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Analytic calculation of prompt photon plus associated heavy flavor
at next-to-leading order in QCD
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Contributions through second order,O(as
2), in perturbative quantum chromodynamics are calculated an

lytically for inclusive associated production of a prompt photon and a charm quark at large values of transv
momentum in high energy hadron-hadron collisions. Seven partonic subprocesses contribute at orderas

2 . We
find important corrections to the lowest order,O(as), subprocesscg→gc. We demonstrate to what extent
data from p1 p̄→g1c1X may serve to measure the charm quark density in the nucleo
@S0556-2821~96!01015-6#
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I. INTRODUCTION

Because photons couple in pointlike fashion to quar
observation, among the final-state particles in a high ene
collision, of photons carrying large values of transverse m
mentum provides an incisive probe of the short distance h
ron dynamics of the collision. This fact explains the subst
tial theoretical and experimental interest shown in studies
the cross section for production of photons at large angle
hadron-hadron and lepton-hadron scattering and in elect
positron annihilation processes. At stake are precise tes
the theory of perturbative quantum chromodynamics~QCD!
and use of data to determine properties of the relativi
proton such as the momentum distribution of its constitu
gluons and quarks. Discovery of the charm quark and, la
of the bottom quark stimulated interest in the dynamics
their relatively copious production in high energy intera
tions of hadrons. Recent experimental advances now o
the possibility of studies of the associated production o
photon (g) carrying large transverse momentum along w
a heavy quark (Q) whose transverse momentum balance
substantial portion of that of the photon@1#. In this paper, we
report a fully analytic next-to-leading order QCD calculati
of the two-particle inclusive distribution for prompt photo
plus associated heavy flavor production at large values
transverse momentum, with specification of the moment
variables of both the final prompt photon and the final hea
quark. These results should facilitate further experimen
tests of correlations inherent in the QCD matrix elements
provide a means for measuring the charm quark densit
the nucleon.

Although a qualitative description may be obtained fro
lowest-order perturbation theory, more precise prediction
the momentum distribution for the inclusive production o
heavy quark~or antiquark! require perturbative calculation
that extend to higher order@2#. Likewise, perturbative QCD
calculations of inclusive and isolated prompt single pho
production are available@3–5#. At the level of two-particle
inclusive final states, next-to-leading order QCD calculatio
have been done forgg production@6,7#, for g-hadron pro-
duction @8#, and for Q̄Q correlations@9#. The cross section
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for the production of two hadronic jets has been studied a
O(as

3) by several authors@10#. Constraints on the charm and
strange quark densities from data on intermediate vector
boson production are discussed in Ref.@11#.

For values of transverse momentumpT
Q of the heavy

quark significantly larger than the massmQ of the heavy
quark, the cross section for the two-particle inclusive reac
tion p1 p̄→g1Q1X may be calculated from the leading
order QCD subprocess, the quark-gluon Compton proces
g1Q→g1Q. This subprocess is of first order in the strong
coupling strengthas . The cross section is obtained as a con-
volution of the hard-scattering QCD matrix with probability
distributions that specify the initial gluon and heavy quark
constituent momentum densities in the incident hadrons,p
and p̄. At next-to-leading order in QCD, several subpro-
cesses contribute to theg1Q final state:

g1Q→g1Q1g, ~1.1a!

g1g→Q1Q̄1g, ~1.1b!

q1q̄→Q1Q̄1g, ~1.1c!

q1Q→q1Q1g, ~1.1d!

q̄1Q→q̄1Q1g, ~1.1e!

Q1Q̄→Q1Q̄1g, ~1.1f!

Q1Q→Q1Q1g. ~1.1g!

For computation of the cross section forQ̄ production, the
set of next-to-leading order subprocesses is obtained from
those of Eqs.~1.1! after replacement of the initialQ8s by
Q̄8s in Eqs. ~1.1a!, ~1.1d!, ~1.1e!, and ~1.1g!. We note that
for values ofpT

Q that are comparable to or less thanmQ there
would be no O(as) subprocess, and the proper hard-
scattering expansion would entail only the subprocesses o
Eqs. ~1.1b! and ~1.1c!. For the remainder of this paper, we
limit ourselves to charm production, and we work with the
masslessQ approximation,mc50.
2279 © 1996 The American Physical Society
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We are interested ultimately in the fully differential two-
particle inclusive cross section,EgEQds/d3pgd

3pQ , where
(E,p) represents the four-vector momentum of theg or Q.
For each subprocess listed in Eqs.~1.1!, this calculation re-
quires integration of the momentum of the unobserved fin
parton (g, Q̄,q, or q̄) and over the initial parton momentum
densities. Collinear singularities are handled analytically b
dimensional regularization and absorbed into initial-sta
parton momentum densities or final-state fragmentati
functions. To make the analytic calculation tractable, w
chose to work in terms of the transverse momentum of t
final g, pT

g , and the ratio of the heavy quark and photo
transverse momenta:

z52
pT
Q .pT

g

~pT
g!2

. ~1.2!

To warrant use of perturbation theory~and the massless
Q approximation!, we limit our considerations toz.0 and
pT

g.10 GeV. The results should be applicable quantitative
for pT

c@mc . The distribution inz from the leading order
subprocessg1Q→g1Q is peaked sharply atz51 @a
d(12z) function in the naive collinear initial parton ap-
proximation#. The next-to-leading order processes alter th
size of this sharp peak and produce a broad distributi
above and belowz51.

Contributions to hard photon production from long
distance quark to photon and gluon to photon fragmentati
processes have been emphasized theoretically@12#, param-
etrized phenomenologically in leading order@13#, and
evolved in next-to-leading order@14,15#. These terms may
account for more than half of the calculated inclusive sing
photon cross section at modest values of transverse mom
tum at the Fermilab Tevatron collider. Because of our kin
matic restrictionz.0, there will be no contribution to the
final cross section fromQ→g fragmentation, whereQ is the
observed quark or antiquark, from among the subproces
in Eqs.~1.1!. On the other hand, fragmentation of the unob
served final parton into a photon in subprocesses~1.1a!–
~1.1g! will contribute to the cross section and produce pho
tons that carrypT less than that ofpT

Q , mostly populating the
region z.1. Photons originating through fragmentation ar
likely to emerge in the neighborhood of associated hadron
An experimental isolation restriction is needed before a cle
identification can be made of the photon and a measurem
made of its momentum. Isolation reduces the size of t
observed fragmentation contribution. To represent the effe
of isolation, we should use fragmentation functions define
with a cone size. Photon isolation complicates the theoretic
interpretation of results, however, since it threatens to up
the cancellation of infrared divergences in perturbatio
theory@5#. In this paper, we calculate the contributions from
photon fragmentation at leading order only, and, except f
one illustrative figure, we neglect the isolation requiremen

