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Production of a prompt photon in association with a charm quark
at next-to-leading order in QCD
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A second orderO(as
2) calculation in perturbative quantum chromodynamics of the two particle inclusive

cross section is presented for the reactionp1 p̄→g1c1X for large values of the transverse momentum of the
prompt photon and charm quark. The combination of analytic and Monte Carlo integration methods used h
to perform phase-space integrations facilitates the imposition of photon isolation restrictions and other se
tions of relevance in experiments. Differential distributions are provided for various observables. Posit
correlations in rapidity are predicted.@S0556-2821~96!04415-3#

PACS number~s!: 12.38.Bx, 12.38.Qk, 13.85.Ni, 13.85.Qk
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I. INTRODUCTION

More precise examination of the expectations of pertur
tive quantum chromodynamics~QCD!, including dynamical
correlations inherent in the hard-scattering matrix eleme
is made possible by the observation of inclusive product
of two particles or jets, each carrying a large value of tra
verse momentum. Because they couple in a pointlike fash
to quarks, the observation of photons with large values
transverse momentum in a high energy hadron collision
long been regarded as an incisive probe of short-dista
dynamics. In the case of inclusive production of hea
quarks, the large mass of the quark and/or the fact that
quark carries large transverse momentum justifies use
perturbative short-distance approach. In this paper, we c
tinue our examination of the associated production o
prompt photon along with a heavy quark@1#. Data are begin-
ning to become available on the associated production
photong carrying large transverse momentum along with
charm quarkc whose transverse momentum balances a s
stantial portion of that of the photon@2#. An intriguing pos-
sibility is that the data may be used to measure the ch
quark density in the nucleon.

In this paper we report results of a full next-to-leadi
order perturbative QCD calculation ofp1 p̄→g1c1X at
high energy. For values of the transverse momentumpT

c of
the charm quark much larger than the massmc of the quark,
only one direct hard-scattering subprocess contributes
leading order: the quark-gluon Compton subproc
gc→gc. The initial charm quark and the initial gluon ar
constituents of the initial hadrons. In addition, there is a le
ing orderfragmentationprocess in which the photon is pro
duced from quark or gluon fragmentation, e.g.,gg→cc̄ fol-
lowed by c̄→gX or qc→qc followed byq→g. At next-to-
leading order in QCD, several subprocesses contribute to
g1c1X final state: gc→gcg, gg→cc̄g, qq̄→cc̄g,
qc→qcg, q̄c→q̄cg, cc̄→cc̄g, andcc→ccg. A full next-
to-leading order calculation requires the computation of
hard-scattering matrix elements for these two-to-three p
541/96/54~3!/1896~12!/$10.00
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ticle production processes as well as the one-loopO(as
2)

corrections to the lowest order subprocessgc→gc.
We are interested ultimately in the fully differential two-

particle inclusive cross sectionEgEcds/d3pgd
3pc , where

(E,p) represents the four-vector momentum of theg or c
quark. For each contributing subprocess, this calculation r
quires integration over the momentum of the unobserved
nal parton in the two-to-three particle subprocesse
(g, c̄, q, or q̄). Collinear singularities must be handled ana
lytically by dimensional regularization and absorbed int
parton momentum densities or fragmentation functions.
the theoretical analysis reported here, a combination of an
lytic and Monte Carlo integration methods is used to perform
phase-space integrations over unobserved final-state part
and the momenta of the initial partons. This approach facil
tates imposition of photon isolation restrictions and othe
selections of relevance in experiments. We work in the mas
less approximationmc50. To warrant use of perturbation
theory and the massless approximation, we limit our consi
erations to values of transverse momenta of the photon a
charm quark ofpT

g,c.10 GeV.
In the lowest order direct subprocess,gc→gc, the

prompt photon emerges in isolation from the only other pa
ticle in the hard scattering, the charm quark. Long-distanc
quark-to-photon and gluon-to-photon fragmentation pro
cesses have been emphasized theoretically@3# and param-
etrized phenomenologically in leading order@4#, and evolved
in next-to-leading order@5,6#. These terms may account for
more than half of the calculated inclusive single-photo
cross section at modest values of transverse momentum
the Fermilab Tevatron collider. Photons originating throug
fragmentation are likely to emerge in the neighborhood o
associated hadrons. An experimental isolation restriction
needed before a clean identification can be made of the ph
ton and a measurement made of its momentum. Isolati
reduces the size of the observed fragmentation contributio
Photon isolation complicates the theoretical interpretation
results, however, since it threatens to upset the cancellat
of infrared divergences in perturbation theory@7#. In this
1896 © 1996 The American Physical Society
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54 1897PRODUCTION OF A PROMPT PHOTON IN . . .
paper, we include the fragmentation contributions, and w
impose isolation requirements through our Monte Car
method.

A combination of analytic and Monte Carlo method
similar to that we employ in this paper has been used to ca
out next-to-leading order QCD calculations of other pro
cesses including inclusive prompt photon@8# and photon pair
@9# production in hadron collisions, and single@10# and pair
production of heavy gauge bosons@11#. Prompt photon plus
associated charm production at large values of transve
momentum has also been addressed in Ref.@12#, but our
analysis differs from theirs. The calculation in Ref.@12# is
done in lowest order while ours is done at next-to-leadin
order. In lowest order, the subprocessesgg→gcc̄ and
qq̄→gcc̄ contribute in the massive case, whereascg→gc
plus fragmentation processes contribute in the massless c
In a forthcoming paper, we intend to examine the massi
case in detail and to discuss comparisons with the massl
case in the regions of phase space of their respective ap
cability. As remarked above, our massless approach sho
be appropriate and applicable in the domain in which there
effectively only one large scale,pT

c@mc .
In Sec. II, we describe the combination of analytic an

Monte Carlo methods we use to carry out the next-to-leadi
order calculation. The next-to-leading order calculation itse
is presented in Sec. III. Differential cross sections and oth
numerical results are discussed in Sec. IV. Summary rema
are collected in Sec. V. An appendix is included in which w
derive analytic expressions for some of the parton level cro
sections we use.

