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Higher-Order QCD Corrections in Prompt Photon Production
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We exhibit a method for simultaneously treating recoil and threshold corrections in single-photon
inclusive cross sections, working within the formalism of collinear factorization. This approach conserves
both the energy and transverse momentum of resummed radiation. At moderate pT , we find the potential
for substantial enhancements from higher-order perturbative and power-law nonperturbative corrections.

PACS numbers: 12.38.Bx, 13.85.Qk
Collinear factorization for short distance, inclusive cross
sections is an important tool of particle physics. Next-to-
leading order (NLO) corrections in the strong coupling as

are known for a wide, and still growing, set of reactions.
NLO cross sections, however, are not uniformly successful
in describing hard-scattering data. This has suggested the
0031-9007�00�84(19)�4296(4)$15.00
necessity of examining yet higher orders in as. Among
the widely discussed examples is prompt, or direct, photon
production [1,2].

In this Letter, we describe a new approach for studying
higher-order corrections in the context of collinear factor-
ization for the prompt photon cross section,
p3
T

dsAB!gX�x2
T �

dpT
�

X
ab

Z
dxa fa�A�xa, m�

Z
dxb fb�B�xb, m�p3

T

dŝab!gX�x̂2
T , m�

dpT
, (1)
where dŝab!gX�dpT is the hard-scattering function at
fixed pT . Hadronic and partonic scaling variables are x2

T �
4p2

T�S and x̂2
T � 4p2

T�ŝ, respectively, with ŝ � xaxbS the
partonic center-of-mass (c.m.) energy squared. As ŝ ap-
proaches its minimum value at x̂2

T � 1, the phase space
available for gluon bremsstrahlung vanishes, which results
in large corrections to dŝ�dpT at all orders. Threshold
resummation [3,4] organizes this singular, but integrable,
behavior of dŝ�dpT .

Another source of higher-order corrections is the re-
coil of the observed particle against unobserved radiation.
Thus, for Eq. (1), beginning with NLO in dŝ�dpT , a soft
gluon may be radiated before the hard scattering, say a
QCD-Compton process gq ! gq. The outgoing gq pair
recoils against the soft gluon, and, as a result, the Comp-
ton process may be softer than would be the case without
initial-state radiation.

Valuable insights have emerged in studies of direct pho-
ton production in which the partons initiating the hard
scattering are described by generalized parton distributions
[5,6]. Such distributions include transverse momentum
that is partly nonperturbative and partly perturbative [7].
Nevertheless, it is difficult to state confidently whether in-
trinsic transverse momentum is required by the data, which
themselves allow varied interpretations [8]. Li [9] first
showed how to develop a joint resummation in both leading
threshold and transverse momentum logarithms in parton
distributions.

Our approach remains within the formalism of collinear
factorization. Contributions to the hard-scattering function
associated with threshold resummation are redistributed
over soft gluon transverse momenta, simultaneously con-
serving energy and transverse momentum. Accounting for
recoil leads to an additional enhancement.

To compute higher-order recoil effects in Eq. (1), we
consider the partonic cross section [3] for ab ! gc, and
fix the c.m. rapidity h of the photon. Near threshold, the
overall process consists of a hard 2 ! 2 subprocess, along
with soft radiation, which can be factorized. To lead-
ing power, 1�Q2

T , this soft radiation does not change the
flavor of the initial-state partons, and the hard-scattering
subprocess recoils from soft radiation with a transverse
momentum QT . For fixed pT , the transverse momen-
tum of the photon relative to the c.m. of the hard scat-
tering is pT 2 QT�2. The c.m. rapidity is thus related to
QT by

1
cosh2h

�
4jpT 2 QT�2j2

s̃
�

4jp0
T j

2

s̃
� x̃2

T , (2)

where s̃ # S is the c.m. energy squared of the 2 ! 2
hard subprocess. The relative transverse momentum p0

T
thus sets the minimum value of s̃, and the scaling variable
for the subprocess is x̃2

T . This kinematic linkage between
transverse momentum and partonic energy drives the quan-
titative effects of recoil. We must limit the size of QT in
this analysis to avoid going outside the region where the
singularities in QT dominate. For small QT , however, we
can jointly resum large corrections to dsab!gc�d2QTdpT ,
in logarithms of 1 2 x̂2

T and QT . The latter cancel in the
hard-scattering functions. Like threshold corrections, how-
ever, they may leave finite remainders.