After integration over the longitudinal momentum of the
heavy quark, we present our results in terms of the cro
sectionds/dpT

gdygdz. Here, yg represents the rapidity of
the g. Our desire to perform a fully analytic calculation re
stricts our ability to provide a more differential cross sectio
in this paper~i.e., a cross section also differential inyQ). In
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a later more detailed paper, we will present such results o
tained from a versatile combination of analytic and Mont
Carlo techniques@16#. In that method, selections may be
made on several variables and photon isolation restrictio
are easier to impose. An earlier theoretical paper addres
prompt photon plus associated charm production at large v
ues of transverse momentum, as we do here, but our analy
differs from that of Ref.@17#. The calculation of the photon-
plus-charm cross section in Ref.@17# is done in lowest order
while ours is done at next-to-leading order. In lowest orde
the subprocessesgg→gcc̄ and qq̄→gcc̄ contribute in the
massive case, whereascg→gc plus fragmentation processes
contribute in the massless case. In a forthcoming paper,
intend to examine the massive case in detail and to discu
comparisons with the massless case in the regions of ph
space of their respective applicability. As remarked abov
our massless approach should be appropriate and applica
in the domain in which there is effectively only one large
scale,pT

c@mc .
For the interval inpT

g of current experimental interest, 10
GeV ,pT

g,50 GeV, thegc and gg subprocesses of Eqs.
~1.1a! and ~1.1b! are the most important quantitatively at
Fermilab Tevatron energies, owing to the strength of th
gluon density. ForpT

g.70 GeV, calculations of the inclusive
yield of single photons indicate that theqq̄ subprocess be-
gins to dominate, but the cross section is small in this regio
Dominance of the perturbative subprocess initiated bygc
scattering is preserved after the next-to-leading terms are
cluded, justifying use of data fromp1 p̄→g1c1X in at-
tempts to measure the charm quark momentum density in t
nucleon. However, we show that other subprocesses acco
for about 50% of the cross section at currently accessib
values ofpT

g . The ‘‘background’’ associated with these sub
processes must be taken into account in analyses done
extract the charm density.

Our results are provided in terms of the momentum of th
charm quark. In a typical experiment@1#, the momentum of
the quark may be inferred from the momentum of promp
lepton decay products or the momentum of charm meson
such asD* ’s. Alternatively, our distributions inz or pT

c may
be convoluted with charm quark fragmentation functions, de
duced from, e.g.,e1e2 annihilation data, to provide distri-
butions for the prompt leptons orD* ’s.

In Sec. II, we present our analysis of the leading an
next-to-leading order contributions to the partonic hard
scattering cross sections. Numerical results are described
Sec. III, and a summary of our conclusions is provided i
Sec. IV. An appendix is included in which we present ou
method for performing the required three-particle final-sta
integrals inn dimensions to extract the singularities of the
two-particle inclusive hard cross section.

II. ANALYTICAL CALCULATION

We consider the two-particle inclusive reaction
A1B→g1c1X whereA andB denote incident hadrons;
pg andpc denote the four-vector momenta of the photon an
charm quark. The usual Mandelstam invariants are defined
terms of the momenta of the two incoming hadronsPA and
PB , and the momentum fractions of the initial partons,x1
andx2 , via
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54 2281ANALYTIC CALCULATION OF PROMPT PHOTON PLUS . . .
ŝ5~x1PA1x2PB!25x1x2s,

t̂5~x1PA2pg!2,

û5~x2PB2pg!2. ~2.1!

Here,As is the center-of-mass energy in the hadronic sy
tem. We define

v511
t̂

ŝ
,

w5
2û

ŝ1 t̂
. ~2.2!

A. Leading order contributions

In leading order in perturbative QCD, only one direct su
process contributes to the hard-scattering cross section,
QCD Compton processcg→gc, unlike the case for single
inclusive prompt photon production, where the annihilatio
processqq̄→gg also contributes. Since the leading orde
direct partonic subprocess has a two-body final state,
photon andc quark are produced with balancing transver
momenta, and the variablez, defined in Eq.~1.2!, is always
unity.

The leading order direct partonic cross section is

dŝ

dvdzdw
5
dŝ

dv
d~12z!

3d~12w!, ~2.3!

wheredŝ/dv is the partonic Born cross section:

dŝ

dv
~cg→gc!5

1

NC

paemaseq
2

ŝ

11~12v !2

12v
. ~2.4!

Here,aem and as are the electromagnetic and strong co
pling constants, respectively,NC53 is the number of colors,
andeq denotes the quark charge.

The full expression for the physical cross section in lea
ing order is

ds

dpT
gdygdz

52ppT
g 1

ps

3E
VW

1 dv
12v

f g
A~x1 ,M

2! f c
B~x2 ,M

2!
dŝ

dv

3d~12z!d~12w!1~c↔g!. ~2.5!

QuantitiesV andW are defined similarly tov andw, Eq.
~2.2!, but in the hadronic system;f A(x1 ,M

2) denotes the
parton density in hadronA as a function of the momentum
fraction x1 and factorization scaleM .

In addition to the lowest order direct subprocess just d
cussed,cg→gc, there are fragmentation contributions tha
are also effectively of leading order inas . In these contri-
butions the photon is produced through fragmentation o
s-
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final-state parton from any of theO(as
2) subprocesses listed

below. The fragmentation functions are essentially of ord
O(aem/as):

c1g→g1c,

g1g→c1 c̄,

c1q→c1q,

c1q̄→c1q̄,

c1c→c1c,

c1 c̄→c1 c̄,

q1q̄→c1 c̄. ~2.6!

We are interested in configurations in which the photon a
charm quark have relatively large and to-some-extent bala
ing values of transverse momentum. Therefore, in the ca
of the first, third, and fourth of the subprocesses listed abo
the photon is produced from fragmentation of theg and non-
charm quarkq, respectively. In the other cases it is produc
in the fragmentation of one of the~anti!charm quarks. The
expression we use to evaluate the fragmentation contr
tions is

ds

dpT
gdygdz

52ppT
g 1

ps

3E
12V1VW

1 dz8

z82
E
VW

1 dv
12v

f a
A~x1 ,M

2!

3 f b
B~x2 ,M

2!
dŝab→ iX

dv
Dg/ i~z8,Q

2!dS 1z2z8D .
~2.7!

In a fully consistent next-to-leading calculation, on
should calculate the subprocesses in Eqs.~2.6! to O(as

3),
since the photon fragmentation functions that are convolu
with the hard subprocess cross sections are ofO(aem/as).
For simplicity, we include them inO(as

2) only. In fact, next-
to-leading order fragmentation contributions to sing
prompt photon production have been included only once
fore @4#. We expect the next-to-leading order corrections
the fragmentation contributions to be insignificant nume
cally, especially after isolation cuts are imposed. Althou
they may not be large numerically after isolation restrictio
are imposed, theO(as

3) contributions to the fragmentation
process are still important in principle as they help to redu
the sensitivity of the cross section to variations of the fra
mentation scale@14#.

B. Next-to-leading order contributions

There are two classes of contributions in next-to-lead
order. First, there are the virtual gluon exchange correcti
to the lowest order process. Examples are shown in Fig. 1~b!.
These amplitudes interfere with the Born amplitudes a
contribute atO(aemas

2). They have been calculated twic
before@3,4#. We use the results of Ref.@4#. The virtual con-
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FIG. 1. ~a! Lowest-order Feyn-
man diagrams forg plus c-quark
production;k1 andk2 are the four-
vector momenta of the photon and
charm quark.~b! Examples of vir-
tual corrections to the lowest-
order diagrams.~c! Examples of
next-to-leading order three-body
final-state diagrams for thegc ini-
tial state.
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tributions are proportional tod(12z) and d(12w). At
next-to-leading order there are also three-body final-st
contributions, listed in Eqs.~1.1!. The matrix elements for
these are also taken from Ref.@4#, where they are calculated
for single inclusive prompt photon production.