II. MONTE CARLO METHOD

The combination of analytic and Monte Carlo technique
used here to perform the phase-space integrals is docume
and described in detail elsewhere@8–11#, and so our discus-
sion will be fairly brief, highlighting features important to
our calculation. For the two-to-three particle hard-scatterin
subprocesses, the technique consists in identifying those
gions of phase space where soft and collinear singularit
occur and integrating over them analytically in 422e di-
mensions. In this way the singularities are exposed as po
in e. These regions are isolated from the rest of the thre
body phase space by the imposition of arbitrary boundar
through the introduction of cutoff parametersds anddc . The
soft-gluon region of phase space is defined to be the reg
in which the gluon energy, in a specified reference fram
usually the subprocess rest frame, falls below a certa
thresholddsAŝ/2, whereds is the cutoff parameter andŝ is
the center-of-mass energy in the initial parton-parton syste
Labeling the momenta for the general three-body process
p11p2→p31p41p5 , we define the general invariants by
si j5(pi1pj )

2 and t i j5(pi2pj )
2. The collinear region is

defined as the region in which the value of an invariant fal
below the valuedcŝ.

The full set of three-body final-state subprocesses is

g1c→g1c1g, ~2.1a!

g1g→c1 c̄1g, ~2.1b!
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q1q̄→c1 c̄1g, ~2.1c!

q1c→q1c1g, ~2.1d!

q̄1c→q̄1c1g, ~2.1e!

c1 c̄→c1 c̄1g, ~2.1f!

c1c→c1c1g. ~2.1g!

The matrix elements integrated over the mutually exclu-
sive soft and collinear regions of phase space are not the ful
two-to-three body matrix elements but, instead, specific ap-
proximate versions. In the soft-gluon case the approximate
version is obtained by setting the gluon energy to zero ev-
erywhere it occurs in the matrix elements, except in the de-
nominators. For the collinear singularities, each invariant
that vanishes is in turn set to zero everywhere except in the
denominator. This form is the leading pole approximation.
The phase-space integrals are performed with these approx
mate expressions, and only the terms proportional to loga-
rithms of the cutoff parameters are retained. Terms propor-
tional to positive powers of the cutoff parameters are set to
zero. In order for the method to yield reliable results, the
cutoff parameters must be kept small; otherwise, the approxi-
mations would not be valid.

After the two-to-three particle phase space integrals are
performed analytically over the singular regions and the soft
and collinear poles are exposed, theO(as

2) virtual gluon-
exchange loop contributions, if any, are added, and all
double poles and single poles of soft~infrared! origin are
verified to cancel, as they should. The remaining collinear
singularities are factored into parton distribution and frag-
mentation functions at an appropriate factorization or frag-
mentation scale. We work in the modified minimal subtrac-
tion (MS̄) scheme. One is left with a set of matrix elements
for effective two-body final-state processes that depend ex
plicitly on lnds and lndc . In addition, the nonsingular regions
of phase space yield a set of three-body final-state matrix
elements which, when integrated over phase space by Mont
Carlo techniques, have an implicit dependence on these sam
logarithms. The signs are such that the dependences on lnds
and lndc cancel between the two-body and three-body con-
tributions. The physical cross sections are independent o
these arbitrary cutoff parameters over wide ranges. In our
numerical work, we variedds and dc over suitable ranges
and found quite stable results, as is shown in Sec. IV.

At the level of two-body final-state matrix elements, as in
leading-order calculations, it is a simple matter to impose
selections on kinematic variables similar to those made in
experiments and to calculate different observables. The sam
is not the case when we consider three-body final-state pro
cesses. The standard analytic techniques required to obtai
differential cross sections of empirical interest often involve
complex Jacobian transformations, and the phase-space inte
grals can sometimes be done analytically only when specific
limits of integration are involved. Fully analytic methods of
performing calculations for physical processes, although in
some cases desirable, can be rather restricted in their usefu
ness when it is desirable and sometimes even unavoidabl
that kinematic selections be made to model experimenta
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cuts. The combined analytic and Monte Carlo method is p
ticularly versatile in that it provides a means to calcula
cross sections differential in many variables at once and
apply cuts on the kinematic variables to match those made
the experiments. The phase-space integrals are perfor
numerically after all singularities have been handled analy
cally.

Our calculation of photon plus charm quark productio
proceeds along lines similar to that for inclusive direct ph
ton production described in Ref.@8#, but with a few impor-
tant differences. Since we are interested in observing a fi
charm quark as well as the photon, we cannot integrate a
lytically over phase space in the limit in which the charm
quark is collinear to a hard gluon or a charm antiquark. Th
situation occurs in thecg-, cc̄-, andqq̄-initiated processes of
Eq. ~2.1!. The expression in the appendix of Ref.@8# for the
sum of all effective two-body contributions cannot be used
our calculation. We recalculated this expression using
three-body matrix elements and virtual gluon-exchange co
tributions from Ref.@13#, and we provide the results in the
Appendix. We also discuss and present in the Appendix
final-state collinear remnants that give the charm quark m
mentum distribution in the limit that the charm quark is pro
duced collinearly with an anticharm quark or a gluon. Th
singularities in these cases are factored into charm qu
fragmentation functions.

