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Analytic calculation of prompt photon plus associated heavy flavor
at next-to-leading order in QCD
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Contributions through second ord@(aﬁ), in perturbative quantum chromodynamics are calculated ana-
Iytically for inclusive associated production of a prompt photon and a charm quark at large values of transverse
momentum in high energy hadron-hadron collisions. Seven partonic subprocesses contributecit.OWer
find important corrections to the lowest ord€¥(«;), subprocese€g— yc. We demonstrate to what extent
data from p+p—y+c+X may serve to measure the charm quark density in the nucleon.
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I. INTRODUCTION for the production of two hadronic jets has been studied at
O(a2) by several authorl0]. Constraints on the charm and
Because photons couple in pointlike fashion to quarksstrange quark densities from data on intermediate vector-
observation, among the final-state particles in a high energhoson production are discussed in Réfl].
collision, of photons carrying large values of transverse mo- For values of transverse momentup? of the heavy
mentum provides an incisive probe of the short distance hadjuark significantly larger than the masg, of the heavy
ron dynamics of the collision. This fact explains the substanquark, the cross section for the two-particle inclusive reac-
tial theoretical and experimental interest shown in studies ofion p+p— y+Q+X may be calculated from the leading
the cross section for production of photons at large angles ifrder QCD subprocess, the quark-gluon Compton process,
hadron-hadron and lepton-hadron scattering and in electro+ Q— v+ Q. This subprocess is of first order in the strong
positron annihilation processes. At stake are precise tests §Pupling strengthys. The cross section is obtained as a con-
the theory of perturbative quantum chromodynan@€D) vplu';ion_of the hard-sc_attering QCD matrix with probability
and use of data to determine properties of the relativistidistributions that specify the initial gluon and heavy quark
proton such as the momentum distribution of its constituenfonstituent momentum densities in the incident hadrens,
gluons and quarks. Discovery of the charm quark and, late@"d P- At next-to-leading order in QCD, several subpro-
of the bottom quark stimulated interest in the dynamics ofc€SS€S contribute to the+ Q final state:
their relatively copious production in high energy interac-
tions of hadrons. Recent experimental advances now offer 9+Q—g+Q+y, (.13
the possibility of studies of the associated production of a

photon (y) carrying large transverse momentum along with 9+9—Q+Q+y, (1.1b
a heavy quark @) whose transverse momentum balances a — -

substantial portion of that of the photft]. In this paper, we q+a—Q+Q+y, (119
report a fully analytic next-to-leading order QCD calculation

of the two-patrticle inclusive distribution for prompt photon q+Q—0q+Q+y, (1.1d
plus associated heavy flavor production at large values of — —

transverse momentum, with specification of the momentum 4+Q—q+Q+y, (118
variables of both the final prompt photon and the final heavy _ _

quark. These results should facilitate further experimental Q+Q—Q+Q+y, (1.1
tests of correlations inherent in the QCD matrix elements and

provide a means for measuring the charm quark density in Q+Q—Q+Q+y. (1.19
the nucleon.

Although a qualitative description may be obtained fromFor computation of the cross section fQr production, the
lowest-order perturbation theory, more precise predictions o$et of next-to-leading order subprocesses is obtained from
the momentum distribution for the inclusive production of athose of Eqgs(1.1) after replacement of the initiaD's by
heavy quark(or antiquark require perturbative calculations Q’s in Egs.(1.13, (1.1d, (1.1e, and(1.1g. We note that
that extend to higher ord¢R]. Likewise, perturbative QCD for values ofp? that are comparable to or less thag there
calculations of inclusive and isolated prompt single photonyould be no O(ag) subprocess, and the proper hard-
production are availablg3—5]. At the level of two-particle  scattering expansion would entail only the subprocesses of
inclusive final states, next-to-leading order QCD calculationg=gs. (1.1 and (1.19. For the remainder of this paper, we
have been done foyy production[6,7], for y-hadron pro- limit ourselves to charm production, and we work with the
duction[8], and forQQ correlations[9]. The cross section massles®) approximationm.=0.
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We are interested ultimately in the fully differential two- a later more detailed paper, we will present such results ob-
particle inclusive cross sectioEYEQda/d?’pyd?'pQ, where tained from a versatile combination of analytic and Monte
(E,p) represents the four-vector momentum of ther Q. Carlo techniqueg16]. In that method, selections may be
For each subprocess listed in E@s.1), this calculation re- made on several variables and photon isolation restrictions
quires integration of the momentum of the unobserved finahre easier to impose. An earlier theoretical paper addresses
parton @, Q,q, orq) and over the initial parton momentum Prompt photon plus associated charm production at large val-
densities. Collinear singularities are handled analytically byues of transverse momentum, as we do here, but our analysis
dimensional regularization and absorbed into initial-statediffers from that of Ref[17]. The calculation of the photon-
parton momentum densities or final-state fragmentatiolus-charm cross section in R¢17] is done in lowest order
functions. To make the analytic calculation tractable, wewhile ours is done at next-to-leading order. In lowest order,
chose to work in terms of the transverse momentum of théhe subprocessegg— ycc and qg— ycc contribute in the

final y, pY, and the ratio of the heavy quark and photonmassive case, whereag— yc plus fragmentation processes
transverse momenta: contribute in the massless case. In a forthcoming paper, we