The main task of our calculation is to integrate the thre
body matrix elements over the phase space of the unobse
particle in the final state. The situation here is different fro
the standard case of single inclusive particle production, fi
developed in Ref.@18#, since we wish to retain as much
control as possible over the kinematic variables of a seco
particle in the final state, while at the same time integrati
over enough of the phase space to ensure cancellation o
infrared and collinear divergences, inherent when massl
particles are assumed. Because our goal is to provide a f
analytic calculation, we find it necessary to integrate over t
ate

e-
rved
m
rst

nd
ng
f all
ess
ully
he

full range of rapidity of one of the observed final-state par
ticles. We choose to integrate over that of the charm quar
since the photon is usually considered the trigger particle
the experiments.

The situation here is similar to that met by Aurencheet al.
@6,8#, and we use a similar technique to perform the phas
space integrals. We give a fairly detailed outline of th
method since it is necessary to adapt it to our situation a
also because it has not been widely used. We believe o
presentation clarifies certain details which are not stressed
any of the above references.

The three-body phase space integration is done in the r
frame of the observedc ~or c̄ quark! and the third unob-
served parton. Denoting the momenta of the process
p11p2→k11k21k3 , we work in the rest frame ofk2 and
k3 , wherek1 is the momentum of the trigger photon. The
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final form of the three-particle phase space integral~see the
Appendix! is

SP
~3!5

p ŝ

8~2p!5 S 4p

ŝ
D e

v
G~122e! S 4p

ŝwv~12v !
D e

3v2e~12w!2e2Aw~12v !

~12vw!

3F12w14w~12v !z~12z!

12vw G2eE
0

p

du2sin
22e~u2!.

~2.8!

We are left to perform the final integration of the squar
matrix elements overu2 .

As in the case of single inclusive cross section calcu
tions, documented extensively elsewhere, one can use
tions among the Mandelstam variables to reduce comp
combinations of them to simple products and ratios. T
phase space integral overu2 is performed in 422e dimen-
sions, thereby exposing collinear and soft singularities
poles ine. After the three-particle phase space integrals
performed, we obtain a three-body final-state hard-scatte
cross section that we represent by the expression

ds i j
R

dvdwdzS ŝ,v,w,z, 1e2 , 1e D .
SuperscriptR indicates that this is the subprocess cross s
tion for a real three-body final-state contribution, as distin
from the contribution from the virtual gluon exchange co
tributions that we denotes i j

V . The subscriptsi j designate
one of the processes in Eqs.~1.1!. In general,s i j

R has single
and double poles ine. In accord with the factorization theo
rem of perturbative QCD, the double and some of the sin
ed

la-
rela-
lex
he

as
are
ring

ec-
ct
n-

-
gle

poles cancel between the real and virtual contributions. T
remaining single poles ine represent collinear divergence
that are subtracted into parton densities and fragmentat
functions.

In order to illustrate how the collinear singularities ar
handled we discuss a few representative examples.

~a! c1g→g1c1X: This is the QCD Compton process
plus higher order corrections. We label the momenta by

c~p1!1g~p2!→g~k1!1c~k2!1g~k3!. ~2.9!

In performing the phase space integration, we expect to
counter singularities where the gluonk3 becomes soft and/or
parallel top1 ,p2 , or k2 . Since we require that the observe
charm quark andg be in opposite hemispheres, we will no
encounter any singularity wherek1 andk2 are collinear~see
the Appendix!. In the cases where the gluon is either so
and/or parallel top1 or p2 , then z51. We expose the
z→1 singularities by expanding the integrals in powers
e, obtaining ‘‘plus’’ distributions. Details can be found in
the Appendix. There are plus distributions in the variab
z, as well as the usual ones inw that arise in the single
particle inclusive case and correspond to the gluon becom
either soft or collinear tok2 . Plus distributions inz andw
can be encountered simultaneously and must be treated c
fully in the numerical evaluation of the cross section.

Once the phase space integrals are performed and the
and collinear poles are exposed, we can add the real th
body contributions to the virtual gluon exchange terms, af
which all the double poles cancel along with some sing
poles. The remaining collinear poles must be factored in
the parton distribution and fragmentation functions. We pe
form these subtractions in the universal modified minim
subtraction (MS̄) scheme, described in detail in many place

To account for all collinear configurations allowed in th
subprocess, the counter cross section or factorization form
that must be added to our results in order to cancel the c
linear poles is
1

ŝv

dsF

dvdwdz
52

as

2pF 1
ŝv
Hcc~w,M

2!
dscg→gc

dv
~wŝ,v,e!d~12z!1

1

ŝ~12vw!
HggS 12v

12vw
,M2D dscg→gc

dv
~wŝ,vw,e!d~12z!

1
1

ŝv
H̃cc~z,M 92!

dscg→gc

dv
~ ŝ,v,e!u~12z!d~12w!G . ~2.10!
at
Hi j ~z,Q
2!52

1

ê
Pi j ~z!Fm2

Q2G e

1 f i j ~z!, ~2.11!

and

H̃ i j ~z,Q
2!52

1

ê
Pi j ~z!Fm2

Q2G e

1di j ~z!. ~2.12!
FunctionsPi j (z) are the one-loop splitting functions@19#,

f i j (z)50, anddi j (z)50 in the MS̄factorization scheme, and

m is the renormalization scale. In the MS̄scheme,
1/ê[1/e2gE1 ln4p.

In Eq. ~2.10!, we distinguish the factorization scaleM and
the quark-to-quark-plus-gluon fragmentation scaleM 9. The
last term indicates that we factor the collinear singularity th
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arises when the observed charm quarkk2 becomes parallel to
the gluon,k3 , into a fragmentation function at scaleM 92, for
the production of a charm quark. Note that this singular
occurs in the regionz<1, since the photon must balance th
momentum of the charm-gluon system. This factorization
done in the MS̄scheme, which means that as long as we
not includec-quark fragmentation contributions at next-to
leading order, withc-quark fragmentation functions evolve
in the MS̄scheme, the cross section presented here is sch
dependent.

We are free to convolute our cross section with a fra
mentation function that describes the formation of spec
ity
e
is
do
-

eme

g-
fic

charm decay products~e.g., D or D* mesons!, but we
choose not to do so in this paper.

~b! g1g→g1c1 c̄: In the gluon-gluon fusion process,
gg→gcc̄, the photon may become collinear to the unob
served final-state quark, a situation not encountered
the gc process discussed above. This singularity occurs
z5z1 where z151/(12v1vw), and, as discussed in
the Appendix, we use an expansion similar to that used
expose thez→1 singularity. Note that this singularity occurs
in the regionz>1, and thatz is exactly the reciprocal of
the usual fragmentation variable for a parton to fragment in
a particle with a fraction of its momentum 1/z. The factor-
ization formula for this process is
1

ŝv

dsF

dvdwdz
52

as

2p F 1
ŝv

Hcg~w,M
2!
dscg→gc

dv
~wŝ,v,e!d~12z!1

1

ŝ~12vw!
HcgS 12v

12vw
,M2D dsgc→gc

dv
~wŝ,vw,e!