In summary, the resummed inclusive cross section for
the leading contributions to prompt photon production is
© 2000 The American Physical Society
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of the form:

p3
T

ds
�resum�
ab!gc�m̄�
dpT

�
Z

d2QT p
3
T

ds
�resum�
ab!gc

d2QT dpT
Q�m̄ 2 QT � ,

(3)

where m̄ is a cutoff. On the right-hand side, the direction
of pT may be chosen arbitrarily, because of the azimuthal
symmetry of the overall process. The inclusive partonic
cross section p3

Tds
�resum�
ab!gc�dpT in Eq. (3) determines the
resummed hard-scattering function p3
Tdŝ

�resum�
ab!gc�dpT in

Eq. (1), after collinear factorization.
The arguments leading to a jointly resummed formula

for ds
�resum�
ab!gc�d2QTdpT are similar to those for transverse

momentum resummation in Drell-Yan production. The
possibility of joint resummation for singular behavior in
QT and 1 2 x̂2

T is ensured by the factorization properties of
the partonic cross section near threshold, which we assume
here. The resummed cross section that results from these
considerations is
p3
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!
, (4)
in terms of moments of the physical, hadronic parton dis-
tributions and of the squared 2 ! 2 amplitude jMijj

2, with
p0
T defined in (2). The function Pij�N , QT � is a “profile”

of QT dependence for fixed N . Recoil is incorporated in
Eq. (4) through the interplay of the profile function and the
factor �S�4p0 2

T �N11. Singular QT behavior is most easily
organized in impact parameter space, where logarithms of
both the transform variables b and N exponentiate. We
may thus write the profile functions in Eq. (4) as

Pij�N , QT ,Q, m� �
Z

d2b e2ib?QT

3 exp�Eij!gk�N , b,Q, m�� , (5)

where azimuthal symmetry insures that E is a function of
b � jbj only. Here and below, Q � 2pT�x̃T denotes the
hard scale in the exponent. The parameter m represents
both the renormalization scale and the factorization scale,
whose explicit dependence we denote by mf below. Equa-
tion (4) reverts to a threshold-resummed prompt photon
cross section when recoil is neglected, by setting b to zero
in the exponents E of (5).

We now construct the exponents Eij!gk , to NLL in
both b and N . As already noted by Lai and Li [6], loga-
rithmic recoil corrections (logarithms of b) are generated
entirely through initial-state radiation. Final-state interac-
tions, however, do produce logarithms of N . We may thus
conveniently split each exponent into initial- and final-state
parts:

Eij!gk�N , b,Q, m� � EIS
ij �N , b,Q, m� 1 EFS

ijk�N ,Q, m� .
(6)

In general, resummation of perturbative logarithms leads
to nonperturbative power corrections in both b and N�Q.
Because our primary interest is in transverse momentum
distributions, however, we incorporate only a term pro-
portional to b2 in EIS [7], associated with the region of
strong coupling [10]. The initial-state exponents EIS

ij will
therefore be a sum of perturbative and nonperturbative con-
tributions. The final-state exponent, EFS in Eq. (6) is es-
sentially the same as for pure threshold resummation [3].