III. CONTRIBUTIONS THROUGH NEXT-TO-LEADING
ORDER

A. Leading-order contributions

In leading order in perturbative QCD, only onedirect
subprocess contributes to the hard-scattering cross sec
the QCD Compton processcg→gc, unlike the case for
single inclusive prompt photon production, where the an
hilation processqq̄→gg also contributes. Since the leading
order direct partonic subprocess has a two-body final sta
the photon andc quark are produced with balancing trans
verse momenta. In addition, there are effectively leadin
order contributions in which the photon is produced by fra
mentation from a final-state parton. These are

c1g→g1c,

g1g→c1 c̄,

c1q→c1q,

c1q̄→c1q̄,

c1c→c1c,

c1 c̄→c1 c̄,

q1q̄→c1 c̄. ~3.1!

If the photon is to be isolated from the observed char
quark, it arises from fragmentation of the gluong and the
noncharm quarkq, respectively, in the cases of the firs
third, and fourth processes. In the other cases it is produ
by fragmentation of one of the~anti!charm quarks.
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In a fully consistent next-to-leading calculation, one
should calculate the subprocesses in Eq.~3.1! to O(as

3),
since the photon fragmentation functions that are convoluted
with the hard subprocess cross sections are ofO(aem/as).
For simplicity, we include them inO(as

2) only. In fact, next-
to-leading order fragmentation contributions to single
prompt photon production have been included only once be-
fore @13#. We expect the next-to-leading order corrections to
the fragmentation contributions to be insignificant numeri-
cally especially after isolation cuts are imposed.

B. Next-to-leading order contributions

There are two classes of contributions in next-to-leading
order. First there are the virtual gluon-exchange corrections
to the lowest order process,cg→gc. Examples are shown in
Fig. 1~b!. These amplitudes interfere with the Born ampli-
tudes and contribute atO(aemas

2). They were calculated
twice before@8,13#. At next-to-leading order there are also
three-body final-state contributions, listed in Eq.~2.1!. The
matrix elements for these are also taken from Ref.@13#,
where they are calculated for single inclusive prompt photon
production.

The main task of our calculation is to integrate the three-
body matrix elements over the phase space of the unobserve
particle in the final state. The situation here is different from
the standard case of single inclusive particle production be-
cause we wish to retain as much control as possible over the
kinematic variables of a second particle in the final state,
while at the same time integrating over enough of the phase
space to ensure cancellation of all infrared and collinear di-
vergences, inherent when massless particles are assumed. A
the processes of Eq.~2.1!, except the first, involve collinear
singularities but no soft singularities. These collinear singu-
larities must be exposed and factored as explained in Sec. II
The results of these calculations are listed in the Appendix.

At O(as
2) there are, in addition, fragmentation processes

in which the hard-scattering two-particle final-state subpro-
cesses

c1g→g1c,

c1 c̄→g1g,

q1q̄→g1g ~3.2!

are followed by fragmentation processesc→cX, in the case
of the first subprocess, andg→cX in the cases of the last
two. These should be included because we have factored th
collinear singularities in the corresponding three-body final-
state processes into nonperturbative fragmentation function
for production of a charm quark from a particular parton. As
a first approximation, we estimate these fragmentation func-
tions by

Dc/c~z,m
2!5

as~m2!

2p
Pqq~z! ~3.3!

and

Dc/g~z,m
2!5

as~m2!

2p
Pqg~z!, ~3.4!



54 1899PRODUCTION OF A PROMPT PHOTON IN . . .
FIG. 1. ~a! Lowest order Feynman diagrams
for g plus c quark production;k1 andk2 are the
four-vector momenta of the photon and charm
quark. ~b! Examples of virtual corrections to the
lowest order diagrams.~c! Examples of next-to-
leading order three-body final-state diagrams for
thegc initial state.
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wherePi j (z) are the lowest order splitting functions for pa
ton j into partoni @14# andas(m

2) is the strong coupling
strength.

IV. NUMERICAL RESULTS

In this section we present and discuss several differen
cross sections for the joint production of a charm quark a
a photon at large values of transverse momentum. All res
are displayed forpp̄ collisions at the center-of-mass energ
As51.8 TeV appropriate for the Collider Detector at Ferm
lab ~CDF! and D0 experiments at Fermilab. To obtain th
differential cross sections presented in this paper, we con
lute our hard-scattering matrix elements with the CTEQ3
parton densities@15#. We use the standard two-loop formu
for the strong coupling strength with four massless flavors
r-
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y
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quarks. We setLQCD50.239 GeV ~the CTEQ3M value!.
Very similar differential distributions may be obtained if
other parton sets are used instead, with quantitative differ
ences reflecting differences among charm quark densities
the different sets@1#. We set the renormalization, factoriza-
tion, and fragmentation scales to a common valuem5pT

g in
most of our calculations. Dependence onm is examined in
one of the figures below. Since there are two particles in the
final state, the charm quark and the photon, both of whos
transverse momenta are large, an alternative choice might b
m5pT

c or some function ofpT
g and pT

c . The results of our
calculations show that the magnitudes ofpT

g andpT
c tend to

be comparable and that dependence of the cross sections
m is slight. Therefore, choices ofm different from m5pT

g

should not produce significantly different answers, and we
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have verified this supposition in representative cases.
In addition to showing distributions in the rapidities an

transverse momenta of the charm quark and the photon
also discuss distributions in the ratioz, wherez is defined as

z52
pT
c .pT

g

~pT
g!2

. ~4.1!

