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The phase space slicing method of two cutoffs for next-to-leading-order Monte Carlo style QCD corrections
has been applied to many physics processes. The method is intuitive, simple to implement, and relies on a
minimum of process dependent information. Although results for specific applications exist in the literature,
there is not a full and detailed description of the method. Herein such a description is provided, along with
illustrative examples; details, which have not previously been published, are included so that the method may
be applied to additional hard scattering processes.

DOI: 10.1103/PhysRevD.65.094032 PACS nunifer12.38.Bx, 13.60.Hb, 14.65.Dw

I. INTRODUCTION ing next-to-leading-logarithm calculations using Monte
Carlo techniques was developgt. Two cutoff parameters
Perturbative quantum chromodynami{QCD) calcula- serve to separate the regions of phase space containing the
tions are essential in the effort to describe large momentursoft and collinear singularities from the non-singular regions;
transfer hadronic scattering processes. At one time it wasowadays this is referred to as the phase-space slicing tech-
sufficient to work at lowest order for the hard scattering sub-mique.
processes and utilize the leading-logarithm approximation to The usefulness and generality of the method may be ap-
treat the higher order gluon radiation and quark-antiquarlpreciated by considering the many physics processes to
pair production which give rise to the scale dependence oivhich it has been applied. The basic core of the method was
the parton distribution and fragmentation functions, and tdirst developed to study QCD corrections to dihadron pro-
the running of the strong couplings. As the experimental duction [1]. It has subsequently been applied to direct jet
systematic and statistical errors decreased, the need for iphotoproductior{2], hadronic photon—jet3], direct photon
creased precision for the theoretical calculations became ap4], W [5], ZZ [6], WW[7], WZ [8], two photon[9,10], Zy
parent, leading to the widespread use of next-to-leadingr11], and W—Higgs bosorn[12,13 production, nonstandard
order expressions for the hard scattering subprocesses withree vector boson couplings Wy [14], WZ [15] andWW
the remaining higher order terms being treated in the nextf16] production, hadronic photon—heavy quark production
to-leading-logarithm approximation. Early calculations of[17,18, jet photoproductior{19], quantum electrodynamic
this type were typically performed with a combination of (QED) corrections to hadroniz production[20], QCD cor-
analytic and numerical integration techniques. The phaseections to slepton pair productid@l], electroweak correc-
space integrations at the parton level were often performetions toW production[22], single-top-quark productiof23],
analytically, and the convolutions with the parton distributionand dihadron productiof24].
or fragmentation functions done numerically. This approach Despite this usefulness, a full and detailed description of
is satisfactory for fully or singly inclusive cross sections, butthe method does not exist in the literature. Here we provide
information is lost about quantities over which the integra-such a description. Naturally, as the method was applied to
tions have been performed. Thus, if cuts are to be placed oie above physics processes, refinements were made. We
two or more partongor hadrons or jebs the calculation must therefore take this opportunity to modernize and systematize
be started anew. Furthermore, for some observables it is dithe presentation relative to that given[ii], and show details
ficult to calculate the appropriate Jacobian for the transforthat have not previously been published. Searches for signals
mation from partonic to hadronic variables. For these reasonsf new physics often rely on next-to-leading-order Monte
it was recognized that Monte Carlo techniques would be usecarlo—based calculations. It is anticipated that the details
ful for such calculations. The Jacobians would be handled byrovided here will prove to be helpful for anyone wanting to
the choice of histogramming variables and several observapply the method to additional processes.
ables could be histogrammed simultaneously. Additionally, it In the course of a next-to-leading-order calculation ultra-
would be simple to define jets and to implement experimenviolet singularities show up in loop integrals where the mo-
tal cuts on the four-vectors of the produced partons. menta go to infinity. They are removed through the process
In light of the above observations, a method for perform-of renormalization.(See, for example, Ref$25,2¢ for a
discussion. Soft (infrared divergences arise if the theory
includes a massless field like the photon in QED or the gluon
*Electronic address: harris@hep.anl.gov in QCD. They are encountered in both loop and phase space
"Electronic address: owens@hep.fsu.edu integrals and are found in the low energy region where the
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integration momenta go to zero. The soft singularities cancel Il. THE METHOD

