the combination of analytid herefore two-body final-state processes cannot contribute in
and Monte Carlo methods yields consistent numerical resultéie regionsp;<15 GeV andp7=45 GeV. Only the three-
for a broad range of the parameters. For the subsequent figody final-state processes contribute to the cross section in
ures, we useS;=0.01 ands,=0.001. We return to a brief these regions. The steeper fall of the cross section in either
examination of the dependence on cutoff parameters wheglirection away from the region ¥p$=<45 GeV reflects the
we discuss distributions in the varial#tén Fig. 9. decreasing likelihood that the photon and charm quark have
In Fig. 3 we show the differential cross section as a func-substantially different values of transverse momentum.

This ratioz is not to be confused with the varialk#ein the
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FIG. 4. Cross sectionlo/dp} as a function of the transverse

FIG. 5. Cross sectiodo/dp} as a function of the transverse

momentum of the photon fgr+p— y+c+X atys=1.8 TeV. The  momentum of the photon fqr+p— y-+c-+X at Js=1.8 TeV. The
transverse momentum of the charm quark is restricted to the intekrgnsverse momentum and rapidity of the charm quark are not re-
val 15<p7<45 GeV, and the rapidities of the photon and charmggricted, but the rapidity of the photon is limited to the interval
quark are restricted to the interval1l.0<y<1.0. Four curves are —0.5<y<0.5. The ratio z is restricted to the interval

drawn. The solid curve shows the cross section with no furthegy o ,<2 0. Three curves are drawn. The solid curve shows the
restrictions. The dashed curve indicates the result after the addiygss section with no further restrictions. The dashed curve indi-
tional selection is made that-0.1; the raticz is defined in the text.  cates the result after photon isolation is imposed, Wit 0.7, and

The dotted and dash-dot curves display the results after photofhe dot-dashed curve is the leading-order cross section with photon
isolation restrictions are applied, in addition to the cutzon isolation imposedR = 0.7.

Another feature of the results shown in Fig. 3 is that the

1000

effect of isolation diminishes ap$ is decreased. Isolation
affects the cross section principally when the third parton in

15 < p?

< 45 GeV

-1 <y’ <1 A

the final state enters the photon isolation cone and carries
transverse momentum greater than the energy resolution
threshold. WithpY fixed above 15 GeV, the third parton
must be in the charm quark’s hemisphere wpéris small in
order to balancey. Whenp$ is large, the third parton is
free to enter the photon isolation cone.

In Fig. 4, we show the cross section differential pef.
The cuts made are the same as those for Fig. 3, but in thisT
case the charm quark’s transverse momentum is restricted-3
between 15 and 45 GeV. The explanation for the change in
behavior of the distributions aboyel=45 GeV and below
p¥=15 GeV is the same as for Fig. 3. An obvious difference
between Figs. 3 and 4 is that the effect of photon isolation is
most significant in the region of smaily. The explanation
is, again, that withp$ restricted above 15 GeV, the third
parton in the final state will be found in the photon hemi-
sphere whemp? is small. It is likely to be in the photon

y° (pb)

800

600

400

200

|||||||||l||||||l||||l||

< 25 QeV
< 45 GeV

----15 < p}

R=07

N

isolation cone, and the configuration will be rejected by the 5 6 cross sectioda/dy® as a function of the rapidity of the

isolation cuts.

charm quark fop+p— y+c+X at /s=1.8 TeV. The photon ra-

To examine further the effects of selections on the Chambidity is restricted to—1.0<y?<1.0, and photon isolation is im-

quark momentum, we present in Fig. 5 the cross sectiofosed, withR = 0.7. There is no restriction opS, but the ratio
differential in the transverse momentum of the photon for & s restricted taz>0.1. Curves are shown for three selections on

different set of cuts. The photon’s rapidity is limited to the the transverse momentum of the photon. The solid, dashed, and

range —0.5<y?<0.5, and the ratioz is restricted to

dot-dashed curves correspond to the selections 545 GeV,

0.2<z=2.0. These cuts are similar to those of our analytic15<p}<25 GeV, and 35 p}<45 GeV, respectively. For ease of
paper[1]. In Fig. 5, the solid curve represents the cross seceomparison of shapes, the dot-dashed curve has been multiplied by