This ratioz is not to be confused with the variablez in the
fragmentation functions, Eqs.~3.3! and~3.4!. In collider ex-
periments a photon is observed and its momentum is w
measured only when the photon is isolated from neighbo
hadrons. In our calculation, we impose isolation in terms
the cone variableR:

A~Dy!21~Df!2<R. ~4.2!

In Eq. ~4.2!, Dy (Df) is the difference between the rapidi
~azimuthal angle in the transverse plane! of the photon and
that of any parton in the final state. The photon is said to
isolated in a cone of sizeR if the ratio of the hadronic energ
in the cone and the transverse momentum of the photon
not exceede52 GeV/pT

g . We show distributions for the
choicesR50.7 andR50.4 typical of current experiments.

Our first figure in this section, Fig. 2, is an examination
the numerical stability of the overall cross section when
cutoff parametersds and dc are varied over appropriat
ranges. This figure indicates that the combination of anal
and Monte Carlo methods yields consistent numerical res
for a broad range of the parameters. For the subsequen
ures, we useds50.01 anddc50.001. We return to a brie
examination of the dependence on cutoff parameters w
we discuss distributions in the variablez in Fig. 9.

In Fig. 3 we show the differential cross section as a fu

FIG. 2. Study of the dependence of the cross section on
Monte Carlo cutoff parametersds anddc . Shown is the cross sec
tion for p1 p̄→g1c1X at As51.8 TeV with the transverse mo
menta of the photon and charm quark restricted to the the inte
10,pT,50 GeV and the rapidities of the photon and charm qu
restricted to the interval23.0,y,3.0.
d
, we

ell
ring
of

ty

be
y
does

of
the
e
ytic
ults
t fig-
f
hen

nc-

tion of the transverse momentum of the charm quark,pT
c ,

having restricted the transverse momentum of the photon to
the range 15<pT

g<45 GeV typical of current hadron collider
experiments. The rapidities of the charm quark and photon
are restricted to the central region21<yg,c<1 in order to
mimic the central region coverage of major collider detec-
tors. The solid curve shows our prediction when no further
selections are made other than those mentioned just above
Distributions are presented in the figure for various selec-
tions on other kinematic variables. For the dashed curve, the
variablez of Eq. ~4.1! is restricted toz>0.1. This selection
on z places the photon and charm quark in opposite hemi-
spheres and results in a modest reduction in overall rate.
Retaining this cut onz, we examine the effects of isolation
of the photon and obtain the results shown by the dotted and
dot-dashed curves, for cone sizes ofR50.4 and 0.7, respec-
tively.

A common and notable feature of the curves in Fig. 3 is
that slopes change nearpT

c515 and 45 GeV. There is a
simple reason for this behavior. The contributions to the
cross section from two-particle final states produce kinematic
configurations in which the photon and charm quark have
values ofpT that are equal in magnitude but opposite in sign.
Therefore two-body final-state processes cannot contribute in
the regionspT

c<15 GeV andpT
c>45 GeV. Only the three-

body final-state processes contribute to the cross section in
these regions. The steeper fall of the cross section in either
direction away from the region 15<pT

c<45 GeV reflects the
decreasing likelihood that the photon and charm quark have
substantially different values of transverse momentum.

the
-
-
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ark

FIG. 3. Cross sectionds/dpT
c as a function of the transverse

momentum of the charm quark forp1 p̄→g1c1X at As51.8
TeV. The transverse momentum of the photon is restricted to the
interval 15,pT

g,45 GeV, and the rapidities of the photon and
charm quark are restricted to the interval21.0,y,1.0. Four
curves are drawn. The solid curve shows the cross section with no
further restrictions. The dashed curve indicates the result after the
additional selection is made thatz.0.1; the ratioz is defined in the
text. The dotted and dash-dot curves display the results after photon
isolation restrictions are applied, in addition to the cut onz.
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Another feature of the results shown in Fig. 3 is that th
effect of isolation diminishes aspT

c is decreased. Isolation
affects the cross section principally when the third parton
the final state enters the photon isolation cone and car
transverse momentum greater than the energy resolu
threshold. WithpT

g fixed above 15 GeV, the third parton
must be in the charm quark’s hemisphere whenpT

c is small in
order to balancepT

g . When pT
c is large, the third parton is

free to enter the photon isolation cone.
In Fig. 4, we show the cross section differential inpT

g .
The cuts made are the same as those for Fig. 3, but in
case the charm quark’s transverse momentum is restric
between 15 and 45 GeV. The explanation for the change
behavior of the distributions abovepT

g545 GeV and below
pT

g515 GeV is the same as for Fig. 3. An obvious differenc
between Figs. 3 and 4 is that the effect of photon isolation
most significant in the region of smallpT

g . The explanation
is, again, that withpT

c restricted above 15 GeV, the third
parton in the final state will be found in the photon hem
sphere whenpT

g is small. It is likely to be in the photon
isolation cone, and the configuration will be rejected by t
isolation cuts.