intend to examine the massive case in detail and to discuss
p? pY comparisons.with the massles_s case in the regions of phase
=——. (1.2 space of their respective applicability. As remarked above,
(pP?) our massless approach should be appropriate and applicable
in the domain in which there is effectively only one large
To warrant use of perturbation theotgnd the massless scale,p$>m..
Q approximation, we limit our considerations ta>0 and For the interval inpY of current experimental interest, 10
p{>10 GeV. The results should be applicable quantitativelygey <p?<50 GeV, thegc and gg subprocesses of Egs.
for pt>m.. The distribution inz from the leading order (1.13 and (1.1b are the most important quantitatively at
subprocessg+Q— y+Q is peaked sharply az=1 [a  Fermilab Tevatron energies, owing to the strength of the
6(1-2) function in the naive collinear initial parton ap- gluon density. Fop?>70 GeV, calculations of the inclusive
proximatior]. The next-to-leading order processes alter theyie|d of single photons indicate that tlgy subprocess be-
size of this sharp peak and produce a broad distributiogjins to dominate, but the cross section is small in this region.
above and below=1. Dominance of the perturbative subprocess initiatedgloy
Contributions to hard photon production from long- scattering is preserved after the next-to-leading terms are in-
distance quark to photon and gluon to photon fragmentatiogjyded, justifying use of data from+p— y+c+X in at-
processes have been emphasized theoreti€ally param-  tempts to measure the charm quark momentum density in the
etrized phenomenologically in leading ord¢i3], and pycleon. However, we show that other subprocesses account
evolved in next-to-leading orddd4,15. These terms may for about 50% of the cross section at currently accessible
account for more than half of the calculated inclusive single,5)es ofp?. The “background” associated with these sub-
photon cross section at modest values of transverse MOMefracesses must be taken into account in analyses done to
tum at the Fermilab Tevatron collider. Because of our kin€-gyiract the charm density.
matic restrictionz>0, there will be no contribution to the Our results are provided in terms of the momentum of the
final cross section fro@— y fragmentation, wher® isthe  -harm quark. In a typical experimefi], the momentum of
observed quark or antiquark, from among the subprocessgge quark may be inferred from the momentum of prompt
in Egs.(1.1). On the other hand, fragmentation of the unob-jenton decay products or the momentum of charm mesons,
served final parton into a photon in subprocestedd— g cp aed* s, Alternatively, our distributions iz or p may
(1.1g will contribute to the cross section and produce pho-y,q ¢y oluted with charm quark fragmentation functions, de-
tons that carmpr less than that b, mostly populating the e from, e.g.e"e~ annihilation data, to provide distri-
regionz>1. Photons originating through fragmentation arep tions for the prompt leptons @*’s.
likely to emerge in the neighborhood of associated hadrons. |, gec. Il, we present our analysis of the leading and
An experimental isolation restriction is needed beforeadeaﬂext-to-leading order contributions to the partonic hard-
identification can be made of the photon and a measuremeQtattering cross sections. Numerical results are described in
made of its momentum. Isolation reduces the size of th&ec |1 and a summary of our conclusions is provided in
observed fragmentation contribution. To represent the effectgec v, An appendix is included in which we present our
of isolation, we should use fragmentation functions definedy,athod for performing the required three-particle final-state

with a cone size. Photon isolation complicates the theoreticahegrals inn dimensions to extract the singularities of the
interpretation of results, however, since it threatens to uDS%vo—particIe inclusive hard cross section.

the cancellation of infrared divergences in perturbation
theory[5]. In this paper, we calculate the contributions from
photon fragmentation at leading order only, and, except for
one illustrative figure, we neglect the isolation requirements. We consider the two-particle inclusive reaction
After integration over the longitudinal momentum of the A+B— y+c+ X where A and B denote incident hadrons;
heavy quark, we present our results in terms of the crosp” andp® denote the four-vector momenta of the photon and
sectiondo/dp¥dy”dz. Here,y” represents the rapidity of charm quark. The usual Mandelstam invariants are defined in
the y. Our desire to perform a fully analytic calculation re- terms of the momenta of the two incoming hadréhsand
stricts our ability to provide a more differential cross sectionPg, and the momentum fractions of the initial partoxs,
in this paper(i.e., a cross section also differentialy?). In  andx,, via

1. ANALYTICAL CALCULATION
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$=(X,Pa+X,Pg)2=X1X,S, final-state parton from any of th@(«2) subprocesses listed
below. The fragmentation functions are essentially of order
t=(x,Pa— py)z, O(aem/ as):
0= (x,Pg—p")2. 2.1) ctg—g+c,
Here, \s is the center-of-mass energy in the hadronic sys- gtg—ctc,
tem. We define C+gocta,
b 14 t c+g—c+q,
é,

c+c—c+c,
Y (2.2 ct+c—c+c,
S+t o

gq+g—c+c. (2.6

A. Leading order conributions We are interested in configurations in which the photon and

In leading order in perturbative QCD, only one direct sub-charm quark have relatively large and to-some-extent balanc-
process contributes to the hard-scattering cross section, thieg values of transverse momentum. Therefore, in the cases
QCD Compton processg— yc, unlike the case for single of the first, third, and fourth of the subprocesses listed above,
inclusive prompt photon production, where the annihilationthe photon is produced from fragmentation of thand non-
processqg— yg also contributes. Since the leading ordercharm quarlq, respectively. In the other cases it is produced
direct partonic subprocess has a two-body final state, thi# the fragmentation of one of th@ntjcharm quarks. The
photon andc quark are produced with balancing transverseexpression we use to evaluate the fragmentation contribu-
momenta, and the variabie defined in Eq(1.2), is always tions is
unity.

The leading order direct partonic cross section is do =2mpl—
. . dpldy’dz Tas
do do 5(1-2)
Tdadw d., o+~ 2Z 1 dz' (1 dv
dvdzdw dv xf —ZJ ——fh(x1,M?)
1-v+vwZ' < Jywl—v
X 8(1—w), (2.3
~ ab—iX 1
wheredo/dv is the partonic Born cross section: ><fE(XzMZ)TDyn(Z’,QZW(E—Z')-
o 1 Waemaseg 1+(1-v)? 2.7)
T (Cg—yC)= o —— —. (29 : : :
dv Nc S 1-v In a fully consistent next-to-leading calculation, one

_ should calculate the subprocesses in HGsH) to O(a?),
Here, aem and as are the electromagnetic and strong cou-since the photon fragmentation functions that are convoluted
pling constants, respectivelic=3 is the number of colors, with the hard subprocess cross sections ar®@fey/ as).

ande, denotes the quark charge. o For simplicity, we include them i®(«?2) only. In fact, next-
~ The full expression for the physical cross section in lead+to-leading order fragmentation contributions to single
ing order is prompt photon production have been included only once be-

fore [4]. We expect the next-to-leading order corrections to
the fragmentation contributions to be insignificant numeri-
cally, especially after isolation cuts are imposed. Although
R they may not be large numerically after isolation restrictions

« J'l d_va(X M?2)£8(x Mz)d_“ are imposed, th@(ag) contributions to the fragmentation
wl-v 7 ¢t Tdy process are still important in principle as they help to reduce
the sensitivity of the cross section to variations of the frag-

mentation scal¢l14].

do

e — A
dpidyrdz 2P s

X 8(1—2)(1—w)+(cQ). (2.5

QuantitiesV and W are defined similarly ta andw, Eq.
(2.2), but in the hadronic systenfA(x;,M?) denotes the
parton density in hadroA as a function of the momentum There are two classes of contributions in next-to-leading
fraction x; and factorization scal#. order. First, there are the virtual gluon exchange corrections
In addition to the lowest order direct subprocess just disto the lowest order process. Examples are shown in k. 1
cussedcg— yc, there are fragmentation contributions that These amplitudes interfere with the Born amplitudes and
are also effectively of leading order im;. In these contri- contribute atO(aemaﬁ). They have been calculated twice
butions the photon is produced through fragmentation of defore[3,4]. We use the results of Rg#]. The virtual con-

B. Next-to-leading order contributions
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n ky

D2

FIG. 1. (a) Lowest-order Feyn-
man diagrams fory plus c-quark
production;k,; andk, are the four-
vector momenta of the photon and
charm quark(b) Examples of vir-
tual corrections to the lowest-
order diagrams(c) Examples of

(b) next-to-leading order three-body
final-state diagrams for thgc ini-
. k tial state.

tributions are proportional ta5(1—z) and §(1—w). At  full range of rapidity of one of the observed final-state par-
next-to-leading order there are also three-body final-statécles. We choose to integrate over that of the charm quark,
contributions, listed in Eqs(1.1). The matrix elements for since the photon is usually considered the trigger particle in
these are also taken from R@d], where they are calculated the experiments.

for single inclusive prompt photon production. The situation here is similar to that met by Aurenetal.