3d~12z!1
1

ŝ~12v1vw!
Ĥg c̄ ~12v1vw,M 82!

dsgg→cc̄

dv S ŝ, vw
12v1vw

,e D d~z12z!G . ~2.13!
r

In this equation, we distinguish the factorization scaleM and
the quark to photon fragmentation scaleM 8.

~c! q1q̄→g1c1 c̄: The processqq̄→gcc̄, as well as
that of Eq.~1.1f!, has a final-state collinear singularity whe
a gluon splits into a collinearcc̄ pair, and, in addition, a
singularity when the photon is produced from fragmentat
of a final-state quark. The factorization formula for this ca
is

1

ŝv

dsF

dvdwdz
52

as

2p F 1
ŝv

H̃cg~z,M 92!
dsq q̄→gg

dv
~ ŝ,v,e!

3u~12z!1
1

ŝ~12v1vw!

3H̃g c̄~12v1vw,M 82!

3
dsq q̄→c c̄

dv S ŝ, vw
12v1vw

,e D d~z12z!G .
~2.14!

C. Physical cross section

Once all singularities are dealt with, we calculate t
physical cross section by convoluting the hard partonic cr
section with parton distribution functions. In terms of th
variables we are using, the cross section at next-to-lead
order is
n

ion
se

he
oss
e
ing

ds

dpT
gdygdz

52ppT
g 1

ps(i , j

3E
VW

1 dv
12vEVW/v

1 dw

w
f i
A~x1 ,M

2! f j
B~x2 ,M

2!

3F1v dŝ i j

dv
d~12z!d~12w!

1
as~m2!

2p
Ki j ~ ŝ,v,w,z,m

2,M2,M 82,M 92!G .
~2.15!

The first term within the square brackets is the leading orde
part, and

Ki j ~ ŝ,v,w,z,m
2,M2,M 82,M 92!

is the next-to-leading order correction term;Ki j may include
virtual gluon exchange contributions.

Taking thecg subprocess as an example, we outline how
we obtain the functionKi j ( ŝ,v,w,z,m

2,M2,M 82,M 92). The
virtual gluon exchange contributions are represented by

dscg
V

dvdwdzS ŝ,v,m2,
1

e2
,
1

e D .
They are proportional tod(12w) and d(12z). The real
three-body contributions are denoted

dscg
R

dvdwdzS ŝ,v,w,z, 1e2 , 1e D .
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Combining the three-body final-state contribution and
virtual gluon exchange contribution and adding to these
subtraction term in Eq.~2.10!, we derive a finite subproces
cross section:

Kcg~ ŝ,v,w,z,m
2,M2,M 92!5

dscg
V

dvdwdzS ŝ,v,m2,
1

e2
,
1

e D
1

dscg
R

dvdwdzS ŝ,v,w,z, 1e2 , 1e D
1

dscg
F

dvdwdzS ŝ,v,w,z, 1e ,M2,M 92D . ~2.16!

At this stage all single and double poles cancel, and we
left with a finite cross section dependent on the factorizat
scaleM and fragmentation scaleM 9. Because of the addi
tional variablez, the functionKcg is quite lengthy when
compared to that for inclusive single photon production@4#.
In schematic notation, where only thez distributions are
made explicit, we can write the hard-scattering cross sec
as

Kcg~ ŝ,v,w,z,m
2,M2,M 92!5c1~v,w!d~12z!

1c2~v,w!
u~12z!

~12z!1

1c3~v,w!
u~z21!

~z21!1
1c4~v,w!

3S ln~12z!

12z D
1

1c5~v,w,z!.

~2.17!

The functionsci(v,w) contain, in general, distributions i
(12w), and they can be expressed by

ci~v,w!5ci
1~v !d~12w!1ci

2~v !
1

~12w!1
1ci

3~v !

3S ln~12w!

12w D
1

1ci
4~v,w!. ~2.18!

Similar expressions can be written for the other subp
cesses. These will generally involve the fragmentation sc
on the photon legM 8 and additional distributions in
(z12z) and (z2z1). These are defined as normal plus d
tributions, but in the intervals@0, z1# and@z1 ,zmax#, respec-
tively. We integrate the distributions between limits oth
than these. For example, if the limits in the first case
@za ,z1#, we must make the replacement

1

~z12z!1
5

1

~z12z!za
1d~z12z!ln~z12za!, ~2.19!

where the new distribution is defined by
the
the
s

are
ion
-

tion

n

ro-
ale

is-

er
are

E
za

z1
dz

f ~z!

~z12z!za
5E

za

z1
dz

f ~z!2 f ~z1!

z12z
. ~2.20!

By expanding our integrated matrix elements as plus d
tributions in z, we are able to expose the singularities th
occur atz51 andz5z1 . This procedure ensures that thes
integrable singularities can be treated numerically. Howev
it also means that our analytic distributions inz are singular
at z51 andz5z1 . For comparison with experiment, we pro
vide predictions for thez dependence in the form of histo-
grams with finite bin widthsDz, reminiscent of experimental
resolution. As in Ref.@6#, we define

ds

dpT
gdygdz

5
1

DzEz2 Dz/2

z1 Dz/2 ds

dpT
gdygdz8

dz8. ~2.21!

For distributions inpT
g , we integrate over a specified rang

of z,

ds

dpT
gdyg 5E

za

zb ds

dpT
gdygdz

dz. ~2.22!

This completes our discussion of the calculation. Furth
details can be found in the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present and discuss explicit evaluatio
of the correlated production cross section of charm plus
prompt photon. We provide results atp̄p center-of-mass en-
ergy As5 1.8 TeV appropriate for the Collider Detector a
Fermilab ~CDF! and D0 experimental investigations under
way at Fermilab. The cross sections we evaluate are th
derived in the text: Eqs.~2.5!, ~2.7!, and~2.15!. For the elec-
tromagnetic coupling strength we useaem51/137, and we
employ a two-loop expression foras(m

2) with quark thresh-
old effects handled properly. We choose identical values f
the renormalization, factorization, and fragmentation scale
m5M5M 85M 9. In the results presented below, we var
m to examine the sensitivity of the cross section to its choic
We chooseLQCD

(4) according to the parton distribution set we
use;LQCD

(4) 50.200 for the Glu¨ck-Reya-Vogt~GRV! parton
distributions@20#. The sums run over four flavors of quarks
(u,d,c,s), all assumed massless. We do not include ab
quark contribution in our calculation.

Most of the calculations reported here are done with t
GRV parton densities@20#. We observe some differences
when we use instead the CTEQ3M densities@21#. The mag-
nitude and Bjorkenx dependence of the charm quark densit
in these two sets are similar, as shown in Fig. 2, but sho
some differences at largex, leading to a 30% difference in
the cross section atpT

g560 GeV. In these densities, the
charm quark probability is generated through perturbati
evolution, and there is no nonperturbative intrinsic char
@22# component. Neither density may be correct since the
is little direct experimental information to constrain this den
sity @11#. A goal of our analysis is to ascertain the extent t
which thegc initial state is expected to dominate the cros
section forp1 p̄→g1c1X, and, thus, the extent to which
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data from this reaction may serve to measure the ch
quark density.