between th_e virtual and bremsstrahlung procgﬁ%‘é]s I thg This section contains the main derivations for jet, frag-
ma;sless field cogples tq another masslgss field, or to 'tself'rﬁentation, and heavy quark final states, as well as a discus-
collinear (mas$ singularity may occur in both loop and sjon of initial state mass factorization. Before getting into too
phase space integrals. Final state mass singularities cang@hny details, it will be helpful to outline the procedure first.
when summed over degeneratexperimentally indistin- The typical calculation involves lowest order two-to-two
guishable final states according to the theorem of Kinoshita,subprocesses which have two-body final states and higher
Lee, and Nauenberf27]. For tagged hadrons there is no order two-to-three subprocesses which lead to both two- and
final state sum, and the associated mass singularities are fdéree-body final states. In addition, the one-loop virtual cor-

torized into fragmentation functions. Similarly, initial state "€ctions also contribute to the two-body final states.
singularities do not cancel because there is typically no sum e begin by decomposing the three-body phase space
sed to calculate the two-to-three contribution to the partonic

([)2\/89 rzéiegenerate states; they are removed by faCtonzatloglross section .il’.ltO two regions which we call soft, S, and

o L . hard, H, by writind

The goal of the practitioner of next-to-leading-order cal-

culations is to organize the soft and collinear singularity can- 1 =
cellations described above without loss of information in o= g—cﬁf 2 [M;[2dr;
terms of observable quantities. The phase space slicing
method provides a relatively simple and robust method to do 1 (= 1 (=
this. Several other methods for handling the organization of = EJ > IM5|2dl 5+ Wj > [Mg|2dl;, (2.9)
the cancellations exist in the literature and have been used to S H
study a wide variety of high energy processes, includingyhered =\"4s,m?,m3) is the usual flux factor which de-
some of those listed above. The phase space slicing meth%nds on the partonic center-of-momentum energy squsared
of one cutoff first developed 30,31 divides the phase ;.4 the incident particle masseg andm,, §|M3|2 is the
space according t8; = (p; +pj)*>ysi, wherep; andp; la-  two-to-three  body squared matrix element averaged
bel the momenta of partonsandj, andy is a small dimen-  (summedl over initial (final) degrees of freedom, ardl"; is
sionless parameter. Another variant for jE32,33 and had-  the three-body phase space. The partitioning of phase space
rons and heavy quark84] partitions phase space according into S and H depends on a paramefgrin a manner to be
t0 sj; > Spin Wheresy,, is a small dimensionful parameter. It described below. Within S the double péegkona) approxi-
is also possible to engineer the singularity cancellation usingnation to the matrix elements is made and then analytically

plus distributions, commonly referred to as the subtractiorintegrated over the unobserved degrees of freedonm in
method, which has been applied to jE&—43 and heavy space-time dimensions. The result, depending on the masses

quark final state§43—46. The subtraction method taken to- of the partons involved, may contain double and/or single

gether with factorization formulas that interpolate betwee oles inn—4, and accompanying double and/or single loga-

. L . ithms in the soft cutoffss. We always work in the approxi-
the soft and collinear approximations to the matrix elemem%ation where the cutoffs are small, so terms of orélemay

is known as the dipole methdd7]. The dipole method was e neglected. Just how small thet need to be will be studied
originally developed for jet and light hadron cross sectiong,g|ow.

where it has seen extensive applicat[@8-56. It has re- Next, if there are collinear singularities present, the hard
cently been extended to handle massive fermions and partoRggion is further decomposed into collinear C and non-
[57-59 and is finding many applicatio23,60—62 in that
domain as well. A brief comparison of the slicing and sub-
traction methods is given in Appendix A. Properly imple- 1 ¢ = 1 _
mented, all methods should give identical physics predic- _J > |Mg4)%dl3= _J > [Mg|2dI,
tions. 2® Jy 2® Jue