The main task of our calculation is to integrate the three{6,8], and we use a similar technique to perform the phase
body matrix elements over the phase space of the unobservegace integrals. We give a fairly detailed outline of the
particle in the final state. The situation here is different frommethod since it is necessary to adapt it to our situation and
the standard case of single inclusive particle production, firsalso because it has not been widely used. We believe our
developed in Ref[18], since we wish to retain as much presentation clarifies certain details which are not stressed in
control as possible over the kinematic variables of a secondny of the above references.
particle in the final state, while at the same time integrating The three-body phase space integration is done in the rest
over enough of the phase space to ensure cancellation of diame of the observed (or ¢ quark and the third unob-
infrared and collinear divergences, inherent when massleserved parton. Denoting the momenta of the process by
particles are assumed. Because our goal is to provide a fully; + p,—k; +k,+ ks, we work in the rest frame df, and
analytic calculation, we find it necessary to integrate over thé,, wherek; is the momentum of the trigger photon. The
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final form of the three-particle phase space integsek the poles cancel between the real and virtual contributions. The
Appendiy is remaining single poles ir represent collinear divergences
that are subtracted into parton densities and fragmentation

a5 [am\© v . € functions. _ _ _ N

s®= 5(_) ( ) In order to illustrate how the collinear singularities are
§) I'(1=2¢) | swo(1-v) handled we discuss a few representative examples.

(@ c+g— y+c+X: This is the QCD Compton process

\/m plus higher order corrections. We label the momenta by
X —€ _ — €
v f(1—w) 2 —(1—vw)

c(p1) +9(p2)— y(ky)+c(ky) +9(ks). (2.9

—€ rr In performing the phase space integration, we expect to en-
f dé,sin”2¢(6,). counter singularities where the gluég becomes soft and/or
0 parallel top,,p,, ork,. Since we require that the observed
(2.8 charm quark and/ be in opposite hemispheres, we will not
We are left to perform the final integration of the squared€ncounter any singularity whekg andk; are collinear(see
matrix elements oved, . the Appendiy. In the cases where the gluon is either soft
As in the case of single inclusive cross section calcula@nd/or parallel top; or p,, then z=1. We expose the
tions, documented extensively elsewhere, one can use relg=—1 singularities by expanding the integrals in powers of
tions among the Mandelstam variables to reduce compleg: obtaining “plus™ distributions. Details can be found in
combinations of them to simple products and ratios. Thehe Appendix. There are plus distributions in the variable
phase space integra' OVGE is performed in 4 2¢ dimen- Z, as well as the usual ones i that arise in the S|ng|e.
sions, thereby exposing collinear and soft singularities agarticle inclusive case and correspond to the gluon becoming
poles ine. After the three-particle phase space integrals ar&ither soft or collinear td,. Plus distributions iz andw
performed, we obtain a three-body final-state hard-scattering@n be encountered simultaneously and must be treated care-

Ccross section that we represent by the expression U”y in the numerical evaluation of the cross section.
Once the phase space integrals are performed and the soft

and collinear poles are exposed, we can add the real three-
daf} N 11 body contributions to the virtual gluon exchange terms, after
dodwdz| SV Wz 2. which all the double poles cancel along with some single
poles. The remaining collinear poles must be factored into
SuperscripR indicates that this is the subprocess cross secthe parton distribution and fragmentation functions. We per-
tion for a real three-body final-state contribution, as distinctform these subtractions in the universal modified minimal
from the contribution from the virtual gluon exchange con-syptraction (M$ scheme, described in detail in many places.
tributions that we denotej . The subscriptsj designate To account for all collinear configurations allowed in the
one of the processes in Ed&.1). In general,crff has single  subprocess, the counter cross section or factorization formula
and double poles i. In accord with the factorization theo- that must be added to our results in order to cancel the col-
rem of perturbative QCD, the double and some of the singldinear poles is

[1—W+4W(1—v)2(1—z)
X
1-vw

1 dof s 1H M2 dogc9— e
s dodwdz  2m| g WM,

1-v dg®9—r¢
2 (WS, oW, €)8(1—2)

A 1
(Ws,v,6)5(1_2)+§(1—vw)"99(1—UW’M dv

Cg— yC

+iﬁcc(z,M"z)d—(é,v,e)a(l—z)a(l—w) . (2.10
Sv v

N

1 € FunctionsP;j;(z) are the one-loop splitting functior4.9],
Hij(2,Q%) =~ ZPjj(2) 2 +1i(2), (21D f,(2)=0, andd;;(z) =0 in the MSfactorization scheme, and

¢ ) p is the renormalization scale. In the MScheme,
and 1l/e=1/e— ye+In4.

. . " In Eq.lizt.l()), widilstingrjish tfhe factorizte_ation :;aa;eigd

~ e guark-to-quark-plus-gluon fragmentation scilé. The
H;j(2.Q%) =~ EP”(Z) = +dij(2). 212 jast ?erm indigates tﬁat w?a factor tge collinear singularity that
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arises when the observed charm guaskecomes parallel to charm decay product¢e.g., D or D* mesong but we
the gluonks, into a fragmentation function at scaW’?, for ~ choose not to do so in this paper.

the production of a charm quark. Note that this singularity () g+g—y+c+c: In the gluon-gluon fusion process,
occurs in the regioz=<1, since the photon must balance the 99— ¥¢¢, the photon may become collinear to the unob-

momentum of the charm-gluon system. This factorization i€ved final-state quark, a situation not encountered in
done in the M&scheme, which means that as long as we d the gc process discussed above. This singularity occurs at

t includ K f tati tributi ¢ oyt Oz=zl where z;=1/(1-v+vw), and, as discussed in
not Includec-quark fragmentation contributions at Next-lo- ype Appendix, we use an expansion similar to that used to

leading order, withc-quark fragmentation functions evolved expose the— 1 singularity. Note that this singularity occurs
in the MSscheme, the cross section presented here is schenie the regionz=1, and thatz is exactly the reciprocal of
dependent. the usual fragmentation variable for a parton to fragment into