To examine further the effects of selections on the cha
quark momentum, we present in Fig. 5 the cross sect
differential in the transverse momentum of the photon for
different set of cuts. The photon’s rapidity is limited to th
range 20.5<yg<0.5, and the ratioz is restricted to
0.2<z<2.0. These cuts are similar to those of our analy
paper@1#. In Fig. 5, the solid curve represents the cross se
tion with no isolation cuts imposed, and the dashed cur

FIG. 4. Cross sectionds/dpT
g as a function of the transverse

momentum of the photon forp1 p̄→g1c1X atAs51.8 TeV. The
transverse momentum of the charm quark is restricted to the in
val 15,pT

c,45 GeV, and the rapidities of the photon and char
quark are restricted to the interval21.0,y,1.0. Four curves are
drawn. The solid curve shows the cross section with no furth
restrictions. The dashed curve indicates the result after the a
tional selection is made thatz.0.1; the ratioz is defined in the text.
The dotted and dash-dot curves display the results after pho
isolation restrictions are applied, in addition to the cut onz.
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FIG. 5. Cross sectionds/dpT
g as a function of the transverse

momentum of the photon forp1 p̄→g1c1X atAs51.8 TeV. The
transverse momentum and rapidity of the charm quark are not re
stricted, but the rapidity of the photon is limited to the interval
20.5,y,0.5. The ratio z is restricted to the interval
0.2,z,2.0. Three curves are drawn. The solid curve shows the
cross section with no further restrictions. The dashed curve indi-
cates the result after photon isolation is imposed, withR 5 0.7, and
the dot-dashed curve is the leading-order cross section with photo
isolation imposed,R 5 0.7.

FIG. 6. Cross sectionds/dyc as a function of the rapidity of the
charm quark forp1 p̄→g1c1X at As51.8 TeV. The photon ra-
pidity is restricted to21.0,yg,1.0, and photon isolation is im-
posed, withR 5 0.7. There is no restriction onpT

c , but the ratio
z is restricted toz.0.1. Curves are shown for three selections on
the transverse momentum of the photon. The solid, dashed, an
dot-dashed curves correspond to the selections 15,pT

g,45 GeV,
15,pT

g,25 GeV, and 35,pT
g,45 GeV, respectively. For ease of

comparison of shapes, the dot-dashed curve has been multiplied b
10.
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shows the isolated cross section. The dot-dashed curve is
leading-order prediction, with photon isolation imposed. Th
behavior seen in Fig. 5 is clearly different from that of Fig.
in that the cross section does not fall off in the region o
smallpT

g , as expected, since there in no selection in Fig. 5 o
pT
c ~other than the selection onz).
In Fig. 6 we show the distribution in the rapidity of the

charm quark,yc, for different cuts on the photon’s transvers
momentum. In all cases21<yg<1. The distribution inyc is
fairly broad, with a full width at half maximum of about 3.2
units in rapidity. The dashed and dot-dashed curves sh
that the distribution inyc may broaden somewhat aspT

g is
increased.

FIG. 7. Cross sectionds/dDy as a function of the difference
Dy5yg2yc of the rapidities of the photon and charm quark, fo
p1 p̄→g1c1X at As51.8 TeV. The ratioz is restricted to
z.0.1, and photon isolation is imposed, withR 5 0.7. The trans-
verse momentum of the photon is selected to be in the interv
15,pT

g,45 GeV. In ~a!, the photon rapidity is restricted to
21.0,yg,1.0; in ~b! 1.0,yg,2.0. In~b!, the dashed curve shows
the behavior at leading order.
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The structure of the QCD hard-scattering matrix elemen
producespositivecorrelations in rapidity@16# at collider en-
ergies. To examine correlations more precisely, we study th
cross section as a function of the difference of the rapiditie
of the photon and charm quark. Results are shown in Fig.
In Fig. 7~a!, we see that the distribution inDy is narrower
than the corresponding distribution inyc shown in Fig. 6.
The broader distribution in Fig. 6 results from a spread of th
approximately Gaussian and relatively narrow dynamica
distribution of Fig. 7~a! over the range21<yg<1. In Fig.
7~b!, we select photons whose rapidities are in the forwar
hemisphere, 1.0,yg,2.0. We observe that the peak in the
Dy distribution remains close toDy50, reflecting the pre-
dicted@16# positive dynamical correlations, but with the typi-
cal value ofyc lagging somewhat behind that of the selected
yg.

In Fig. 8, we display the differential cross section inyc

itself, for two intervals ofyg in the forward rapidity region.
These distributions show how the typical rapidity of the
charm quark follows that of the photon.

The dependence of the cross section on the variablez,
defined in Eq.~4.1!, is indicative of the imbalance in trans-
verse momentum of the charm quark and the photon. F
two-body processes, such as the leading-order Compton su
processgc→gc, the photon and charm quark have balanc
ing transverse momenta, and the distribution is ad function
in z, d(12z). Contributions away fromz51 are due to the
higher order three-body contributions or to fragmentation
processes. As discussed in Ref.@1#, the photon fragmentation
processes contribute in the regionz>1 only. Processes in
which the charm quark is produced via fragmentation con
tribute in the region 0<z<1. We thus expect that the effect
of photon isolation will be observed in the regionz>1. This
expectation is confirmed in the results of Fig. 9~a! that show

r

al

FIG. 8. Cross sectionds/dyc as a function of the rapidity of the
charm quark forp1 p̄→g1c1X atAs51.8 TeV. Photon isolation
is imposed, withR 5 0.7,z.0.1, and 15,pT

g,45 GeV. The solid
curve shows the result when the photon rapidity is restricted t
1.0,yg,2.0, and the dashed curve displays the result fo
2.0,yg,3.0.
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FIG. 9. Cross sectionds/dpT
gdygdz as a function of the ratio

z for p1 p̄→g1c1X at As51.8 TeV. The transverse momentum
and rapidity of the photon are averaged over the interva
14,pT

g,16 GeV and20.5,yg,0.5. In ~a!, we illustrate the ef-
fects of photon isolation by comparing the distributions inz with
and without the isolation restriction. The solid histograms in~b! and
~c! show the results of our calculation for our standard Monte Car
integration cutoff parametersds50.01 anddc50.001. In ~b! and
~c!, photon isolation is imposed withR 5 0.7. In ~b!, we display the
dependence of the final cross section on the Monte Carlo integrat
cutoff parameterds , having fixeddc50.001. In ~c!, we show the
dependence of the final cross section on the cutoff parameterdc ,
having fixedds50.01.
pt
g.

of

s.
D

t-

y
ee

de-
the cross section as a function ofz for the nonisolated and
isolated cases. The solid histogram in Fig. 9~a! agrees quan-
titatively with the corresponding histogram in our analyt
paper@1# except for differences associated with the differe
choice of parton densities.