Rather than giving a formal derivation of the NLL
perturbative exponent, we motivate our expression by
requiring it to reproduce both threshold and kT resumma-
tions in the appropriate limits. The following expression
for the initial-state exponent, including a nonperturbative
term, gives all leading and next-to-leading logarithms in
b and N :
EIS
ij �N , b,Q, m� �

Z mf

Qx21�N ,b�

dm0

m0
�Ai�as�m0 2�� 1 Aj�as�m0 2��	2 ln

N̄m0

Q
2 b2Fij�N ,Q� , (7)
where N̄ � NegE with gE the Euler constant. At this
point, the coefficient Fij�N ,Q� is arbitrary. The function
Aa�as� �

P
n�as�p�nA�n�

a is, as usual, A�1�
a � Ca and

A�2�
a � �Ca�2� �CA�67�18 2 p2�6� 2 10TRNf�9�, with

Cq � CF , and Cg � CA.
The perturbative exponent in Eq. (7) is similar to initial-

state contributions in threshold resummation [3,4], but with
a new lower limit for the integral over the coupling scale
m0, which we denote Qx21�N , b�. The following simple
choice of x is accurate to NLL:

x�N , b� � N̄ 1 bQ�c1 , (8)
where c1 � 2e2gE . This doubly resummed NLL expo-
nent has the important property of respecting momentum
conservation, not only for transverse components as in kT
resummation, but for energy as well.

The exponent in (7) is a function of the logarithmic
variables,

l � b0as�m2� lnN̄ ,

b � b0as�m2� ln�x�N , b�� ,
(9)
4297



VOLUME 84, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 MAY 2000
where b0 � �12p�21�11CA 2 4TRNf�. The initial-state contributions are given in these terms by

EIS
ij �N , b,Q, m� �

X
a�i,j

∑
1

as�m2�
h�0�
a �l, b� 1 h�1�

a �l, b,Q, m, mf�
∏

, (10)

where, adopting the notation of Ref. [4],
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a
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µ
Q2
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3

∑
2b

1 2 2l

1 2 2b
1 ln�1 2 2b�

∏
2

A�1�
a

pb0
l ln

√
Q2

m
2
f

!
, (12)
with b1 � �17C2
A 2 10CATRNF 2 6CFTRNF��24p2.

Given the above, we are in a position to illustrate the
role of recoil, using Eq. (4), through the evaluation of the
N and QT integrals, with profile functions at fixed N de-
fined by Eqs. (5)–(12). As in threshold resummation, it is
necessary to define the integrals in a manner that avoids the
(“Landau”) singularities in the running coupling of Eq. (7)
at large N and/or b. For pure threshold resummation, a
4298
number of methods have been employed to define the N
integral in (4). We will use a “minimal” approach [4,11],
defining the contour C in (4), to extend to infinity through
the negative real half plane. For the b integral in the pro-
file function, Eq. (5), we have developed a new integration
technique.

To perform the b integral, we rewrite Eq. (5) as
Pij�N , QT ,Q, m� � p
Z `

0
db b�h1�bQT , y� 1 h2�bQT , y��eEij!gk �N ,b,Q,m�. (13)

Here we introduce two auxiliary functions h1,2�z, y� related to Hankel functions and defined in terms of an arbitrary real,
positive parameter y by integrals in the complex u plane:

h1�z, y� � 2
1
p

Z 2p1iyp

2iyp
du e2iz sinu , h2�z, y� � 2

1
p

Z 2iyp

p1iyp
du e2iz sinu . (14)
The h1,2 become the usual Hankel functions H1,2�z� in the
limit y ! `. They are finite for any finite values of z and
y. Their sum is always h1�z, y� 1 h2�z, y� � 2J0�z�, in-
dependent of y. The utility of the h functions is that they
distinguish positive and negative phases in Eq. (13), mak-
ing it possible to treat the b integral of the profile function
as the sum of two contours, one for each hi . These con-
tours avoid the Landau pole by a deformation into either
the upper half plane (h1), or the lower half plane (h2). Such
a definition of the integral is completely equivalent to the
original form, Eq. (5), when the exponent is evaluated to
finite order in perturbation theory. It defines the resummed
integral “minimally” [11], without an explicit cutoff.