We are free to convolute our cross section with a frag-a particle with a fraction of its momentumzl/The factor-
mentation function that describes the formation of specifiazation formula for this process is

1 dof o as| 1 H M2 dg®9—r S(1—7)4 H 1-v ,|dadc7e
S dvdwdz 2|, oo Mgy R T gy | T MY gy (e
X 8(1-2)+ Aot omn 3 T oW 5 2.1
R TR R el 213
|
In this equation, we distinguish the factorization sddleand do 1
the quark to photon fragmentation scal€. WZZWP%_Z
i S 2= prdy’dz ST
(¢) q+q—y+c+c: The procesgjg— ycc, as well as
that of Eq.(1.1f), has a final-state collinear singularity when 1 dv (1 dw_, 21 ¢B )
a | I H H P H H HY X _f-(Xl,M )f-(Xz,M )
gluon splits into a collineacc pair, and, in addition, a wwl=vJvwe W ! i

singularity when the photon is produced from fragmentation

of a final-state quark. The factorization formula for this case o'l

is X ;Wﬁ(l—z)é(l—w)
as(ﬂz) ~
_ +——K;;(5,0,W,z,u® , M2 M'2,M"?) |
1 dof o oas| 1 5 e dg¥9—79 2m
& dvdwdz 2m |5 (el BMT) g (Swe) (2.19
6(1—2)+ The first term within the square brackets is the leading order
S(1—v+ovw) part, and

5 Kij(8,0,w,z,u?,M? M2, M"?)
XH ztl1-v+ovw,M'?) _ _ _ _
is the next-to-leading order correction terkqy; may include
virtual gluon exchange contributions.
— Taking thecg subprocess as an example, we outline how

qgq—c >
do (g, vw ,6) 8(z,-2)|. we obtain the functiorKij(s,v,w,z,,uz,Mz,M '2M"?). The
dv 1-v+tovw virtual gluon exchange contributions are represented by
(2.149
\Y
docg o, 221
C. Physical cross section dodwdz\ >V 2 el

Once all singularities are dealt with, we calculate theThey are proportional ta%(1—w) and §(1—z). The real
physical cross section by convoluting the hard partonic crosthree-body contributions are denoted
section with parton distribution functions. In terms of the
. . . . R
variables we are using, the cross section at next-to-leading dogg | . 11
order is dudwdz S.v,W.Z,?,; .
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Combining the three-body final-state contribution and the 7 f(2) 2z f(2)—f(zy)

virtual gluon exchange contribution and adding to these the f d W:f dZ—Z (2.20
subtraction term in Eq2.10, we derive a finite subprocess % bz
cross section:

Zy Z1—

By expanding our integrated matrix elements as plus dis-

4oV 11 tributions inz, we are able to expose the singularities that

Koo(30.W.2, 12 M2 M72) = Ocg (%,v,,uz,—,—> occur atz=_1 andz_=_ z,. This procedure ensures that these

€9 dvdwdz €€ integrable singularities can be treated numerically. However,
it also means that our analytic distributionszrare singular

R
docg (g v W.Z 1 E) atz=1 andz=z,. For comparison with experiment, we pro-
dodwdz| ™7 €2 e vide predictions for the dependence in the form of histo-

grams with finite bin width@\z, reminiscent of experimental

F
i dogg So.w.z 1 M2 M"2 (2.16 resolution. As in Ref[6], we define
dvde 1 L 1 L 1 1 . .
do 1 (z+Az2 do
At this stage all single and double poles cancel, and we are dp.IYddez: EJZ, Az2 dp¥dy?dZ’ dz’.  (2.2]

left with a finite cross section dependent on the factorization
scaleM and fragmentation scalél”. Because of the addi- For distributions inp?, we integrate over a specified range
tional variablez, the functionK.q is quite lengthy when ¢ z,
compared to that for inclusive single photon productidh

In schematic notation, where only the distributions are

made explicit, we can write the hard-scattering cross section
as

do _jzb do q 22
dpidy” ~ J,, dpldy’dz" (2.22
Koo(8.0.W.2, 12 M2M"2) = 1 (0.W) 5(1—2) This completes our discussion of the calculation. Further

cg\ > U, W, & K VL —“lv, details can be found in the Appendix.
0(1-2)

+Co(v,W) (1-2), IIl. NUMERICAL RESULTS AND DISCUSSION

0(z—1) In this section we present and discuss explicit evaluations
+C3(v,W) ——=5—+C4(v,W)  of the correlated production cross section of charm plus a
(z=1), . —
prompt photon. We provide results gp center-of-mass en-
ergy Vs= 1.8 TeV appropriate for the Collider Detector at
+Cs(v,W,2). Fermilab(CDF) and DO experimental investigations under-
way at Fermilab. The cross sections we evaluate are those
(2.17) derived in the text: Eqg2.5), (2.7), and(2.15. For the elec-
tromagnetic coupling strength we usg,,=1/137, and we
The functionsc;(v,w) contain, in general, distributions in employ a two-loop expression fary(x?) with quark thresh-
(1—w), and they can be expressed by old effects handled properly. We choose identical values for
the renormalization, factorization, and fragmentation scales,
u=M=M'"=M". In the results presented below, we vary
u to examine the sensitivity of the cross section to its choice.
We choose/\g%D according to the parton distribution set we

(In(l—z)
X\ 15—

+

C‘(U'W):Cil(”)5(1_W)+Ciz(v)WJrcis(v)

In(1—w) , use; A§5dp=0.200 for the Glek-Reya-Vogt(GRV) parton
X\ | Feiww. (2.18  distributions[20]. The sums run over four flavors of quarks
+ (u,d,c,s), all assumed massless. We do not includé a

quark contribution in our calculation.