tion with no isolation cuts imposed, and the dashed curveo.
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: -1 < y7 <1 R = 0.7 : 300 — z > 0.1 —
800 z > 0.1 7 | R =07 ]
o] — 1 —_
2 600 T ] @ 500 -
2 : : o I
g 1%
3 400 1 05 '
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P = R I B o L
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(a) Ay y*
A0~ ; c ; .
S : FIG. 8. Cross sectiodo/dy* as a function of the rapidity of the
[ | <y’ <2 15 < pl < 45 GeV | _ch_arm quark f.0|p+p_ﬂy+c+x at/s=1.8 TeV. Photon isolatiqn
[ R = 07 1 is imposed, withR = 0.7,z>0.1, and 15 p¥<45_ (_Bev_. The Splld
200 |- 2> 0.1 ] curve shows the result when the photon_rapldlty is restricted to
’ 1.0<y?<2.0, and the dashed curve displays the result for
N 2.0<y7<3.0.
& : .
~ The structure of the QCD hard-scattering matrix element
5 <00 producespositivecorrelations in rapiditf16] at collider en-
S ergies. To examine correlations more precisely, we study the
° cross section as a function of the difference of the rapidities
of the photon and charm quark. Results are shown in Fig. 7.
100 In Fig. 7(a), we see that the distribution iy is narrower
than the corresponding distribution ¥f shown in Fig. 6.
The broader distribution in Fig. 6 results from a spread of the
approximately Gaussian and relatively narrow dynamical
0 distribution of Fig. Ta) over the range-1<y”<1. In Fig.
o) —4 7(b), we select photons whose rapidities are in the forward

hemisphere, 18y?<2.0. We observe that the peak in the
_ . _ Ay distribution remains close tAy=0, reflecting the pre-
FIG. 7. Cross sectiodo/dAy as a function of the difference dicted[16] positive dynamical correlations, but with the typi-

= —_— c 1 it . .
Ay=y”=y" of the rapidities of the photon and charm quark, for o y4ye ofy® lagging somewhat behind that of the selected
p+p—y+c+X at ys=1.8 TeV. The ratioz is restricted to v

z>0.1, and photon isolation is imposed, wigh= 0.7. The trans- -In Fig. 8. we displav the differential cross sectionvif
verse momentum of the photon is selected to be in the interval 9. o play X

15<p<45 GeV. In (a), the photon rapidity is restricted to itself, for two intervals ofy” in the forward rapidity region.

—1.0<y"<1.0: in(b) 1.0<y”<2.0. In(b), the dashed curve shows These distributions show how the typical rapidity of the
the behavior at leading order. charm quark follows that of the photon.

The dependence of the cross section on the variable
shows the isolated cross section. The dot-dashed curve is tidefined in Eq.(4.1), is indicative of the imbalance in trans-
leading-order prediction, with photon isolation imposed. Theverse momentum of the charm quark and the photon. For
behavior seen in Fig. 5 is clearly different from that of Fig. 4 two-body processes, such as the leading-order Compton sub-
in that the cross section does not fall off in the region ofprocessyc— yc, the photon and charm quark have balanc-
smallpy, as expected, since there in no selection in Fig. 5 ofing transverse momenta, and the distribution i fainction
p$ (other than the selection az). in z, 5(1—2z). Contributions away fronz=1 are due to the