Proton-nucleon cross sections computed in this fashion
are illustrated in Fig. 1. Here we show, for several val-
ues of photon pT , ds

�resum�
pN!gX�dQTdpT , the distribution

of the cross section in the recoil momentum QT . The
kinematics are those of the E706 experiment [2]. Since
this is a “demonstration” calculation, we pick a nominal
value of Fij�N ,Q� � 0.5 GeV2 for the Gaussian coeffi-
cient in Eq. (7), independent of parton type. We leave for
future work a more realistic determination of this coeffi-
cient, including its Q dependence. The parton distributions
are those of Ref. [12], and we treat NLO N-independent
(“hard virtual”) terms as in [4]. For simplicity, we ap-
proximate Q in Eq. (5) by 2pT . Finally, we set y � 1 in
Eq. (14).
The dashed lines are ds
�resum�
pN!gX�dQTdpT from Eq. (4),

but with recoil neglected by fixing S�4p0 2
T at S�4p2

T .
The dashed lines thus show how each QT contributes to
threshold enhancement. The profiles are subtracted in
their b-dependent one-loop corrections, which produce
the peaks and dips at low QT for the smaller values of pT .
Every curve shows a peak (near 2 GeV) associated with
resummation, and falls off as a power with increasing
QT . Integrating the dashed lines reproduces the threshold-
resummed cross sections of Ref. [4], after a subtraction at
order as to recover exact NLO.

The solid lines of Fig. 1 show the N-integrated distribu-
tions in QT , ds

�resum�
pN!gX�dQTdpT , now found by including

the true recoil factor �S�4p0 2
T �N11 in Eq. (4). These curves

therefore describe the fully resummed cross section. The
resulting enhancement is clearly substantial. For small
pT , the enhancement simply grows with QT (it must di-
verge at QT � 2pT ), while for pT above 5 GeV it has
a dip at about QT � 5 GeV, which becomes more pro-
nounced as pT increases, but which never really gets to
zero. This behavior makes it problematic to identify a
unique cutoff m̄ in (4) that gives a stable prediction for
the cross section. A full analysis requires a procedure for
“matching” Eq. (4) at QT � m̄ to a cross section appro-
priate to QT � O �pT � [7].
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FIG. 1. The prompt photon cross section dspN!gX�dQTdpT

at
p
s � 31.5 GeV, as a function of QT for various values of

photon pT . Dashed lines are computed without recoil [p0
T � pT

in (4)]; solid lines are with recoil.

This reservation notwithstanding, and reemphasizing
that our calculation is primarily an illustration, rather than
a quantitative prediction, we plot in Fig. 2 the resummed
cross section for pT $ 3.5 GeV, with the choice m̄ �

FIG. 2. Prompt photon cross section Ed3spN!gX�dp3 for pN
collisions at

p
s � 31.5 GeV. The dotted line represents the full

NLO calculation, while the dashed and solid lines, respectively,
incorporate pure threshold resummation [4] and the joint resum-
mation described in this paper. Data have been taken from [2].
5 GeV for the calculation of Fig. 1, using the approximate
procedure of Ref. [4] to convert dspN!gX�dpT to a
cross section integrated over a finite rapidity interval. We
include an NLO photon fragmentation component in the
cross section, again calculated as in [4]. To show the size
of the enhancement that recoil can produce, as well as its
potential phenomenological impact, we also exhibit the
pure threshold resummed cross section and the E706 direct
photon data in this range [2]. For the theoretical curves,
we choose m � pT ; both resummed curves have sharply
reduced factorization scale dependence compared to NLO.
Evidently, recoil can be phenomenologically relevant.

It will take some time to explore this resummation
formalism, including the implementation of practical
nonperturbative estimates and of matching procedures.
Nevertheless, we hope that this formulation of recoil
effects at higher orders, in the language of collinear
factorization, is a step toward clarifying what has been a
thorny issue in the application of perturbative QCD
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