Similar expressions can be written for the other subpro- Most of the calculations reported here are done with the
cesses. These will generally involve the fragmentation scalGRV parton densitie§20]. We observe some differences
on the photon legM’ and additional distributions in when we use instead the CTEQ3M densifi2g]. The mag-
(z;—2) and (—z;). These are defined as normal plus dis-nitude and Bjorkerx dependence of the charm quark density
tributions, but in the intervalg0, z;] and[z,;,z,,,], respec- in these two sets are similar, as shown in Fig. 2, but show
tively. We integrate the distributions between limits othersome differences at large leading to a 30% difference in
than these. For example, if the limits in the first case arehe cross section ap?=60 GeV. In these densities, the

[Za,2;], we must make the replacement charm quark probability is generated through perturbative
evolution, and there is no nonperturbative intrinsic charm
1 1 [22] component. Neither density may be correct since there

+8(z,—2)In(z;—2,), (2.19 s little direct experimental information to constrain this den-
sity [11]. A goal of our analysis is to ascertain the extent to
which thegc initial state is expected to dominate the cross

where the new distribution is defined by section forp+p— y+c+X, and, thus, the extent to which

(z1-2): (21-2),,
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In several figures to follow, we show the predicted behav-
ior of the photon yield as a function @ff andz, as well as
1 the breakdown of the total yield into contributions from the
- leading-order and the various next-to-leading order pieces.
The ratioz is defined in Eq.(1.2). We choose to display
cross sections as a function of the ratjcfor fixed values of

g R p¥, or as a function opY. We choose the renormalization

S [ ] or fragmentation scale.=p}. Since both the photon and
04 ’ - CTEQ3M ] final charm particle carry large transverse momenta, we

[ Q=10 QeV ] could perhaps equally well chooge= p$ or some combina-

0z - ] tion of the two. In selecting?, we focus upon the photon as

[ the “trigger” particle whose transverse momentum is well

N R T B determined. We display the dependence of our results be-

% 0.2 04 06 08 1 low.
x Throughout this paper, for clarity and simplicity of the

discussion, we refer consistently to charm production, e.g.,
FIG. 2. Charm quark density(x,Q) as a function of Bjorken p+p— y+c+X. However, the numerical values of the
x atQ=10 GeV. The solid line shows the expectation of the GRV ¢ross sections shown in the figures are those for the sum of
pa_rton densitie§20], and the dotted line that of the CTEQ3M den- «harm and anticharm production ip scattering. In Fig. 3,
sities[21]. we present the photon yield as a function of the ratitor
) ) two choices ofpy. The same results are displayed in Fig. 4
data from Fh's reaction may serve to measure the Cha“Hs a function ofp¥ for z integrated over the interval 0.2 to
quark density. . L .0. We restricz>0.2 as otherwise the transverse momen-
The quark-to-photon fragmentation function is expresse(fum of the charm quark could become unacceptably small. In
as Fig. 3(@), the net lowest-order contribution is shownpdt =
15 GeV. The lowest-order contribution is made up of the

— 2
2,_ dem 221" 1.28+12%° ) lowest-order direct termgg— yc, and the fragmentation
zZDy_ (Z,1%) 5 z s ) . .
2m 1-1.63In1-2) terms discussed in Sec. Il A. The direct term provides a
function atz=1 since the photon and charm quark carry
+0.0021—2)%z 1% |n(M2/MS)- equal but opposite transverse momenta at this order. The
parton-to-photon fragmentation contributions populate the

(3.1)  region z>1. In the collinear fragmentation, the photon’s
transverse momentum is opposite to that of the charm quark
but its magnitude is less. One of the striking features of Fig.
3(a), is that the net fragmentation contribution to the cross

o section is quite small compared to the case of inclusive pho-

zDgﬂy(z,,uz): 2—emO.02431—2)2’0-97In(,u2/,u,g)_ ton production. At Fermilab Tevatron energies, fragmenta-
m tion accounts for about 50% of the inclusive yield at this
32 vale of pr [12,4]. (Note that we have not yet imposed any

. isolation cut on the cross sectipi©One reason for the small

These expressions fdD,_., and Dy, taken from Ref.  fagmentation contribution is that fragmentation from the

[13], are used as a guideline for our estimates. The physicaly initiated process is strongly suppressed due to our restric-

S|gn|f|cance of scal.quo is that the fragmentation function o that the charm quark and photon be in opposite hemi-

vanishes for energies less thany. For theu,d,s, andc  gpheres£=0). Thus, only fragmentation from the gluon leg

quarks, we sefuo=A5lp, as in Ref[13]. We remark that s included, and thg— y fragmentation function is, in gen-

we use simple leading-order fragmentation functions in oulgral, smaller than that fay— y.

calculation, in contrast to the fact that we have done a next- | Figs. 3b) and 3c), we show the distribution after the

to-leading order M&alculation. It would be more consistent next-to-leading order contributions are included. The solid

and, therefore, preferable to uﬁﬁgmentation functions lines show the full result in which both the lowest-order and
evolved in next-to-leading order. Our choice of leading-order@ll next-to-leading order terms are incorporated. Comparing
fragmentation functions is motivated by our desire to workthe solid curve in Fig. @) with that in Fig. 3a), we note that
with analytic expressions. In published analyses of next-tothe z distribution is substantially altered once the next-to-
leading order fragmentation functiori44,15, the general leading order terms are included. In particular, the peak at
formalism is presented but the fragmentation functions themz = 1 is reduced in magnitude by about a factor of 2, and the
selves must be obtained through numerical evolution codeg. distribution gains significant breadth both below and above

Our primary purpose in this paper is to provide a theoreticaz = 1. The reduction in the magnitude of the peakzatl is

framework for the analysis of the correlated production ofattributed to the effect of th®(«2) collinear contributions

charm and prompt photon, but not necessarily to present then the initial parton legs. These collinear terms provide the
most up-to-date numerical predictions. Thus, we believe ousame event structure as the lowest-order direct subprocess,
leading-order fragmentation functions are adequate. viz., a final-state photon and charm quark with equal but

The gluon-to-photon fragmentation function is
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FIG. 3. Cross sectiomo/dpfdy?’dz as a function ofz for
p+p—y+c+X at Js=1.8 TeV. We sety”=0. Results are pre-
sented in the form of histograms in bins of widitz=0.2. In (a),
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da/dpldy(pb/GeV)
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FIG. 4. The transverse momentum dependence of
do/dpidy”dz, for z integrated over the interval 0:2<2.0. The
upper solid line shows the sum of all subprocesses through next-to-
leading order. The dashed line shows the sum ofGte) and
O(a?) contributions from theg initial state. TheO(«2) contribu-
tions from thegg and cq initial states are shown as dash-dot and
dotted curves. The lower solid line shows t@éag) contribution
from the sum of theyq, cc, andcc initial states.

upper edges of the bins arourd=1. On the other hand,
away from collinear configurations, th@(aema?2) subpro-
cesses, listed in Egél.1), generate three-body final states in
which three final partons share the transverse momentum
balance. The noncollinear contributions, therefore, populate
a broad interval irz.

In addition to the complete result through next-to-leading
order, the solid line in Figs.(8) and 3c), we display also
contributions from three of th@(a?2) terms. The sum of the
contributions from the other foud(a?) terms is negligible
by comparison gp} = 15 GeV. The individual contributions
show the important role that tt@(ai) terms play at values
of z both below and above 1. Contrasting Fig&)3and 3c¢),
we see that the peak near= 1 is predicted to sharpen as
pY is increased, reflecting a diminishing importance of the
O(ai) terms at larger transverse momentum.