This paper proceeds as follows. In Sec. Il we give details
of the phase space slicing method with two cutoffs. We ex- 1 _
amine the soft and collinear regions of phase space and see +—f _2 IM;|2dl5. (2.2)
how to arrive at a finite cross section. In Sec. lll the process 2® Juc

of electron-positron annihilation into quarks is studied for-l-hiS partitioning depends on a second cu@ff Within HC
massive, massless, and tagged final states. After that, the &y, 1eading collinear pole approximation to the squared ma-
amples of lepton pair production and single particle produCyiy element is made. As explained below, exact collinear
tion in hadronic collisions are given. We conclude in Sec. IV.

As mentioned above, Appendix A contains a brief compari

son with the subtraction method. Appendix B contains angu- 4jmpjicit in the cross section is a measurement function which
lar integrals useful in the soft analysis. A discussion of termsserves to implement the jet algorithm and/or define the experimen-
that vanish like the ratio of the two cutoffs is given in Ap- tally visible portion of phase spadthe cut3. For the cancellation
pendix C. Appendix D explains how to improve numerical of singularities to take place, the measurement function is required
convergence. to be infrared saf¢63].

coIIinearEregions as follows:
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kinematics may be used to define the integration domain of
HC when§.< 5. The integrations over the unobserved de- 1 2
grees of freedom are performed analyticallynispace-time ST 5% f SE IM3|?dIs, (2.9
dimensions giving a factorized result where single poles in
n—4, and single logarithms in both cutofé&s and 65, mul-
tiply splitting functions and lower-order squared matrix ele-
ments. This is in the approximation where terms of oréler
and &5 are neglected. 1 (< 5
The cancellation of poles im—4 is based on the UH:ﬁfHE IM|dT ;. (2.6)
Kinoshita-Lee-Nauenberg theord2i7] or mass factorization

[28,29 depending on the situation. For experimentally de-j, this section we examines in detail. Further evaluation of
generate final states, the soft and final state hard colllneag:H is deferred to the following subsections.

singularities cancel upon addition of the interference of the | ot the particles in the scattering be labeled by their four-
leading order diagrams with the renormalized one-loop V'r'momentap1+p2=p3+p4+ ps and define the Mandelstam
tual diagrams. The remaining initial state collinear Si”gUIari'invariants s =(p;+p;)? and t; =(p;,— p;)2 Consider the

ij i ij i~ Mj) -

ties are factorized and absorbed into the parton distributionce when parton 5 is a soft gluon. The soft region S is
functions. The result is finite im=4 dimensions, but de- yofined in terms of the gluon enerd in the py+ p, rest

pends logarithmically on the cutoffs. For tagged hadron . .
there is no final state sum, and the associated mass singula jame by 0<Es= 95\/s1/2. The hard region H is the comple-

ties are factorized into fragmentation functions. ment: Es>5/514/2. The gluon energy can be calculated

. . L= from the other invariants in the problem as follows. Start
The integration over the hard non-collinear t@rtion of b

the phase space is performed using standard Monte Carﬁglhdgl?pi_ p)52=_p23+!3(4 wﬂlch),:af(terfqu)azrln?nb?:é sides,
techniques. The result is finite by construction and the ex? PPz Ps- (P17 P2)={P3™Pa)"- P1

pressions may be evaluated in four dimensions. At this stage} P2 rest framep,+p,= \/5_12(1’0'0'0.)* $0S;,~ 2E5VS12
the calculation yields a set of two-body weights which have= Ss4- Solving for the gluon energy gives

explicit logarithmic dependence on the two cutoffs and the
three-body weights for which a logarithmic dependence on
the cutoffs develops as the Monte Carlo integration is per-
formed. When all of the contributions are combined at the
histogramming stage, the cutoff dependence cancels for suithis expression foEg and the definition of the soft region
ably defined infrared-safe observables. In the following subare independent of the masses of the other particles in the

_ S127 Sz

Ec=
° 2\s1

. (2.7

sections we look at each of these steps in detail. reaction. Now that we have defined the boundaries of the soft
portion of phase space, we examine the approximations that
A. Soft can be made.