In Fig. 6 we show the distribution in the rapidity of the higher order three-body contributions or to fragmentation
charm quarky?®, for different cuts on the photon’s transverse processes. As discussed in Hdf}, the photon fragmentation
momentum. In all cases 1<y?<1. The distribution iry®is  processes contribute in the regias1 only. Processes in
fairly broad, with a full width at half maximum of about 3.2 which the charm quark is produced via fragmentation con-
units in rapidity. The dashed and dot-dashed curves showibute in the region &z<1. We thus expect that the effect
that the distribution iny® may broaden somewhat @& is  of photon isolation will be observed in the regige 1. This
increased. expectation is confirmed in the results of Figathat show
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FIG. 9. Cross sectiodo/dpidy”dz as a function of the ratio
z for p+p— y+c+X at Js=1.8 TeV. The transverse momentum
and rapidity of the photon are averaged over the intervals
14<p¥<16 GeV and—0.5<y?<0.5. In (a), we illustrate the ef-
fects of photon isolation by comparing the distributionszimvith
and without the isolation restriction. The solid histogramghbnand
(c) show the results of our calculation for our standard Monte Carlo
integration cutoff parameterg;=0.01 ands,=0.001. In(b) and
(c), photon isolation is imposed witR = 0.7. In(b), we display the
dependence of the final cross section on the Monte Carlo integration
cutoff parameterds, having fixed§.=0.001. In(c), we show the
dependence of the final cross section on the cutoff parandgter
having fixed5,=0.01.

the cross section as a function offor the nonisolated and soft cutoff parameteds is concentrated a=1. In Fig. 9b)

isolated cases. The solid histogram in Fi¢p)%grees quan-

we show the distribution iz for different values of5;. The

titatively with the corresponding histogram in our analytic cross section is fairly independent of this parameter except
paper|1] except for differences associated with the differentwhen it becomes larger than about 0.02. Similarly, in Fig.

choice of parton densities.

9(c), we examine dependence @R, the collinear cutoff

The &-function behavior at leading order is, of course, parameter. We find fair stability over a reasonable range of
moderated by nonperturbative effects associated with thealues of §.. The observeds, variation is similar to the
“intrinsic” transverse momentum of the initial partons as scale dependence seen in Fig. 6 of R&f. The two have a
well as by next-to-leading order perturbative contributions.related physical origin. In the approach of Ré¢L], the
In this paper, we are working in the usual purely perturbativechoice of a scalg. partitions the calculation arbitrarily into
framework in which the initial partons are assumed to betwo-body collinear and three-body final-state contributions.

collinear. For a three-parton final state, the regiorz ofear

If w is increased, more of the next-to-leading order QCD

unity is the region in which one of the three final partonscontributions are placed into the parton distributidosllin-
becomes soft. Sensitivity to soft-gluon effects and the necesar kinematicsand less into the exact three-body kinemat-
sity for resummation procedures is a common limitationics. Likewise, here the parametég partitions the overall
when one considers next-to-leading order contributions to a@QCD matrix element into two-body collinear and three-body

observable that is proportional to & function in leading

final-state contributions. It therefore is not a surprise to see

order. In our calculation the soft-gluon corrections to thethe same type of variation with. in Fig. 9c) as is exhibited
three-body processes are considered as effective two-bodyy scale variation.

contributions, as discussed in Sec. Il. These contribute to the The infrared sensitivity of the distribution in reflected
cross section ar=1, meaning that all dependence on thein the §; dependence discussed above and in the scale de-
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- N FIG. 11. TheK factor defined in the text is shown as a function
FIG. 10. Th I f t aje n- . . .
G. 10. The renormalization or factorization scaje) (depe oé p¥. Photons are isolated witR = 0.7. The solid line corre-

dence of the cross section is displayed. Shown is the transvers ) .
c y. sponds to selections analogous to those of our analytic gaper
momentum dependence d&/dp; for three values oju/p¥: 0.5, . L i
. : —0.5<y?<0.5 and 0.2 z<2.0, but with no restrictions og® or
1.0, and 2. The transverse momentum of the photon is restricted to. .
. y I pr. The dashed line shows how results change when the transverse
the interval 15 p¥<45 GeV, and the rapidities of the photon and . . )
. : momentum of the charm quark is restricted to the interval
charm quark are restricted to the intervall.0<y<1.0.