In Fig. 4, we show the cross section as a function of the
transverse momentum of the photpd. To obtain these
results, we integrate over the interval 6Z< 2.0. These
results show that theg intial state dominates the cross sec-
tion until p¥ approaches 100 GeV. It accounts for
60%, 55%, and 50% of the total af = 15, 45, and 60
GeV, respectively. Thgg contribution is important at small

for p7=15 GeV, we show the net contribution from the lowest- values ofpf, but it falls off more steeply wittp{ than the
order direct procesgc— yc and from all the leading-order frag- Cg contribution. The contribution from the valence subpro-
mentation processgs p,— pac followed by the collinear fragmen-  cess,qq—ccy, is negligible at smalpY, but it overtakes

tation pz—yX. In (b) and (c), for p¥=15 and 45 GeV,

the contribution of thecg subprocess at sufficiently large

respectively, we display the full cross section through next-to-p>  Owing to the fact the valence quarks carry significantly
leading order(solid line) and contributions from three important harder fractional momentum than the gluons and charm

O(a?) subprocesses.

quarks, a major role for the valence subprocess is expected at

opposite transverse momenta, but their contribution is negd@rge enoughpt. However, the numerical results indicate
tive due to In(+2) terms from the phase space and largethat the hard-scattering matrix element overcomes this effect

logarithms of (-2 and @ma— 1) from the 1/(+2),
and 1/¢—1), distributions;z,,, andz,, are the lower and

at modest values op}, resulting in dominance of theg
initial state. Comparison of Fig. 4 with Figs(8 and 3c)
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FIG. 5. The renormalization or factorization scale depen- FIG. 7. TheK factor defined in the text is shown as a function

dence. For the sum of aI'I contributing subprocessesof pX for inclusive (i.e., nonisolated photons(solid line) and iso-
do/dp{dy’dz, for y”=0 and z integrated over the interval |5ted photongdashed ling y?=0 and 0.2 z<2.0.
0.2<z<2.0, is shown as a function gb} for three values of

ulpY: 0.5, 1.0, and 2. asu is increased. If the fragmentation contributions played a

major role in the final answer, one would expect different
p dependence from that shown in Fig. 6.

In Fig. 7, we present the K factor” as a function of
'f)%. HereK is defined as the ratio of the complete answer
through next-to-leading order to the full leading-order an-
Sﬁmer(including the leading-order fragmentation te)mSur
results show that fozr> 0.2, the inclusiveK factor is about
2 for p¥> 15 GeV. In the inclusive case, no isolation re-
quirement is imposed on the photon. To make contact with
experiment, an isolation restriction is necessary. Because
%ragmentation contributions do not play a significant role in
the associated production of photon plus charmzfer 0.2,
we do not expect a great change of dactor after isola-
tion is imposed. To estimate the impact of isolation, we use
a combination of analytic and Monte Carlo methdds$].

We choose an isolation cone siRe= 0.7, and energy reso-
lution parametere=2 GeV/pY, as is done in the CDF ex-

shows significant variation in the fraction of the total cross
section accounted for by various subprocesses.
Dependence on the renormalization or factorization scal
w is displayed in Figs. 5 and 6. Ag is increasedg de-
creases, resulting in a reduction of the hard-scattering cro
sections. The parton densities also steepen &sincreased.
Both effects contribute to the typical decrease of the cros
section at fixed larg@p?¥ asu is increased, as shown in Fig.
5. Theu dependence of thedistribution presented in Fig. 6
is considerably more significant. The distribution become
more sharply peaked at= 1 asu is increased. As shown in
Fig. 3@, the leading-order direct contribution produces a
sharp peak at = 1, whereas the next-to-leading order con-
tributions broaden the distribution, as shown in Figé&)3
and 3c). The decrease ak¢ as u increases diminishes the
relative importance of the next-to-leading order contribu-

tions. periment[1]. We find that theK factor is reduced to about

i 2
The functional f_orm OfDSHV.(Z”“f ). Ea. 3.D), S.hOW.S 1.5, in respectable agreement with experimental indications
that the fragmentation contribution increases Iogarlthm|cally[l]

RO~ 1 IV. CONCLUSIONS

FrAm =02 u=p3

Do . In summary, we have computed the contributions through
5o [PF TR0 CGeV  moows05ph O(a?) in perturbative QCD for inclusive associated produc-

- . tion of a prompt photon and a charm quark at large values of
transverse momentum in high energy hadron-hadron colli-
sions. The next-to-leading order terms alter the expected dis-
tribution in the ratio of the magnitude of the transverse mo-
menta of the charm quark and prompt photon in an
interesting and measurable fashion. The overall cross section
increases by about a factor of 2 after the next-to-leading
terms are included. Dominance of the perturbative subpro-
cess initiated bygc scattering is preserved after the next-to-
leading terms are included, justifying use of data from
p+p—y+c+X in attempts to measure the charm quark
momentum density in the nucleon. However, other subpro-

FIG. 6. The renormalization or factorization scal@lependence  C€sses are shown to account for about 50% of the cross
of do/dpXdy”dz. Results are shown as a functionoft p?=20  section at currently accessible valuespdf, and the “back-
GeV for three values of/p¥: 0.5, 1.0, and 2. ground” associated with some of these subprocesses, which

do/dpidydz (pb/GeV)
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are not initiated by charm quark scattering, such as in Egs. a

s
(1.1b and (1.19, must be taken into account in analyses p1= 0 (1,0,...,0,sin}’,cos)’),
done to extract the charm density. 2NS23
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APPENDIX: THREE-BODY CROSS SECTIONS
In this appendix we present a fairly detailed description of k3=7(1,0, .. .,0,—sind;co9,, —coshy). (Ad)

the techniques for performing the three-body phase-space in-

tegrations inn dimensions. We label the momenta for the Quantitiesv andw are defined in Sec. Il.

general process bg;+ p,—k;+k,+ ks, wherep; andp, From the definition ofm, Eq. (A3), we can derive the
are the incoming partons, arld andk, always label the relationships

observed photon and charm quark, respectively. We integrate

over the kinematic variables ;. tanhy = fw(l-v)
The calculation is performed in the rest framekgfand B 1-vw’

ks. In this frame of referencE;Jr IZZ,:O:
cosy=cos)’ =tanky,

Sij:(kﬁki)z, iy iy’ 1-w
sing = —siny’ = — ,
ti=(p1—pi)?, 1-vw
1+v—vw
ui=(p2—p? (A1) no
| I cos) 1—v+thanh¥'
wherei,j=1,2,3, and,;=t andu,=0, as defined in Sec. II.
In terms of the momenta, the varialdds sing/ = — 1-v—vw [1—-w A5)
1-v+ow V1—ovw
ki-ks
Z=— W =m-Ks, (A2) The constrained three-particle phase space is expressed as
1