The quark-to-photon fragmentation function is express
as

zDq→g~z,m2!5
aem

2p Feq2 2.2121.28z11.29z2

121.63ln~12z!
z0.049

10.002~12z!2z21.54G ln~m2/m0
2!.

~3.1!

The gluon-to-photon fragmentation function is

zDg→g~z,m2!5
aem

2p
0.0243~12z!z20.97ln~m2/m0

2!.

~3.2!

These expressions forDq→g and Dg→g , taken from Ref.
@13#, are used as a guideline for our estimates. The phys
significance of scalem0 is that the fragmentation function
vanishes for energies less thanm0 . For theu,d,s, and c
quarks, we setm05LQCD

(4) , as in Ref.@13#. We remark that
we use simple leading-order fragmentation functions in o
calculation, in contrast to the fact that we have done a ne
to-leading order MS̄calculation. It would be more consisten
and, therefore, preferable to use MS̄fragmentation functions
evolved in next-to-leading order. Our choice of leading-ord
fragmentation functions is motivated by our desire to wo
with analytic expressions. In published analyses of next
leading order fragmentation functions@14,15#, the general
formalism is presented but the fragmentation functions the
selves must be obtained through numerical evolution cod
Our primary purpose in this paper is to provide a theoreti
framework for the analysis of the correlated production
charm and prompt photon, but not necessarily to present
most up-to-date numerical predictions. Thus, we believe
leading-order fragmentation functions are adequate.

FIG. 2. Charm quark densityc(x,Q) as a function of Bjorken
x atQ510 GeV. The solid line shows the expectation of the GR
parton densities@20#, and the dotted line that of the CTEQ3M den
sities @21#.
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In several figures to follow, we show the predicted behav-
ior of the photon yield as a function ofpT

g andz, as well as
the breakdown of the total yield into contributions from the
leading-order and the various next-to-leading order pieces
The ratio z is defined in Eq.~1.2!. We choose to display
cross sections as a function of the ratioz, for fixed values of
pT

g , or as a function ofpT
g . We choose the renormalization

or fragmentation scalem5pT
g . Since both the photon and

final charm particle carry large transverse momenta, we
could perhaps equally well choosem5pT

c or some combina-
tion of the two. In selectingpT

g , we focus upon the photon as
the ‘‘trigger’’ particle whose transverse momentum is well
determined. We display them dependence of our results be-
low.

Throughout this paper, for clarity and simplicity of the
discussion, we refer consistently to charm production, e.g.
p1 p̄→g1c1X. However, the numerical values of the
cross sections shown in the figures are those for the sum o
charm and anticharm production inpp̄ scattering. In Fig. 3,
we present the photon yield as a function of the ratioz for
two choices ofpT

g . The same results are displayed in Fig. 4
as a function ofpT

g for z integrated over the interval 0.2 to
2.0. We restrictz.0.2 as otherwise the transverse momen-
tum of the charm quark could become unacceptably small. In
Fig. 3~a!, the net lowest-order contribution is shown atpT

g 5
15 GeV. The lowest-order contribution is made up of the
lowest-order direct term,cg→gc, and the fragmentation
terms discussed in Sec. II A. The direct term provides ad
function at z51 since the photon and charm quark carry
equal but opposite transverse momenta at this order. Th
parton-to-photon fragmentation contributions populate the
region z.1. In the collinear fragmentation, the photon’s
transverse momentum is opposite to that of the charm quar
but its magnitude is less. One of the striking features of Fig
3~a!, is that the net fragmentation contribution to the cross
section is quite small compared to the case of inclusive pho
ton production. At Fermilab Tevatron energies, fragmenta
tion accounts for about 50% of the inclusive yield at this
value ofpT @12,4#. ~Note that we have not yet imposed any
isolation cut on the cross section.! One reason for the small
fragmentation contribution is that fragmentation from the
cg-initiated process is strongly suppressed due to our restric
tion that the charm quark and photon be in opposite hemi
spheres (z>0). Thus, only fragmentation from the gluon leg
is included, and theg→g fragmentation function is, in gen-
eral, smaller than that forq→g.

In Figs. 3~b! and 3~c!, we show thez distribution after the
next-to-leading order contributions are included. The solid
lines show the full result in which both the lowest-order and
all next-to-leading order terms are incorporated. Comparing
the solid curve in Fig. 3~b! with that in Fig. 3~a!, we note that
the z distribution is substantially altered once the next-to-
leading order terms are included. In particular, the peak a
z 5 1 is reduced in magnitude by about a factor of 2, and the
z distribution gains significant breadth both below and above
z 5 1. The reduction in the magnitude of the peak atz51 is
attributed to the effect of theO(as

2) collinear contributions
on the initial parton legs. These collinear terms provide the
same event structure as the lowest-order direct subproces
viz., a final-state photon and charm quark with equal bu

V
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opposite transverse momenta, but their contribution is ne
tive due to ln(12z) terms from the phase space and larg
logarithms of (12zmin) and (zmax21) from the 1/(12z)1

and 1/(z21)1 distributions;zmin andzmax are the lower and

FIG. 3. Cross sectionds/dpT
gdygdz as a function ofz for

p1 p̄→g1c1X at As51.8 TeV. We setyg50. Results are pre-
sented in the form of histograms in bins of widthDz50.2. In ~a!,
for pT

g515 GeV, we show the net contribution from the lowes
order direct processgc→gc and from all the leading-order frag-
mentation processesp1p2→p3c followed by the collinear fragmen-
tation p3→gX. In ~b! and ~c!, for pT

g515 and 45 GeV,
respectively, we display the full cross section through next-t
leading order~solid line! and contributions from three importan
O(as

2) subprocesses.
a-
e

upper edges of the bins aroundz51. On the other hand,
away from collinear configurations, theO(aemas

2) subpro-
cesses, listed in Eqs.~1.1!, generate three-body final states in
which three final partons share the transverse momentu
balance. The noncollinear contributions, therefore, popula
a broad interval inz.

In addition to the complete result through next-to-leadin
order, the solid line in Figs. 3~b! and 3~c!, we display also
contributions from three of theO(as

2) terms. The sum of the
contributions from the other fourO(as

2) terms is negligible
by comparison atpT

g 5 15 GeV. The individual contributions
show the important role that theO(as

2) terms play at values
of z both below and above 1. Contrasting Figs. 3~b! and 3~c!,
we see that the peak nearz 5 1 is predicted to sharpen as
pT

g is increased, reflecting a diminishing importance of th
O(as

2) terms at larger transverse momentum.
In Fig. 4, we show the cross section as a function of th

transverse momentum of the photonpT
g . To obtain these

results, we integrate over the interval 0.2,z, 2.0. These
results show that thecg intial state dominates the cross sec
tion until pT

g approaches 100 GeV. It accounts for
60%, 55%, and 50% of the total atpT

g 5 15, 45, and 60
GeV, respectively. Thegg contribution is important at small
values ofpT

g , but it falls off more steeply withpT
g than the

cg contribution. The contribution from the valence subpro
cess,qq̄→cc̄g, is negligible at smallpT

g , but it overtakes
the contribution of thecg subprocess at sufficiently large
pT

g . Owing to the fact the valence quarks carry significantl
harder fractional momentum than the gluons and char
quarks, a major role for the valence subprocess is expected
large enoughpT

g . However, the numerical results indicate
that the hard-scattering matrix element overcomes this effe
at modest values ofpT

g , resulting in dominance of thecg
initial state. Comparison of Fig. 4 with Figs. 3~b! and 3~c!