. . ) . The three-body phase spacenmimensions is given by
In this subsection we describe the procedure for extracting

soft gluon singularities. When one of the gluons is soft, the n—1 n—1 n—1

4 S . d" “ps d"" "py4 d" “ps
phase space is greatly simplified and the eikofluble dl'z3=—; o 10 —
pole) approximation of the matrix element is valifi4—69. 2p3(2m)" " 2py(2m)" " 2pg(27m)

The cross section is simple enough to be analytically inte- nan o
grated over the unobserved degrees of freedom $pace- X(2m)707(p1t P2~ Ps~ Pa—Ps). 2.8

time dimensions. The required integrals are well knowntne divergence in the integral of the matrix element over
[45,69,7Q. The result, depending on the masses of the parphase space will be at worst logarithmic. Therefore, up to

tons involved, contains double and/or single polesitnd,  coprections of)(5,), we can sep£=0 in the delta function
and accompanying double and/or single logarithms in the,q regroup terms, yielding

soft cutoff 65. We work in the approximation where terms of

order &5 are neglected. d"1p, d"~1p,
Generically, we begin by writing the two-to-three body dl 5| sor= 5 i n71(27r)”
contribution to the partonic cross section 2p3(2m)" " 2py(27m)
n-1
e X 8™(py+ Py Py Pa) |5 (2.9
0 -1
o= ﬁf > [M;[2dT; (2.3 2ps(2m)"
This is simply
as the sum of soft, S, and hard, H, terms I
_ Ps
o=o0stoy, (2.9 dF3|SOﬁ_dF22pg(2ﬂ.)nfl’ (2.10
where where
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gn-1 Let parton 5 be the soft gluon and take it to have color

dr,= 0 pi_l 5 pi_l(zw)“ indexa (=1, ... N?>-1) and Lorentz index.. The matrix
2p3(27)" " 2py(27) element factorizes as
X 8%(P1+ P2~ P3~Pa) (219 M3l sor= g1 (Ps) J2(PsIM . (2.18

is the two-body phase space of partons 3 and 4. Likewise, Upne mass dimensions of the strong coupling have been iso-
to corrections ofO(é;), we can parametrize the gluon's |ated into the parameten, which is identified with the
n-momentum in thep; +p, rest frame as renormalization scale, leaving the dimensionless coupiing
The soft gluon’s polarization vector, denoted &¥(ps), is

Ps=Es(1, ... ,sind;sinf,sin 01C0592’00591)’(2 12 Lorentz contracted with the non-Abelian eikonal current
' given by
where the ellipsis indicates the—4 unspecified momentum 4 "
components, which may be trivially integrated over using J2(ps)= 2 T2 Pi 2.19
. =1 'ps-ps’ '

d" *ps=d|ps||ps|"2dQ2,
ps=dlps|Ips| n-2 which itself is color contracted with the color sub-amplitude

:dE5E2_Zsin“‘361dalsin”‘402dGZQn,4. M,. The sum corresponds to the soft gluon being emitted
(2.13 from each external line in turn. Th8U(N) color charge
associated with the emitting partanis denoted byT;.
The angular volume element Squaring and summing E2.18 over the soft gluon polar-
izations gives