. d%,  d%,  d's o
wherem is a vector that depends on the choice of axes. WeSp :f 2 T (2m) (Zw)nfl(ZTF) "(prt+p2—ka
choose our axes in dimensions such that

t
3 —kz—k3>5+<k§>5+<k%>5*<k§>5(v—1—:
m= F(sinrp(,o, ...,0coshy). (A3) S
u
a
The axes are fixed and cannot be changed to simplify any X 6| w 3+1 8(z=m-ky). (AB)

phase-space integrals we may encounter because, unlike the
case of single inclusive particle production, we will not in- After some of the integrals are done with the aid of the
tegrate over the full range of angles. The momenta of théunctions, the element of phase space reducas=d—2e

particles can be parametrized in this frame as dimensions to
<@ 75 [4m\° v A1 < (1-w)-<2 fw(l-v)
— _ v € —W €
Po82m)’| 5 ) T(1-26¢)\ swu(1-v) (1—vw)

1-w+4w(l-v)z(1-2)
1-vw

f " 0,Sin"2¢( 6,). (A7)
0
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In particular, we integrated over anghg using the function
8(z—m-Kk,) and the relation
z= 3 (1—cosd,cothy), (A8)

that can be derived from it. We are left with the task of
integrating the squared matrix elements over arggle

Using relations among the Mandelstam invariants, and Tj

partial fractioning, we reduce functions involvirgy to only
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1
fi-l—_loh[-ri],
Tj TjO ajBl |:8] :8]
T_izT_io< B, '1[””/3.)
Tho ([ iBi— iy 2a; B~ o5}
T =>T—i0( Bi LT+ B ’

a few types for all subprocesses of interest. We denote the

general invariant by

Ti=Tio(a;i+ Bicosd,), (A9)

where«; and B; are functions of, ', and#”, and hence
of v andw; T is also a function of the lattdsee Eqs(A4)
and (A5)]. The combinations we must consider are

T 1

and T_I_j,

where,i,j,n=1,2,3. These, in turn, are all expressible in

T Tof[aibimaib]”
T, T Bi

6“1'181':3i(aj/3i_ﬁjai)+,3j3(,8i2+ 2a?)
" 257

11[Ti]

I

1 1
= (Bil1[Ti]= Bil1[T;]).

TiTj TIOTJO a]ﬂl

aiBj
(A13)

In order to demonstrate how the different propagators are

terms of two general integrals, but the forms of the functionshandled in the calculation, we consider a few typical ex-
a and B determine the final result, such as its singularityamples. We examine single propagators first, then double

structure.
The two general integrals are

T, 5 L [1—2¢€]
IO[Ti]:IOZ 0Slr'l 92(2“92:772 m,
(A10)
and
7sin 2€6,d6, (7sin %€6,d 0,
1[T] Tlof ) f
T o (a+ Bcod,)
_om 40° 1T[1-2€]
Ja?—p2la’= %] T 1-¢]
2
XoFy| 5 —e—el-e 7). (A11)

In terms ofl, the following powers and combinations of
propagators yield

Ti°:>IO,
Ti=Tio(ailo),

2

T’=T2| al+ s— 1= 6)

BiBj )
—E) IO!

TT:>T|0T10(C¥C¥]+2(1
n

3a; B!
2(1-¢)

T=T3| o+

(A12)

In terms ofl;, we obtain

propagators.

1. Single propagators
1
(g
In this casea=1—cosycos;, and 8= —siny sinb; .

a’— B2=(cod, —cosp)’=47%tanity.  (Al4)
There is a singularity at= 0, but the physical condition that
the photon and charm quark be in opposite hemispheres
guaranteeg>0. The integral is, therefore, finite and can be
treated in four dimensions. The result is

™ Sin_2€02d 02

Jo u;

The result fort, is similar. In the evaluation af, in terms of
angles,u,, is the overall factor that does not depend on
angles.

o 1
" 2uytanhy z°

(A15)

(II)—

S12

Here,a=1-cos)/'cosf;, and 8= —siny/'sinb;.

2

w) tanify.

vt+ovw

v(l—

- (A16)

a2—32=4(2+

A singularity occurs only for negativewhen the photon and
charm quark are exactly collinear and in the same hemi-
sphere. We can treat this integral in four dimensions for the
same physical reason as above, with the result



factor in Eq.(A7). It is easy to show from Eq(A8) that
h(Zmax) = — Zmin-

Considering first the intervaltz<z,,,,, if we ignore the
phase-space factors which do not depend,owe can inte-
grate by parts to prove the identity

Zmax 0(2_ 1) hz(z)) €
J’o dz“”(z—l)“f(g(z)

[ f(z—1) h%z))f
_jo dz“”[(z—l)“*(g(z)

h?(1)

+f(1) 920

—i+ln(zmax— 1)- %In( } (A24)

2€

We have expanded in powers efand discarded all terms

which vanish in the limite— 0.
We can now use the simple identity
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7 sin”2€0,d 6, T 1 1 In this casea= 1+ cosy cosd;, and B8=siny sing;.
fo S12 - 2sgytanhy v(l-w) |
1-otow a®— B2=4(1-2)%tanity. (A18)
(A17)
1 There is a singularity whem=1, corresponding tds; and
(i) — p, being collinear. This pole must be exposed and factored
U3z into the parton distributions. The integral is
|
™ sin~2€9,d 0 1 1+tantfy(1—22)]%¢T'(1-2¢ 1 2
f = . T+ 2e X ) (2 )2F1 __6,_6;1_6;/3_2 - (A19)
0 Us 2uggtanhy |1—2] tanhy I%(1—e) 2 a
|
In order to expose the poles in this integral, we use the plus “hZ(z)) € 1
LT 0(z—1
distributions (z—1) 02| =DTF
Zmax  f(2) fzmaxf(Z)— f(1) 1
dz= ———F——dz, A20 =0(z—
and while noting thatz,,,,— 1= — z,in, t0 Obtain the relation
2 3
1 f(2) 1f(z)—f(1) (h (2) 1
— 0(z—1 P
fo(1_2)+dz J;) (1—2) dZ, (A21) ( ) g(Z) (Z_l)l+2
1
where, from Eq(A8), zna.= 1/2(1+ cothy). We can conve- =0(z— 1)@
niently define two functions: -
1 L [h*(D)
A ~ 1+tanh")((1—22) 2 +5(Z— 1) — Z+In(—zmin)— 3 In gzm . (A26)
(2)= Ztanty (A22)
In order to derive a similar identity for the interval
and 0<z<1, we proceed in a similar way by first deriving
_ _ _ 1 0(1—z) [(h%(2)\¢
1-w+4zW1—v)(1-2) f
6(2)= — o mey | O TrE )
1 0(1—z) [(h%(z)\¢
Functiong(z) can be recognized as part of the phase-space = fo dzf(z) (1-272%( g(2)
n

+1(1)

2
n (1)) . (A27)

Further manipulations similar to those presented above then
yield

h2(z))f 1
9(z) ] (1-2)***

i

:t9(1—z)(1_z)+

1 (hz(l))
+5(1—Z) —z—e—zln m (A28)

Combining Eqs(A26) and(A28), after some further ma-
nipulations, we finally obtain the identity
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1 h?(z) 0(1—z) 6(z—1) 2. Double propagators
[1-2z]*"%¢\ 920 ] (1-2). (z-1). We examine a few important examples of double propa-

1
+ 5(1—2)( - Z—Inzmax).