15<p$<45 GeV with, in additionz>0.1 and the rapidities of the
photon and charm quark limited to the intervall.0<y<1.0.
pendence examined in R¢fL], means that the distribution

at may not be calculated sufficiently reliably at next-to-yajue ofk near 1.5 is in agreement with preliminary experi-
leading order. Resummation of the effects of soft-gluon ramental indicationg2]. The dashed curve in Fig. 11 is the

diation is required, particularly in the region neas 1. K factor for the cross section with the cuts specified in Fig.
The renormalization, factorization, or fragmentation scaley,

dependence of our isolated cross section is illustrated in Fig.
10 as a function op$. The cuts are those of Fig. 3 for cone
size R=0.7. All three scales are varied simultaneously,

=np? i igible i i . .
p=npz. The dependence on scale is negligible in the region In this paper we present the results of a calculation of the

15<p7=45 GeV, whereas outside this region we see sOMe,c|ysive production of a prompt photon in association with a
dependence. As remarked earlier in our dlscusspn of Fig. :'heavy quark at large values of transverse momentum. This
both two-body and three-body processes contribute to thgnaysis is done at next-to-leading order in perturbative
cross section in the region $p7=<45. In this region, the QcD. We employ a combination of analytic and Monte
next-to-leading order process is complete in the sense th@arlo integration methods in which infrared and collinear
there are bottO(as) and O(a?) contributions. The factor-  singularities of the next-to-leading order matrix elements are
ization scales in the hard subprocess cross section compefiandled properly. Our results agree quantitatively with those
sate and cancel those in the structure and fragmentation fungre obtained using purely analytic methofls], as they
tions. In the regionp$=<15 GeV andp7=45 GeV, only should, but the combination of analytic and Monte Carlo
three-body processes contribute. There are no factorizatiomethods used in this paper is more versatile. We provide
scales in the hard subprocess cross sections, except for phdifferential cross sections in transverse momenta and rapid-
ton fragmentation scales in the latter region, to compensatiy, including photon isolation restrictions, that should facili-
the scale dependence of the structure functions. The absentge contact with experimental results at hadron collider en-
of compensating terms results in the observed scale depesrgies. We show that the study of two-particle inclusive
dence in these regions, particularly in the region of smalldistributions, with specification of the momentum variables
pr. of both the final prompt photon and the final heavy quark,
A useful measure of the importance of next-to-leadingtests correlations inherent in the QCD matrix elemétt§
order contributions is the K factor,” defined as the ratio of and should provide a means for measuring the charm quark
the full cross section through next-to-leading order to the fulldensity in the nucleofil]. Our results are presented in terms
leading-order cross section, with fragmentation included. Wef the transverse momentum of the charm quark. In a typical
provide values oK in Fig. 11 as a function op? for two  experimen{2], the momentum of the quark may be inferred
different sets of kinematic selections. Both curves represerftom the momentum of prompt lepton decay products or the
isolated photon cross sections wi=0.7. The solid curve momentum of charm mesons, such@$’s. Alternatively,

is theK factor appropriate to the selections of our Fig. 5. Aour distributions inp} may be convoluted with charm quark

V. SUMMARY AND DISCUSSION
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fragmentation functions, deduced from, egj' e~ annihila- 1. Two-body contributions
tion data, to provide distributions for the prompt leptons or
D*’s. The effective two-body contribution includes t a?)
virtual gluon-exchange loop contributions and the soft and/or
ACKNOWLEDGMENTS collinear parts of the three-body contributiotthis remark

. applies to initial-state collinear contributions only, as ex-
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L ; plained later. After all soft pole singularities are canceled
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Physics, Contract No. W-31-109-ENG-38. This work was G
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APPENDIX: ANALYTIC EXPRESSIONS o) bod)(A"” B—y+c+ X):f dvdx,dx,

In order to make this paper reasonably self-contained, we
collect in this appendix all the formulas we use in the calcu- dold
lation. If we label the momenta for the generic three-body