The d-function behavior at leading order is, of cours
moderated by nonperturbative effects associated with
‘‘intrinsic’’ transverse momentum of the initial partons a
well as by next-to-leading order perturbative contribution
In this paper, we are working in the usual purely perturbat
framework in which the initial partons are assumed to
collinear. For a three-parton final state, the region ofz near
unity is the region in which one of the three final parto
becomes soft. Sensitivity to soft-gluon effects and the nec
sity for resummation procedures is a common limitati
when one considers next-to-leading order contributions to
observable that is proportional to ad function in leading
order. In our calculation the soft-gluon corrections to t
three-body processes are considered as effective two-b
contributions, as discussed in Sec. II. These contribute to
cross section atz51, meaning that all dependence on th
ic
nt

e,
the
s
s.
ive
be

ns
es-
on
an

he
ody
the
e

soft cutoff parameterds is concentrated atz51. In Fig. 9~b!
we show the distribution inz for different values ofds . The
cross section is fairly independent of this parameter exce
when it becomes larger than about 0.02. Similarly, in Fi
9~c!, we examine dependence ondc , the collinear cutoff
parameter. We find fair stability over a reasonable range
values ofdc . The observeddc variation is similar to the
scale dependence seen in Fig. 6 of Ref.@1#. The two have a
related physical origin. In the approach of Ref.@1#, the
choice of a scalem partitions the calculation arbitrarily into
two-body collinear and three-body final-state contribution
If m is increased, more of the next-to-leading order QC
contributions are placed into the parton distributions~collin-
ear kinematics! and less into the exact three-body kinema
ics. Likewise, here the parameterdc partitions the overall
QCD matrix element into two-body collinear and three-bod
final-state contributions. It therefore is not a surprise to s
the same type of variation withdc in Fig. 9~c! as is exhibited
by scale variation.

The infrared sensitivity of the distribution inz, reflected
in the ds dependence discussed above and in the scale
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pendence examined in Ref.@1#, means that thez distribution
at may not be calculated sufficiently reliably at next-t
leading order. Resummation of the effects of soft-gluon
diation is required, particularly in the region nearz51.

The renormalization, factorization, or fragmentation sc
dependence of our isolated cross section is illustrated in
10 as a function ofpT

c . The cuts are those of Fig. 3 for con
size R50.7. All three scales are varied simultaneous
m5npT

g . The dependence on scale is negligible in the reg
15<pT

c<45 GeV, whereas outside this region we see so
dependence. As remarked earlier in our discussion of Fig
both two-body and three-body processes contribute to
cross section in the region 15<pT

c<45. In this region, the
next-to-leading order process is complete in the sense
there are bothO(as) andO(as

2) contributions. The factor-
ization scales in the hard subprocess cross section com
sate and cancel those in the structure and fragmentation f
tions. In the regionspT

c<15 GeV andpT
c>45 GeV, only

three-body processes contribute. There are no factoriza
scales in the hard subprocess cross sections, except for
ton fragmentation scales in the latter region, to compens
the scale dependence of the structure functions. The abs
of compensating terms results in the observed scale de
dence in these regions, particularly in the region of sm
pT .

A useful measure of the importance of next-to-leadi
order contributions is the ‘‘K factor,’’ defined as the ratio of
the full cross section through next-to-leading order to the f
leading-order cross section, with fragmentation included.
provide values ofK in Fig. 11 as a function ofpT

g for two
different sets of kinematic selections. Both curves repres
isolated photon cross sections withR50.7. The solid curve
is theK factor appropriate to the selections of our Fig. 5.

FIG. 10. The renormalization or factorization scale (m) depen-
dence of the cross section is displayed. Shown is the transv
momentum dependence ofds/dpT

c for three values ofm/pT
g : 0.5,

1.0, and 2. The transverse momentum of the photon is restricte
the interval 15,pT

g,45 GeV, and the rapidities of the photon an
charm quark are restricted to the interval21.0,y,1.0.
-
a-
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value ofK near 1.5 is in agreement with preliminary experi
mental indications@2#. The dashed curve in Fig. 11 is the
K factor for the cross section with the cuts specified in Fig
4.

V. SUMMARY AND DISCUSSION

In this paper we present the results of a calculation of th
inclusive production of a prompt photon in association with
heavy quark at large values of transverse momentum. Th
analysis is done at next-to-leading order in perturbativ
QCD. We employ a combination of analytic and Monte
Carlo integration methods in which infrared and collinea
singularities of the next-to-leading order matrix elements a
handled properly. Our results agree quantitatively with thos
we obtained using purely analytic methods@1#, as they
should, but the combination of analytic and Monte Carl
methods used in this paper is more versatile. We provid
differential cross sections in transverse momenta and rap
ity, including photon isolation restrictions, that should facili-
tate contact with experimental results at hadron collider e
ergies. We show that the study of two-particle inclusiv
distributions, with specification of the momentum variable
of both the final prompt photon and the final heavy quark
tests correlations inherent in the QCD matrix elements@16#
and should provide a means for measuring the charm qua
density in the nucleon@1#. Our results are presented in terms
of the transverse momentum of the charm quark. In a typic
experiment@2#, the momentum of the quark may be inferred
from the momentum of prompt lepton decay products or th
momentum of charm mesons, such asD* ’s. Alternatively,
our distributions inpT

c may be convoluted with charm quark

rse

d to
d

FIG. 11. TheK factor defined in the text is shown as a function
of pT

g . Photons are isolated withR 5 0.7. The solid line corre-
sponds to selections analogous to those of our analytic paper@1#,
20.5,yg,0.5 and 0.2,z,2.0, but with no restrictions onyc or
pT
c . The dashed line shows how results change when the transve

momentum of the charm quark is restricted to the interva
15,pT

c,45 GeV with, in addition,z.0.1 and the rapidities of the
photon and charm quark limited to the interval21.0,y,1.0.