(A29)
The final form for Eq.(A19) is then
_sfw Sin72502d02 _ T F(l_ZE)
g(Z) 0 Us B 2U3otanh)( 1"'2(1_ 6)
X 5(1—2)(—;—Inzmax)
6(1-2) 6(z—-1)
(1-2), (z=1))
(A30)

The result for 1t); is similar.

(iv) -
iv) —

S13

This propagator occurs when there is a qukgkin the
final state that may become collinear with the photgn
such as in Eq9.1.1b—(1.19. Here,a= 1+ cos//'cosd;, and
B=siny/'sing; .

2

az—,B2=4(Z— tanify. (A31)

1-v+ovw

There is a singularity at=1/(1—v +vw)=2,. Using a pro-
cedure similar to that described above to obtain &g0),
but with (1-2z) and (z—1) replaced by %;,—2z) and

(z—z;), and defining plus distributions in the intervals

[0, z;] and[z;,Zyax], We cast the result in the form

_Efw Sin72602d02 _ w F(1_2€) s
92 0 S13  2spadanhy T4(1—e) (z-2)

_ E—In(l— Zmin)
€ Zl

X

0(z,—2)
(z1—2)4

0(z—z,) }
(z=29)4 )
(A32)

gators. Some have been calculated previol&#§], but there

are cases not encountered in earlier calculations that we
stress here. We include all phase-space factors that are

needed to expose the singularities in the expansiors in

1
(l)@

This double pole propagator was encountered in R&f.
The result is

™ Sin_zeazd 02

Q(Z)fe(l—W)fefo

taus

7 I'(1-2¢) 1 0(1-2)
Coizo T2(1— ) 2tanrx[(1_"w)([Dl<1—z>]+

+0(Z—_1) +6(1—
[Dy(z—1)]+ (=2

1—-vw [tanhy+ cothy

T Tow 2
1
+v —;—In(l—vw)+2|n(1_W)”
1 1 In(1—w)

—(1-v) Z‘l‘ln(l_v)) (l—W)+_2( (1-w) )+

1 1-vw
+1—wm( 1o ||FomPmw

1 1
X Zz+z|n(1_v)+%Inz(l—v))(l—v)J'

(A33)

whereD;=1-w+2(1-2)w(1-v).

1
ko

Applying the last result in Eq.(Al13), we get a term

In this outline, we have often omitted a discussion of the1/(1—2z) multiplying the integrals for the propagators
phase-space factors present in E47) and included them {(u,)I[u,]+ B(ts)I[ts]}, along with other factors. This
only when they are important for the expansions performedierm is singular ar=1/2, but the singularity has no physical
In principle, all phase-space factors should be included andyrigin and must be removed before numerical evaluation of

for examplep € would be expanded as

2
1—eln(v)+ Elnz(v)

and combined with the final results @j to (iv) above, be-

fore € is set to zero. Factors such astanhy have also been

the cross section. The integral olu}/yields a term 17 [Eq.
(A15)] while that oft; yields plus distributions in (% 2z)
and —1) [Eq. (A30)]. To remove the false singularity, we
make the replacement

1 6(1-2 N 0(z—1)

——

omitted in the discussion but are included in our final results. z Z z
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These# functions can be combined with the plus distribu- 1 0(1-2)
tions from the second term if8(u,)I[u,]+ B(ts)I[t5]} to + a=w. |~ 25(1—2)4' i=2.
produce
. o 1 [6(z—-1
_ [ sin 2¢0,d6, T I'(1—-2e) R g_g(l_z)m(zmax)
9(2) = 7 1-wi(z=1).
0 t3U2 4t30U20tanh3X r (l_E)
1 N In(1—w)
X|8(1—=2)| — ——InZpax 1-w '
€ +
6(1—2)
—+6(z—1) T, ; i
z(1-2), (z—1), A similar result is obtained for 1863u3) and for 1/6,3S13)
except that, in the latter case, the singularities occur at
. 1+2z (A34) W—landz—z,.
(1-22)z) |’ Finally, sinces,3=5v(1—w), we make the point that in

. o other cases when the propagatas,3bccurs in the denomi-
The term 1/(1-2z) is harmless when multiplied by pator of the matrix elements, it must be combined with the
0(z—1). phase-space factor (dw) ~ € and expanded via

1
(i ) ——

3803

1 1 In(1—w)
. . . ... _ —1-e_ _ — _
This case involves singularities wher-1 andw— 1. It (1-w) col—w)+ a=w. + E( T—w )+

is discussed in Ref8]. The result is

T Qi —2€
9(2)‘5(1—w)‘ff sin ~0,d9, (A35)
0 t3S23 +0(e). (A36)

_wm I(1-2¢) 1 (

1 1
Sty TA1-e) 2taniy - —5(1—W){ —2dl1-2) The results of this expansion are combined with the phase-

€
space factor in Eq(A7). To ensure in every case that we

1 In(z) In(1-2) retain all finite terms and obtain the correct result in the limit
+0(1-2)| €T~ — whenk, andks; become collinear, we always make the full
(1-2), 1-z 1-z
+ replacement
1 _efw sin™2€6,d 6, 3 2%¢r I'(1-2€) 1 15 1 15 1=+l In(z)
9(z)” “(1—w) . ™ =%, TAi-o (1-2) . (1—w) ; (1-2)+6(1—2) 12, 1z

1-z

In(1-2)
_6( ) (1-2), 1-w

1 1 6(1—2z) In(1—w)
) ])er( —;5(1—z)+—) M(l—z)(—)+ .

(A37)

Most of these terms will vanish since, for example,~(24) when the final-state gluon becomes parallel todtgark in

will usually multiply §(1—2z) and (1—w) will multiply thecg-initiated process, the full expansion is needed in order
8(1-w). In a few special cases, as when there is ao expose the singularity. This singularity may then be fac-
P4qsplitting function in the collinear limit, as is the case tored into thec-quark fragmentation function.
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