-

o-

FIG. 4. The transverse momentum dependence
ds/dpT

gdygdz, for z integrated over the interval 0.2,z,2.0. The
upper solid line shows the sum of all subprocesses through next-
leading order. The dashed line shows the sum of theO(as) and
O(as

2) contributions from thecg initial state. TheO(as
2) contribu-

tions from thegg andcq initial states are shown as dash-dot and
dotted curves. The lower solid line shows theO(as

2) contribution
from the sum of theq̄q, c̄c, andcc initial states.
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shows significantz variation in the fraction of the total cros
section accounted for by various subprocesses.

Dependence on the renormalization or factorization sc
m is displayed in Figs. 5 and 6. Asm is increased,as de-
creases, resulting in a reduction of the hard-scattering c
sections. The parton densities also steepen asm is increased.
Both effects contribute to the typical decrease of the cr
section at fixed largepT

g asm is increased, as shown in Fig
5. Them dependence of thez distribution presented in Fig. 6
is considerably more significant. The distribution becom
more sharply peaked atz 5 1 asm is increased. As shown in
Fig. 3~a!, the leading-order direct contribution produces
sharp peak atz 5 1, whereas the next-to-leading order co
tributions broaden the distribution, as shown in Figs. 3~b!
and 3~c!. The decrease ofas asm increases diminishes th
relative importance of the next-to-leading order contrib
tions.

The functional form ofDq→g(z,m
2), Eq. ~3.1!, shows

that the fragmentation contribution increases logarithmica

FIG. 5. The renormalization or factorization scalem depen-
dence. For the sum of all contributing subprocess
ds/dpT

gdygdz, for yg50 and z integrated over the interva
0.2,z,2.0, is shown as a function ofpT

g for three values of
m/pT

g : 0.5, 1.0, and 2.

FIG. 6. The renormalization or factorization scalem dependence
of ds/dpT

gdygdz. Results are shown as a function ofz at pT
g520

GeV for three values ofm/pT
g : 0.5, 1.0, and 2.
s
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asm is increased. If the fragmentation contributions played
major role in the final answer, one would expect differe
m dependence from that shown in Fig. 6.

In Fig. 7, we present the ‘‘K factor’’ as a function of
pT

g . HereK is defined as the ratio of the complete answ
through next-to-leading order to the full leading-order a
swer ~including the leading-order fragmentation terms!. Our
results show that forz. 0.2, the inclusiveK factor is about
2 for pT

g. 15 GeV. In the inclusive case, no isolation re
quirement is imposed on the photon. To make contact w
experiment, an isolation restriction is necessary. Becau
fragmentation contributions do not play a significant role
the associated production of photon plus charm forz. 0.2,
we do not expect a great change of theK factor after isola-
tion is imposed. To estimate the impact of isolation, we u
a combination of analytic and Monte Carlo methods@16#.
We choose an isolation cone sizeR5 0.7, and energy reso-
lution parameter,e52 GeV/pT

g , as is done in the CDF ex-
periment@1#. We find that theK factor is reduced to about
1.5, in respectable agreement with experimental indicatio
@1#.

IV. CONCLUSIONS

In summary, we have computed the contributions throu
O(as

2) in perturbative QCD for inclusive associated produ
tion of a prompt photon and a charm quark at large values
transverse momentum in high energy hadron-hadron co
sions. The next-to-leading order terms alter the expected d
tribution in the ratio of the magnitude of the transverse m
menta of the charm quark and prompt photon in a
interesting and measurable fashion. The overall cross sec
increases by about a factor of 2 after the next-to-leadi
terms are included. Dominance of the perturbative subp
cess initiated bygc scattering is preserved after the next-to
leading terms are included, justifying use of data fro
p1 p̄→g1c1X in attempts to measure the charm qua
momentum density in the nucleon. However, other subp
cesses are shown to account for about 50% of the cr
section at currently accessible values ofpT

g , and the ‘‘back-
ground’’ associated with some of these subprocesses, wh

es,
l

FIG. 7. TheK factor defined in the text is shown as a functio
of pT

g for inclusive ~i.e., nonisolated! photons~solid line! and iso-
lated photons~dashed line!; yg50 and 0.2,z,2.0.
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are not initiated by charm quark scattering, such as in Eq
~1.1b! and ~1.1c!, must be taken into account in analyse
done to extract the charm density.
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APPENDIX: THREE-BODY CROSS SECTIONS

In this appendix we present a fairly detailed description
the techniques for performing the three-body phase-space
tegrations inn dimensions. We label the momenta for th
general process byp11p2→k11k21k3 , wherep1 and p2
are the incoming partons, andk1 and k2 always label the
observed photon and charm quark, respectively. We integr
over the kinematic variables ofk3 .

The calculation is performed in the rest frame ofk2 and
k3 . In this frame of referencek2W1k3W50:

si j5~ki1kj !
2,

t i5~p12pi !
2,

ui5~p22pi !
2, ~A1!

wherei , j51,2,3, andt15 t̂ andu15û, as defined in Sec. II.
In terms of the momenta, the variablez is

z52
k1
T
•k2

T

uk1
Tu2

5m•k2 , ~A2!

wherem is a vector that depends on the choice of axes. W
choose our axes inn dimensions such that

m5A ŝ

t̂ û
~sinhx,0, . . . ,0,coshx!. ~A3!

The axes are fixed and cannot be changed to simplify a
phase-space integrals we may encounter because, unlike
case of single inclusive particle production, we will not in
tegrate over the full range of angles. The momenta of t
particles can be parametrized in this frame as
s.
s

r
no
te-
y
y

of
in-
e

ate

e

ny
the
-
he

p15
ŝv

2As23
~1,0, . . . ,0,sinc8,cosc8!,

p25
ŝ~12vw!

2As23
~1,0, . . . ,0,sinc,cosc!,

k15
ŝ~12v1vw!

2As23
~1,0, . . . ,0,sinc9,cosc9!,

k25
As23
2

~1,0, . . . ,0,sinu1cosu2 ,cosu1!,

k35
As23
2

~1,0, . . . ,0,2sinu1cosu2 ,2cosu1!. ~A4!

Quantitiesv andw are defined in Sec. II.
From the definition ofm, Eq. ~A3!, we can derive the

relationships

tanhx5Aw~12v !

12vw
,

cosc5cosc85tanhx,

sinc52sinc852A 12w

12vw
,

cosc95
11v2vw
12v1vw

tanhx,

sinc952
12v2vw
12v1vw

A 12w

12vw
. ~A5!