2.(n=3)12
O s=rr a5 (2.14 4 .
I'[(n—=3)/2 5 Ps- Pt
=9 Mofoo=— 022 S — P70 (2.2
. . f,f'=1 Pt PsPsr - Ps
may be rewritten using
r(1-26) where
—ZLE
I[(n—3)/2]= Jm2% ——F, 2.1 t
[(n=3)2)=m2* Fa=g 219 e, =T (TE M)
where we have sai=4—2e¢. The final result for the phase =[Mc, b, by " Toa, Topa, Me, .y
space volume approximated in the soft region is (2.20
dr _ 4m\‘T(1-¢) 1 is the square of the color connected Born amplitude. If the
also=dl 5| | — — ds, (2.19 - . ) O .,
S12) I'(1=2€) 2(27)2 emitting parton is a final state quark or initial state anti
quark, the color charge is in the fundamental representation
with (Ta)”:tﬁ (i,j=1,... N). For a final state anti-quark or
- initial state quark T%);;= —tf’} . If the emitting parton is a
dszi(i) j5SV/S_12/2dE5Eé_ZESin1_2€01d91 gllion,_tie_ color charge is in the adjoint representation
7\ S12 0 (THpe= ] lf_abc- ) )
Substituting Egs(2.16 and(2.20 into Eqg.(2.5) gives
X sin"2€6,d6,. (2.17
_ o | [(1—e) [4mu?\©
Once we have the corresponding soft approximation to the IsTI o, T(1-2¢) | s,

matrix element this integral can be performed, yielding the

advertised singularity structure. But before proceeding, we 4 o —Ps- Py
pause to note that choosing 5 to be the soft gluon is not X E doff,f —dS§, (222
special. A similar analysis holds when parton 3 or 4 is a fif'=1 Pt PsPir - Ps

gluon. At this order in perturbation theory, only one gluon
may be soft at a time.

Soft photon emission in QED is characterized by the fac- B
torization of an eikonal current from the scattering ampli- do® =i2 MC dr (2.23
tude. The structure of multiple soft photon emission has been ftr 2 frrs 2 ’
studied by Grammer and Yenrié4]. In QCD the process is
different because gluons carry color charge and can therefofEhe integration over the eikonal factors depends on the
radiate during the scattering. Fortunately, when QCD amplimasses of the particles in the reaction. We leave the integrals
tudes are decomposed into color sub-amplitudes they enjay be performed on a case-by-case basis, although all pos-
the same factorization properties as QED amplitud#s-  sible mass combinations may be worked out. Specific appli-
68]. cations of Eq.2.22 are given below.

where
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From a practical point of view, the presentation just made 1. Indistinguishable final states
requires only the calculation of the eikonal factors and the Consider the case when there is a sum over experimen-

color connected Born amplitudes m=4—2e dimensions. 51y degenerate final states, such as a jet or total cross sec-

There is no need to evaluate the full two-to-three body magion | et partons 4 and 5 be massless and collinear to each
trix element inn dimensions. Depending on the complexity jiner 0<S4=<05.51,. If we define pus=ps+ps, then for
3 — U¢c . l

of the process, this may be a simplification. However, if theg, o g ps e haved" 'p,=d" lp,. The three body phase
full two-to-three body matrix element in=4—2¢ dimen- space ?Eq(2.8) may be G\fritten as4

sions is at hand, settings =0 everywhere in the numerator

and retaining only the leading singular termspés—0 will n—1 n-1
d"" "p3 d" "pgs

reproduce Eq(2.20 directly, this being known as the double dl 5| con= (2m)"
pole approximatiorf1]. 2pY(2m)"t 2pfy(2m)"?
. dnfl 0
B. Collinear X 8"(P1+ P2~ P3—Pas) Tpi,lp—?-
We now return to the further evaluation of the hard por- ps(27) P4
tion of the cross section which was separated out in Sec. (2.27)

Il A. The phase space is greatly simplified in the limit where
two of the partons are collinear. In the same limit, the leadingThis is simply
pole approximation of the matrix element is valid. The cross

section is simple enough to be analytically integrated over d"1p p?

the unobserved degrees of freedomnispace-time dimen- dl' gl con=dl', — 57 —405, (2.28
sions. The result contains single polesninr 4, and accom- 2pg(2m)"* py

panying logarithms of the soff; and collinears, cutoffs.