r

n

54 1905PRODUCTION OF A PROMPT PHOTON IN . . .
fragmentation functions, deduced from, e.g.,e1e2 annihila-
tion data, to provide distributions for the prompt leptons
D* ’s.
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APPENDIX: ANALYTIC EXPRESSIONS

In order to make this paper reasonably self-contained,
collect in this appendix all the formulas we use in the calc
lation. If we label the momenta for the generic three-bo
final-state process by

p11p2→p31p41p5 , ~A1!

wherep3 denotes the photon andp4 denotes the observe
charm quark, we can define the Mandelstam invariants

t̂5~p12p3!
2,

û5~p22p3!
2,

ŝ5~p11p2!
2. ~A2!

We express the two-body final-state cross sections in te
of the scaled variablev, where

v511
t̂

ŝ
. ~A3!
or

ed
y
as

we
u-
dy

d

rms

1. Two-body contributions

The effective two-body contribution includes theO(as
2)

virtual gluon-exchange loop contributions and the soft and/o
collinear parts of the three-body contributions~this remark
applies to initial-state collinear contributions only, as ex-
plained later!. After all soft pole singularities are canceled
and all collinear pole singularities are factored, the effective
two-body contribution is expressed as

s2 body~A1B→g1c1X!5E dvdx1dx2

3Fdscoll
cg→gc

dv
1 f g

A~x1 ,M
2!

3 f c
B~x2 ,M

2!
dsHO

dv
~cg→gc!G ,

~A4!

plus terms in which the beam and target are interchanged. I
this section we use the subscriptc to refer to the charm quark
~or antiquark!.

We define

Tcg5
222v1v2

12v
, ~A5!

andv1512v. In Eq. ~A4!,
rm
dsHO

dv
~cg→gc!5

paemasec
2

ŝNC
HTcg1 as

2p F12 SNF

3
Tcg214CFTcg12NClnv114~2CF1NC!Tcgln

2ds2
2

3
NFTcgln

ŝ

M2

1CFTcg~314lnds!ln
ŝ

M2 1CFTcg~314lnds!ln
ŝ

M 92
1
1

3
NCTcg~11112lnds!ln

ŝ

M2

1
1

3
~11NC22NF!Tcgln

ŝ

m2 14~2CF2NC!lnv14Tcglnds~NClnv112CFlnv2NClnv !

1NC~11v !ln2v11~2CF2NC!
~222v13v2!

v1
ln2v12CF

~112v !

v1
lnv12NCp2

~2122v14v2!
3v1

12CFp2
~124v15v2!

3v1
12CF

~v21v1
2!

v1
ln2v122~2CF2NC!

~v21v1
2!

v1
lnv lnv1

12~2CF2NC!TcgLi2~12v !12NCTcgLi2~v ! D G J . ~A6!

The scalesM andM 9 are the factorization and fragmentation scales, respectively, on the initial parton and final-state cha
quark legs, andm is the renormalization scale.CF54/3 is the quark-gluon vertex color factor,NC53 is the number of colors,
ec is the fractional charge of the charm quark,ds and dc are the soft and collinear cutoff parameters defined in Sec. II,
Li 2(x) is the dilogarithm function, andaem is the electromagnetic coupling constant.

The remnants of the factorization of the hard collinear singularities are
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dscoll
cg→gc

dv
5

aemas
2ec

2

2ŝ

1

NC
TcgF f gA~x1 ,M

2!S E
x2

12dsdz

z
f c
BS x2z ,M2D P̃qq~z!1E

x2

1dz

z
f g
BS x2z ,M2D P̃qg~z! D 1 f c

B~x2 ,M
2!

3S E
x1

12dsdz

z
f g
AS x1z ,M2D P̃gg~z!1E

x1

1dz

z
f q
AS x1z ,M2D P̃gq~z! D G . ~A7!
r

The last distributionf q
A(x1 ,M

2) in Eq. ~A7! implies a sum
over the flavors of quarks from thecc, cq, and cq̄ initial
states. The remaining two processescc̄ andqq̄ do not have
initial-state collinear singularities and thus do not contribu
to this part of the cross section. Equation~A7! differs slightly
from that given in Ref.@8#, where the upper limit of integra-
tion was always taken to be 12ds . In principle, this is in-
correct since it implies that processes other than t
cg-initiated process may have soft singularities, but the er
introduced by that approximation is very small for sma
ds . We use the correct expression in our calculation.

The splitting functionsP̃i j , listed in the Appendix of Ref.
@8#, are included here for completeness:

P̃i j ~z!5Pi j ~z!lnS 12z

z
dc

ŝ

M2D2Pi j8 ~z!. ~A8!

The functionsPi j (z) are the usual Altarelli-Parisi splitting
functions in 422e dimensions and are

Pqq~z,e!5CFF11z2

12z
2e~12z!G , ~A9!