The constrained three-particle phase space is expressed

SP
~3!5E dnk1

~2p!n21

dnk2
~2p!n21

dnk3
~2p!n21 ~2p!ndn~p11p22k1

2k22k3!d
1~k1

2!d1~k2
2!d1~k3

2!dS v212
t̂

ŝ
D

3dS w1
û

ŝ1 t̂
D d~z2m•k2!. ~A6!

After some of the integrals are done with the aid of thed
functions, the element of phase space reduces inn5422e
dimensions to
SP
~3!5

p ŝ

8~2p!5 S 4p

ŝ
D e

v
G~122e! S 4p

ŝwv~12v !
D e

v2e~12w!2e2Aw~12v !

~12vw!

3F12w14w~12v !z~12z!

12vw G2eE
0

p

du2sin
22e~u2!. ~A7!
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In particular, we integrated over angleu1 using the function
d(z2m•k2) and the relation

z5 1
2 ~12cosu1cothx!, ~A8!

that can be derived from it. We are left with the task o
integrating the squared matrix elements over angleu2 .

Using relations among the Mandelstam invariants, a
partial fractioning, we reduce functions involvingu2 to only
a few types for all subprocesses of interest. We denote
general invariant by

Ti5Ti0~a i1b icosu2!, ~A9!

wherea i andb i are functions ofc, c8, andc9, and hence
of v andw; Ti0 is also a function of the latter@see Eqs.~A4!
and ~A5!#. The combinations we must consider are

1

Ti
,
Tj
n

Ti
, and

1

TiTj
,

where, i , j ,n51,2,3. These, in turn, are all expressible
terms of two general integrals, but the forms of the functio
a and b determine the final result, such as its singulari
structure.

The two general integrals are

I 0@Ti #5I 05E
0

p

sin22eu2du25p22e
G@122e#

G2@12e#
,

~A10!

and

I 1@Ti #5Ti0E
0

psin22eu2du2
Ti

5E
0

p sin22eu2du2
~a1bcosu2!

5
p

Aa22b2 F 4a2

a22b2G e G@122e#

G2@12e#

32F1S 122e,2e;12e;
b2

a2D . ~A11!

In terms ofI 0 , the following powers and combinations o
propagators yield

Ti
0⇒I 0 ,

Ti⇒Ti0~a i I 0!,

Ti
2⇒Ti0

2 S a i
21

b i
2

2~12e!
D I 0 ,

TiTj⇒Ti0Tj0S a ia j1
b ib j

2~12e! D I 0 ,
Ti
3⇒Ti0

3 S a i
31

3a ib i
2

2~12e!
D I 0 . ~A12!

In terms ofI 1 , we obtain
f

nd

the

in
ns
ty

f

1

Ti
⇒ 1

Ti0
I 1@Ti #,

Tj

Ti
⇒ Tj0

Ti0
S a jb i2a ib j

b i
I 1@Ti #1p

b j

b i
D ,

Tj
2

Ti
⇒

Tj0
2

Ti0
S Fa jb i2a ib j

b i
G2I 1@Ti #1pF2a jb jb i2a ib j

2

b i
2 G D ,

Tj
3

Ti
⇒

Tj0
3

Ti0
S Fa jb i2a ib j

b i
G3I 1@Ti #

1pF6a jb jb i~a jb i2b ja i !1b j
3~b i

212a i
2!

2b i
3 G D ,

1

TiTj
⇒ 1

Ti0Tj0

1

a jb i2a ib j
~b i I 1@Ti #2b j I 1@Tj # !.

~A13!

In order to demonstrate how the different propagators ar
handled in the calculation, we consider a few typical ex-
amples. We examine single propagators first, then doubl
propagators.

1. Single propagators

~ i!
1

u2

In this casea512cosc cosu1, andb52sinc sinu1.

a22b25~cosu12cosc!254z2tanh2x. ~A14!

There is a singularity atz50, but the physical condition that
the photon and charm quark be in opposite hemisphere
guaranteesz.0. The integral is, therefore, finite and can be
treated in four dimensions. The result is

E
0

p sin22eu2du2
u2

5
p

2u20

1

tanhx

1

z
. ~A15!

The result fort2 is similar. In the evaluation ofu2 in terms of
angles,u20 is the overall factor that does not depend on
angles.

~ ii !
1

s12

Here,a512cosc9cosu1, andb52sinc9sinu1.

a22b254S z1
v~12w!

12v1vwD 2tanh2x. ~A16!

A singularity occurs only for negativez when the photon and
charm quark are exactly collinear and in the same hemi
sphere. We can treat this integral in four dimensions for the
same physical reason as above, with the result
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E
0

p sin22eu2du2
s12

5
p

2s120

1

tanhx

1

S z1
v~12w!

12v1vwD .
~A17!

~ iii !
1

u3
In this casea511cosc cosu1, andb5sinc sinu1.

a22b254~12z!2tanh2x. ~A18!

There is a singularity whenz51, corresponding tok3 and
p2 being collinear. This pole must be exposed and factored
into the parton distributions. The integral is
E
0

p sin22eu2du2
u3

5
p

2u30tanhx

1

u12zu112e F11tanh2x~122z!

tanhx G2e G~122e!

G2~12e! 2
F1S 122e,2e;12e;

b2

a2D . ~A19!
n

In order to expose the poles in this integral, we use the p
distributions

E
1

zmax f ~z!

~z21!1
dz5E

1

zmaxf ~z!2 f ~1!

~z21!
dz, ~A20!

and

E
0

1 f ~z!

~12z!1
dz5E

0

1 f ~z!2 f ~1!

~12z!
dz, ~A21!

where, from Eq.~A8!, zmax51/2(11cothx). We can conve-
niently define two functions:

h~z!5
11tanh2x~122z!

2tanhx
~A22!

and

g~z!5
12w14zw~12v !~12z!

12vw
. ~A23!

Functiong(z) can be recognized as part of the phase-sp
factor in Eq. ~A7!. It is easy to show from Eq.~A8! that
h(zmax)52zmin .

Considering first the interval 1<z<zmax, if we ignore the
phase-space factors which do not depend onz, we can inte-
grate by parts to prove the identity

E
0

zmax
dz f~z!

u~z21!

~z21!112e S h2~z!

g~z! D e

5E
0

zmax
dz f~z!F u~z21!

~z21!112e S h2~z!

g~z! D eG
1

1 f ~1!F2
1

2e
1 ln~zmax21!2 1

2 lnS h2~1!

g2~1! D G . ~A24!

We have expanded in powers ofe and discarded all terms
which vanish in the limite→0.

We can now use the simple identity
lus

ace

u~z21!F S h2~z!

g~z! D e 1

~z21!112eG
1

5u~z21!
1

~z21!1
1O~e!, ~A25!

while noting thatzmax2152zmin , to obtain the relation

u~z21!F S h2~z!

g~z! D e 1

~z21!112eG
5u~z21!

1

~z21!1

1d~z21!F2
1

2e
1 ln~2zmin!2 1

2 lnS h2~1!

g2~1! D G . ~A26!

In order to derive a similar identity for the interval
0,z,1, we proceed in a similar way by first deriving

E
0

1

dz f~z!
u~12z!