Terms of orderss and &, are neglected. wheredI’, is the two-body phase space of the particles 3 and

To this end we further decompose, given in Eq.(2.6)  45. In the collinear limit p;— 0 with z fixed) we can write
into a sum of hard-collinear HC and hard—non-collinear HC

terms Pas=(P,0,0P),
O'H:O'HCJF OHC (224) pt2 .
pa=|zP+ ﬁ,pt,zP), (2.29
with
2
= 1—z)|3+'o—t —p,(1—2)P
1 — , Ps ( 2(1_Z)P v Pt .
UHC:_J E IM|*dT 3, (2.29
20 Juc X
Thenp,+ps=psst+O(py) and
and 2
Sy5=2pP4- P (2.30
45— 2Pg" P5= 21-2)° .
— 1 < 2
UHC:%IHEE M| “dI;. (228 Now usingd" 2p=dpp" 3d€Q,_; and z(1—z)ds,;s=dp?
we find
The HC regions of phase space are those where any invariant =, 0 .
(sij or tj;) becomes smaller in magnitude thags,,, the Ps p_45: (4m) dzdsd ssz(1—2)]"¢
collinear condition, while aghe same time all gluons remain ng(zw)“—l pg 1672 (1—€) 4 '
hard. The complementary Hflieces are finite and may be (2.3)
evaluated numerically in four dimensions using standard
Monte Carlo techniquels71]. The corresponding approximation to the matrix element is

The piece containing the collinear singularities,c, is  obtained by imposing collinear kinematics on the portion of
treated according to whether the singularities are initial othe two-to-three matrix element proportional to the leading
final state in origin. For the former, factorization provides thecollinear singularity. This is known as the leading pole or
formalism for removing the singularities. In the latter case,collinear approximation. As a consequence of the factoriza-
we distinguish between experimentally degenerate antlon theorems[28,29, the squared matrix element factors
tagged final states, and rely on either the Kinoshita-Leeinto the product of a splitting kernel and a leading order
Nauenberg theorem or factorization to dispose of the singusquared matrix elemeii,35,37,43,72
larities. We discuss the final state cases first, then return to As above, let partons 4 and 5 be collinear. The matrix
the initial state. element factorizes as
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s T(1—e) [4mu?

do 1+2H3+4+5 =do 1+243+4'
271' I'(1—-2e)

> IM3(1+2—3+4+5)|2 S12

X

- %) 5;€f dzz “(1—2) “Puxy(z,¢€).
:i IM,(1+2—3+4")|2 (2.36

For z<1 the n-dimensional unregulated splitting functions

2
% P44'(Z,6)92Mr263—%, (2.32 may be written a$;;(z,€)=Pj;(2) + €Pj, i (2). Explicitly,

1+2°
where theP;;(z,€) are the unregulatedz€ 1) splitting func- Poo(2)=Cr7— (2.37
tions calculated im=4—2e dimensions related to the usual
Altarelli-Parisi splitting kernel$72]. We label as 4 the par- / __ _
ton which splits into the 45 collinear pair. Generally, Eqg. Pad(2) Cr(1-2), (239
(2.32 contains an additional term that vanishes after integra- 14(1-2)

tion over the azimuthal angles mdimensiong37,43. Such Po(2)=Cpr—"—, (2.39
a term does not contribute to our result. 9 z
Substituting Egs(2.28), (2.31), and(2.32) into Eq.(2.25

gives Pgq(2)=—Cez, (2.40
, I'(l—-e) Aru?\ € 1—7
L+2-3+4+5_ g 1+2-3+4 As r
do =do 27 T(1= 25)( Sy Pgg(2)=2N| — 15 + —+z(1 2) |, (2.41
[sC ~€ ’
XJ s12 %(Sis) P:(2)=0, (2.42
0 S45 |\ S12
P (z)=3[22+(1—z)2] (2.43
XJdZ[Z(l—Z)]_EPzw(Z.é), (2.33 99 2 ' -
where we have used Pag(2)=—2(1-2), (2.44
1 I'(l—e) , whereN=3 andCr=(N?—1)/2N=4/3 for QCD. Expand-
T(i—e¢) T(1-2¢) +0(e). (2.34  ing the integrand in Eq(2.36) to O(¢) and integrating over

z yields the final state hard-collinear terms

s T(1—e (47%2)6
277 I'(1-2¢)