Pqg~z,e!5
1

2~12e!
@z21~12z!22e#,
te

he
or
ll

Pgg~z,e!52NCF z

12z
1
12z

z
1z~12z!G ,

Pgq~z,e!5CFF11~12z!2

z
2ezG .

The functionsPi j8 (z) are defined by the relation

P̃i j ~z,e!5Pi j ~z!1ePi j8 ~z!. ~A10!

2. Pseudo-two-body contributions

Since we are interested in distributions in the kinematic
variables of two final-state partons, the photon and thec
quark, we can define variables that depend on the momenta
of both. An example is the variablez, defined in Eq.~4.1!.
Whenever there is a third parton in the final state, the distri-
bution inz ~or in other analogous variables! will differ from
a d function when the third parton carries a finite momen-
tum, even if it is collinear to one of the other final partons.
For this reason we designate as ‘‘pseudo-two-body contribu-
tions’’ those for which the third parton is collinear to either
the final photon or the charm quark. These contributions are
expressed, respectively, by the equations
sg/coll5 (
abcq

E f a
A~x1 ,M

2! f b
B~x2 ,M

2!S aem

2p D FPgq~z!lnFz~12z!dc
ŝ

M 82G2Pg/q8 ~z!Gdŝ

dv
~ab→cq!dx1dx2dzdv

~A11!

and

sc/coll5(
abd

E f a
A~x1 ,M

2! f b
B~x2 ,M

2!P̃cd~z,M 92!
dŝ

dv
~ab→gd!dx1dx2dzdv. ~A12!
r a

rk.
em-
ies
f the
e on
udo-
rm
ons
three-
The functionsPg/q(z) andPg/q8 (z) are the quark-to-photon
splitting function andO(e) piece, respectively. They hav
the same form asPgq , with the color factor replaced by the
square of the quark charge. The scaleM 8 is the fragmenta-
tion scale for quark fragmentation into a photon.

P̃cd~z,M 92!5Pcd~z!lnFz~12z!dc
s

M 92G2Pcd8 ~z!,

~A13!

wherePcd(z) represents the splitting functionsPqg(z) and
Pqq(z) of Eq. ~A9! along with the ‘‘primed’’ pieces. In Eq.
e
~A11!, q can be a charm quark or charm antiquark o
~anti!quark of any flavor in the case ofcq→cq. In Eq.
~A12!, d is either a gluon or charm quark or charm antiqua

These contributions are usually referred to as the r
nants of the factorization of the hard collinear singularit
and are regarded as two-body processes or as parts o
fragmentation contributions because of their dependenc
the factorization scales. We prefer to regard them as pse
two-body contributions. When we examine either the cha
quark or photon momentum distributions, these contributi
populate the same regions of phase space as the other
body contributions in Eq.~A17!, unlike the effective two-
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body contributions. The pseudo-two-body contributions
usually negative in overall sign due to the large logarithms
the cutoff parameters, as are the two-body contributions
cussed above.

3. Photon fragmentation contributions

As mentioned in Sec. III, we include the quark-to-phot
and gluon-to-photon fragmentation contributions at lead
order only. We convolute the 2→2 hard-scattering subpro
cess cross sections for the processes listed in Eq.~3.1! with
photon fragmentation functionsDg/ i(z,M 82); M 8 is the frag-
mentation scale, the same scale at which we subtract
collinear singularities on the photon leg of the three-bo
processes. The expression for the cross section is

s frag/g5(
ab j

E f a
A~x1 ,M

2! f b
B~x2 ,M

2!Dg/ j~z,M 82!

3
dŝ

dv
~ab→ jc !dx1dx2dzdv. ~A14!

The matrix elements for the hard subprocess cross sec
are well known and can be found, for example, in Ref.@4#.

4. Charm fragmentation contributions

In integrating some of the three-body matrix elemen
over phase space we encounter configurations in which
charm quark is produced collinearly with a charm antiqua
or a gluon in the final state. These situations lead to a c
linear singularity in the massless approximation. They oc
for the processes of Eq.~2.1a!, ~2.1c!, and~2.1f!. We factor
these singularities into a fragmentation functio
Dc/ i(z,M 92) for parton i to produce a charm quark with
momentum fractionz. The contributing subprocess cros
sections are
are
of
dis-

on
ing
-

the
dy

tion

ts
the
rk
ol-
cur

n

s

dŝ

dv
~qq̄→gg!5

2CF

NC

paaseq
2

s S v
12v

1
12v
v D ,

dŝ

dv
~qg→gq!5

paaseq
2

NCs
S 11~12v !2

12v D . ~A15!

The physical cross section is given by

s frag/c5(
abd

E f a
A~x1 ,M

2! f b
B~x2 ,M

2!Dc/d~z,M 92!

3
dŝ

dv
~ab→gd!dx1dx2dzdv. ~A16!

5. Three-body contributions

The noncollinear three-body final-state contributions are
calculated from the expression

s3body5(
abd

E f a
A~x1 ,M

2! f b
B~x2 ,M

2!

3dŝ~ab→gcd!dx1dx2dV, ~A17!

with V representing the angles and other variables that are
integrated over. Whenever an invariantsi j or t i j falls into a
collinear or soft region of phase space, that contribution from
the subprocess is excluded. The three-body contribution
shows no dependence on the factorization scale of the fina
state charm or photon legs, although we have factored col
linear singularities at scalesM 9 and M 8, respectively, on
these legs of the three-body subprocesses. However, Eq
~A17! does contain an implicit logarithmic dependence on
the soft and, in particular, the collinear cutoffs discussed in
Sec. II. Both collinear cutoff and factorization scale depen-
dences are contained in the pseudo-two-body contribution
discussed above.
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