~12z!112e S h2~z!

g~z! D e

5E
0

1

dz f~z!F u~12z!

~12z!112e S h2~z!

g~z! D eG
1

1 f ~1!F2
1

2e
2 1

2 lnS h2~1!

g2~1! D G . ~A27!

Further manipulations similar to those presented above the
yield

u~12z!F S h2~z!

g~z! D e 1

~12z!112eG
5u~12z!

1

~12z!1

1d~12z!F2
1

2e
2
1

2
lnS h2~1!

g~1! D G . ~A28!

Combining Eqs.~A26! and~A28!, after some further ma-
nipulations, we finally obtain the identity



2292 54EDMOND L. BERGER AND L. E. GORDON
1

u12zu112e S h2~z!

g~z! D5
u~12z!

~12z!1
1

u~z21!

~z21!1

1d~12z!S 2
1

e
2 lnzmaxD .

~A29!

The final form for Eq.~A19! is then

g~z!2eE
0

p sin22eu2du2
u3

5
p

2u30tanhx

G~122e!

G2~12e!

3Fd~12z!S 2
1

e
2 lnzmaxD

1
u~12z!

~12z!1
1

u~z21!

~z21!1
G .

~A30!

The result for 1/t3 is similar.

~ iv!
1

s13

This propagator occurs when there is a quarkk3 in the
final state that may become collinear with the photonk1 ,
such as in Eqs.~1.1b!–~1.1g!. Here,a511cosc9cosu1, and
b5sinc9sinu1.

a22b254S z2
1

12v1vwD 2tanh2x. ~A31!

There is a singularity atz51/(12v1vw)5z1 . Using a pro-
cedure similar to that described above to obtain Eq.~A30!,
but with (12z) and (z21) replaced by (z12z) and
(z2z1), and defining plus distributions in the intervals
@0, z1# and @z1 ,zmax#, we cast the result in the form

g~z!2eE
0

p sin22eu2du2
s13

5
p

2s130tanhx

G~122e!

G2~12e! H d~z2z1!

3F2
1

e
2 lnS 12

zmin
z1

D G
1

u~z12z!

~z12z!1
1

u~z2z1!

~z2z1!1
J .

~A32!

In this outline, we have often omitted a discussion of th
phase-space factors present in Eq.~A7! and included them
only when they are important for the expansions performe
In principle, all phase-space factors should be included an
for example,ve would be expanded as

12e ln~v !1
e2

2
ln2~v !

and combined with the final results of~i! to ~iv! above, be-
fore e is set to zero. Factors such as 2vtanhx have also been
omitted in the discussion but are included in our final result
e

d.
d,

s.

2. Double propagators

We examine a few important examples of double propa-
gators. Some have been calculated previously@6,8#, but there
are cases not encountered in earlier calculations that we
stress here. We include all phase-space factors that are
needed to expose the singularities in the expansions ine.

~ i!
1

t3u3

This double pole propagator was encountered in Ref.@6#.
The result is

g~z!2e~12w!2eE
0

p sin22eu2du2
t3u3

5
p

t30u30

G~122e!

G2~12e!

1

2tanhx H ~12vw!S u~12z!

@D1~12z!#1

1
u~z21!

@D1~z21!#1
D 1d~12z!

3F2
12vw
12w

lnS tanhx1cothx

2 D
1vS 2

1

e
2 ln~12vw!12ln~12w! D G

2~12v !F S 1e 1 ln~12v ! D 1

~12w!1
22S ln~12w!

~12w! D
1

1
1

12w
lnS 12vw

12v D G1d~12z!d~12w!

3S 1

2e2
1

1

2e
ln~12v !1 1

4 ln
2~12v ! D ~12v ! J ,

~A33!

whereD1512w12(12z)w(12v).

~ ii !
1

t3u2

Applying the last result in Eq.~A13!, we get a term
1/(122z) multiplying the integrals for the propagators
$b(u2)I @u2#1b(t3)I @ t3#%, along with other factors. This
term is singular atz51/2, but the singularity has no physical
origin and must be removed before numerical evaluation of
the cross section. The integral of 1/u2 yields a term 1/z @Eq.
~A15!# while that of t3 yields plus distributions in (12z)
and (z21) @Eq. ~A30!#. To remove the false singularity, we
make the replacement

1

z
→

u~12z!

z
1

u~z21!

z
.
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Theseu functions can be combined with the plus distribu
tions from the second term in$b(u2)I @u2#1b(t3)I @ t3#% to
produce

g~z!2eE
0

p sin22eu2du2
t3u2

5
p

4t30u20tanh
3x

G~122e!

G2~12e!

3Fd~12z!S 2
1

e
2 lnzmaxD

1
u~12z!

z~12z!1
1u~z21!S 1

~z21!1

1
112z

~122z!zD G . ~A34!

The term 1/(122z) is harmless when multiplied by
u(z21).

~ iii !
1

t3s23

This case involves singularities whenz→1 andw→1. It
is discussed in Ref.@8#. The result is

g~z!2e~12w!2eE
0

p sin22eu2du2
t3s23

~A35!

5
p

ŝvt30

G~122e!

G2~12e!

1

2tanhx S 2
1

e
d~12w!H 2

1

e
d~12z!

1u~12z!F 1

~12z!1
2e

ln~z!

12z
2eS ln~12z!

12z D
1

G J
-
1

1

~12w!1
S 2

1

e
d~12z!1

u~12z!

~12z!1
D

1
1

12w S u~z21!

~z21!1
2d~12z!ln~zmax! D

1S ln~12w!

12w D
1

D .
A similar result is obtained for 1/(s23u3) and for 1/(s23s13)
except that, in the latter case, the singularities occur
w→1 andz→z1 .

Finally, sinces235 ŝv(12w), we make the point that in
other cases when the propagator 1/s23 occurs in the denomi-
nator of the matrix elements, it must be combined with t
phase-space factor (12w)2e and expanded via

~12w!212e52
1

e
d~12w!1

1

~12w!1
1eS ln~12w!

12w D
1

1O~e!. ~A36!

The results of this expansion are combined with the pha
space factor in Eq.~A7!. To ensure in every case that w
retain all finite terms and obtain the correct result in the lim
whenk2 andk3 become collinear, we always make the fu
replacement
g~z!2e~12w!2eE
0

p sin22eu2du2
s23

5
22ep

ŝv

G~122e!

G2~12e! F ~12z!S 2
1

e
d~12w!H 2

1

e
d~12z!1u~12z!F 1

~12z!1
2e

ln~z!

12z

2eS ln~12z!

12z D
1

G J D 1
1

~12w!1
S 2

1

e
d~12z!1

u~12z!

~12z!1
D 1d~12z!S ln~12w!

12w D
1

G .
~A37!
er
c-
Most of these terms will vanish since, for example, (12z)
will usually multiply d(12z) and (12w) will multiply
d(12w). In a few special cases, as when there is
Pqq-splitting function in the collinear limit, as is the cas
a
e

when the final-state gluon becomes parallel to thec quark in
thecg-initiated process, the full expansion is needed in ord
to expose the singularity. This singularity may then be fa
tored into thec-quark fragmentation function.
.
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