The collinear condition (6s,5= §.S15) Sets thes,s integra-

tion limits. The hard condition sets theintegration limits, do 1+2ﬁ3+4+5 —do 1+2ﬂ3+4r
which depend additionally on the splitting function involved,

and also on the mass of the parton recoiling against the 45

S12

pair (3 in this casg This last dependence enters through the A‘{/MF’ 4745
threshold condition, as discussed below. X € Ao ' (2.45

First take parton 3 to be massless. gerqg splitting the
hard region is defined bys\/s,/2<E-</s;J/2, assuming 4 Where
labelsq and 5 labelsg. From Eq.(2.29 we havess,=(p3 B
+Pa)?=2p3-Pa=(2p3-PagZ and S;p=(Ps+ Pas)®=Sus AT %=Cp(3/2+21n4y), (2.49
+2p3- Pas=2pP3- P45 Which together yieldsz,~zs;,. Using ~
Eq. (2.7 the hard condition becomes A3 99=C[7/2— w*[3~In? 5,

O$Z$1_5S. (235) —In 5C(3/2+2 In 55)], (247)

For the g—gg splitting it is required that both gluons be A%anz—nfls, (2.48
hard, i.e.,E, and E5= 85Vs;J/2. z then satisfies the relation B
8s<z<1-6,. For theg—qq splitting there are no soft sin- AZ%9=n/3(In 6.—5/3), (2.49
gularities, so 8=z=<1 may be taken. In all of these cases the
z integration limits are independent sfg by virtue of the AYT99=N(11/6+2 In 8y, (2.50
approximations,s=0 implicit in s;,=2p3- pas (this point is
discussed furthe_r at the _end of Sec. lll B and in Appendix C AZ~99= N[ 67/18- 2/3— In?5,
The outermost integration ovex,s may therefore be per-
formed, giving the result —In 6,(11/6+21n85)], (2.5
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wheren; denotes the number of active flavors. 1\ @ T(1—e) [4mp?\©
When the mass of the parton recoiling against the 45 pair,D,,.(z,M;)= Dh,c(z)+( - —) — 2r
mj, is retained, the factorization of the phase space and ma- €/|2m I(1-2¢)| Mm;

trix element is unaffected. Likewise, the collinear condition 1d

0=,5=< 6,51, remains unchanged. It is only the boundries of % j _th/c,(Z/y)p*, (y). (2.54)

the hard region that are modified. The full kinematic range of z Y ee

the invariantss, is m3<sg,<s,,. The threshold for produc-

ing a particle of masgng sets the lower limit. In terms af;,  In this expression there is an implied sum over the index

the hard region isni<sg=<(1—8y)s;,. This implies that corresponding to the sum over the different fragmentation

the hard condition Eq.2.35 becomes &z<1-45./(1 possibilities referred to above. The final state factorization

—m?2/s;,). A similar analysis follows for thg—gg splitting  scale has been denoted b; . Notice, too, that the integra-

case whereins/(1—m3/s;)<z<1-6,/(1—m3/s;;). We tion overy extends fromz to 1. This form for the scale

therefore immediately see that Eq8.46—(2.51) are valid dependent fragmentation function corresponds to the modi-

with the replacemend,— 6,/(1—m3/s;,). fied minimal subtraction NIS) convention. The regulated
(x<1) splitting functiong 72] are given by