A 2
. a0 fo(*1.M%)
final-state process by

dO'HO
P1+P2—P3+Pat s, (A1) X fe(xe, M?)=1—(cg—yc) |,
where p; denotes the photon amm, denotes the observed (A4)
charm quark, we can define the Mandelstam invariants
T n. N2
t=(p1=Pa)", plus terms in which the beam and target are interchanged. In
) , this section we use the subscripto refer to the charm quark
u=(p2—ps)*, (or antiquark.
We define
§=(p1+p2)° (A2)
We express the two-body final-state cross sections in terms 2—2v+v?
of the scaled variable, where Teg=—7— (A5)
t
v=1+~. (A3)
S andv,=1-v. In Eq. (A4),
doto waemaseg as |1 Ng ) 2 S
dU (Cg—> '}/C): T Tcg+ E E ?Tcg_14‘CFTcg+2NCInUl+4(2CF+ Nc)TCgln 53_ §NFTCg|nW
c

S S 1 S
+ CFTcg(3+ 4In53)an + CFTcg(3+ 4In53)InW + § NCTCg(ll+ 12In55)an

1 S
+ §(11NC— 2NF)TCgInl7 +4(2Ce—Ng)Inv + 4T gIndg(N¢lInv 1 + 2Celnv — Nclnw)

) (2-2v+3v?) (1+2v) ,(—1-2v+4v?)
+Ne(1+v)In% 1+ (2Ce—Ng)—————In%v + 2C¢ Inv;—Nem?——F—=
U1 U1 301
1— 4y +502 (v2+0?) (v2+0v?)
+2CF7T2( )+ch 2 In2v,—2(2C— No)———Invlno,
31)1 U1 U1
+2(2C,:—NC)Tchiz(l—v)+2NCTchi2(v)) ] (AB)

The scalesM andM” are the factorization and fragmentation scales, respectively, on the initial parton and final-state charm
quark legs, andgk is the renormalization scal€-=4/3 is the quark-gluon vertex color facttt-= 3 is the number of colors,
e. is the fractional charge of the charm quad, and &, are the soft and collinear cutoff parameters defined in Sec. Il,
Li,(x) is the dilogarithm function, and., is the electromagnetic coupling constant.

The remnants of the factorization of the hard collinear singularities are
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dod’ " a a282 1 —ddz dz ~
;ov — er;; NcTcg g(Xl, 2)(f2 7fB( l\/|2) q(z)+J _f( Z)qu(z) +fCB(X2,|V|2)

X (A7)

1-54d 1d
Ll ;fg( MZ) g(z)+fl7zf( MZ) q(2)

The last distributionf§(x;,M?) in Eq. (A7) implies a sum

over the flavors of quarks from thec, cq, andcq initial Pgg(z,€)=2Nc

states. The remaining two processesandqq do not have

initial-state collinear singularities and thus do not contribute

to this part of the cross section. Equati@v) differs slightly P, (Z,€)=Cg

from that given in Ref[8], where the upper limit of integra- 94

tion was always taken to be-16;. In principle, this is in-

correct since it implies that processes other than thdhe functionsP,(z) are defined by the relation

cg-initiated process may have soft singularities, but the error _

introduced by that approximation is very small for small Pij(z,€)=Pij(2) + €P(2). (A10)

ds. We use the correct expression in our calculation.
The splitting function$;; , listed in the Appendix of Ref.

[8], are included here for completeness:

z +1—z+ 1
12" )

1+(1-2)?
——— —€Z

2. Pseudo-two-body contributions

Since we are interested in distributions in the kinematic
variables of two final-state partons, the photon and ¢he
quark, we can define variables that depend on the momenta
of both. An example is the variablg defined in Eq.(4.1).

The functionsP;;(z) are the usual Altarelli-Parisi splitting Whenever there is a third parton in the final state, the distri-
functions in 4-2¢ dimensions and are bution inz (or in other analogous variablewill differ from
a ¢ function when the third parton carries a finite momen-
(A9)  tum, even if it is collinear to one of the other final partons.
For this reason we designate as “pseudo-two-body contribu-
tions” those for which the third parton is collinear to either
the final photon or the charm quark. These contributions are
expressed, respectively, by the equations

~ z s
Pij(z):Pij(Z)In(_ﬁcW)_Pilj(z)' (AS)

ZZ
= —€(1-2)|,

1
qu(z,e)=CF[ =

! . [Z22+(1-2)%—¢€],

Pqg(z,€)= 2(1—e)

T yjcoll = 2 ffa(xlv b(XZv 2)(%“)[qu(2)”1

do
z(1- Z)ﬁchz} 'y/q(z)

(ab—>cq)dx1dx2dzdu
(A11)

and

- do
Toeor= 3, | 100 M2 1E0G M Pez.M7) S (ab- y) dxycgdzde. (A12)

The functionsP.,4(z) and Py,q(z) are the quark-to-photon (A11), g can be a charm quark or charm antiquark or a
splitting function andO(e€) piece, respectively. They have (antiquark of any flavor in the case afq—cq. In Eq.
the same form aB,, with the color factor replaced by the (A12),d is either a gluon or charm quark or charm antiquark.
square of the quark charge. The scilé is the fragmenta- These contributions are usually referred to as the rem-
tion scale for quark fragmentation into a photon. nants of the factorization of the hard collinear singularities
and are regarded as two-body processes or as parts of the
S , fragmentation contributions because of their dependence on
z(1-2) 5CW4 ~Ped(2), the factorization scales. We prefer to regard them as pseudo-
(A13)  two-body contributions. When we examine either the charm
quark or photon momentum distributions, these contributions
where P 4(z) represents the splitting functior®,4(z) and  populate the same regions of phase space as the other three-
Pqq(2) of Eq. (A9) along with the “primed” pieces. In Eq. body contributions in Eq(A17), unlike the effective two-

Pd(Z,M"2)=Py(2)In
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body contributions. The pseudo-two-body contributions are de 2C: Waaseﬁ v 1-v
usually negative in overall sign due to the large logarithms of d—(qqH Y9)= N P ( 1— ) :
the cutoff parameters, as are the two-body contributions dis- v ¢ v v
cussed above. de raall(1+(1-v)?
q @9 =— |, (A19)

3. Photon fragmentation contributions

As mentioned in Sec. Ill, we include the quark-to-photon 1€ pPhysical cross section is given by

and gluon-to-photon fragmentation contributions at leading

order only. We convolute the-22 hard-scattering subpro- afrag,czz J' fg\(xl,MZ)fE(xz,MZ)DC,d(z,M”Z)

cess cross sections for the processes listed in(Eg). with abd

photon fragmentation functioris,;i(z,M ’2): M" is the frag- do

mentation scale, the same scale at which we subtract the X d—(ab—> vd)dx;dx,dzdv. (Al6)
. . .. v

collinear singularities on the photon leg of the three-body

rocesses. The expression for the cross section is _—
P P 5. Three-body contributions

_ A 2\¢B 2 A 2 The noncollinear three-body final-state contributions are
hagly aEbj ffa(xl’M )T (x2,MHD (2, M) calculated from the expression
do
X g (ab—jc)dxdxdzay. (A14) agbody=2bd f f2(x1,M?)fB(x,,M?)
a
The matrix elements for the hard subprocess cross section X da(ab— ycd)dx;,dx,dQ, (A17)

are well known and can be found, for example, in Réf. . . .
P Rl with ) representing the angles and other variables that are

integrated over. Whenever an invariagt or t;; falls into a
collinear or soft region of phase space, that contribution from

In integrating some of the three-body matrix elementsthe subprocess is excluded. The three-body contribution
over phase space we encounter configurations in which theshows no dependence on the factorization scale of the final-
charm quark is produced collinearly with a charm antiquarkstate charm or photon legs, although we have factored col-
or a gluon in the final state. These situations lead to a collinear singularities at scalels!” and M’, respectively, on
linear singularity in the massless approximation. They occuthese legs of the three-body subprocesses. However, Eq.
for the processes of Eq2.1a, (2.10, and(2.1f). We factor  (A17) does contain an implicit logarithmic dependence on
these singularites into a fragmentation functionthe soft and, in particular, the collinear cutoffs discussed in
Dyi(z,M"?) for partoni to produce a charm quark with Sec. Il. Both collinear cutoff and factorization scale depen-
momentum fractionz. The contributing subprocess cross dences are contained in the pseudo-two-body contributions
sections are discussed above.

4. Charm fragmentation contributions
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