2. Tagged final states

2
Next, consider a process where a particular type of hadron P (x)= CF[— + 3 S(1-x)|, (2.55
is identified in the final state. This necessitates the introduc- aa (1-x) 2
tion of a fragmentation functioD,.(z) which gives the
probability density for finding a hadrdmthat carries a frac- 14(1—x)2
tion z of the momentum of the parent partonConsider the qu(x)=CF[T , (2.56
case where parton 4 fragments into a hadipfor which the
lowest order cross section is
N X 1-x
Pgg(X)=2N 1_—+ —— +X(1—X)
dolt2=3h_gyle2=3+4p (7yd7z (2.5 (1=%)+ X
11 1 )
+|—=N-—2=n;]5(1—x), (2.57
The hard collinear cross section expression in 436 be- 6 3
comes
+ 1 2 2
Pag(X)=5[x"+(1=x)]. (2.58
_ At 2\ € 2
dolt2—3+h+5_ 4 1+2-3+4'| ¥s I'(1—e) My
HC 0 27 I'(1-2€)\ sp5 . , L
Next, we rewrite the bare fragmentation function in Eq.
1) . . . (2.52 in terms of the scale dependent expression given
x| = 2% fdyy (1-y) above, yielding taO(ay)
X Dpya(X)dXPyyr (Y, €) 1
X 8(xy—2z)dz (2.53 d0(1)+2H3+h:dUcl)+2H3+4(Dhm(Z,Mf)ﬁL <
2\ €
The delta function ensures that the hadiocarries a mo- s [(A-e) [4mu;
mentum fractiorz of the parent parton’s momentu¢parton 2w I'(1-2¢)\ M2
4' in this examplg@ Here there is a splitting '4-45 fol-
lowed by parton 4 fragmenting to hadrén When all pos- idy N
sible 2— 3 subprocesses are considered, there will be several x L VDhIC'(Zly)PM(y) dz
contributions of this same form, corresponding to a sum over
the parton 4. For example, if'4is a gluon, there can bg (2.59
—gg followed by g—h or g—qq followed by g—h or q
—h. Similarly, if 4’ is a quarkq, there can beg—qg fol-  The second term is sometimes referred to as the mass factor-

lowed byg—h or by g— h. Furthermore, the limits of inte- ization counterterm. Whemo, and doc are added to-

gration ony depend on the splitting function as in the casegether, there is a cancellation between the two singular ex-

discussed in the previous subsection. pressions. Note, however, that this cancellation is not
The collinear singularity, evidenced by the polednn complete since the limits of thgintegration in the two ex-

Eqg. (2.53, must be factorized and absorbed into the bargressions differ.

fragmentation function. To do this, we introduce a scale de- After the cancellation, the resulting(«as) expression for

pendent parton fragmentation function the fragmentation contribution is

094032-7
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[ as T(1—e) [4mu?\© given here. In order not to unnecessarily complicate the dis-
dofas ¥ "=dog 2 = cussion, only the details for one of the incoming partons will
2’7T F(l_ZE) 512 be Shown
ASS(4' —4+5) Consider a process which involves a parton on leg 2 com-

X i Dpyar(zZ,M) + ing from an incoming hadroB, so that in lowest order

14B—3+4_ ~142,3+4
+AS(4' —4+5) dag Gop(x)dxdayg . (266

Dh,4(z,Mf)]dz. (2.60

_ . ) whereG,;g(x)dx denotes the probability of getting parton 2
The soft collinear faCtorAisc result from the mismatch in the from hadronB with a momentum fraction betweenand x
y integrations in the fragmentation and subtraction pieces, dx. The caret is used here to label a purely partonic sub-
mentioned above. They are given by process. We are interested in the next-to-leading-order cor-
rections coming from the various possible parton splittings

AS— A9 S12 (2.6 which can occur on leg 2. The hard collinear contribution Eq.
0 M2/’ ' (2.25 is calculated by applying the collinear approximation
to the appropriate three-body matrix elements as follows:
A(9—qg)=Cg(2In 55+ 3/2) (2.62

AS(g—gg)=2NIn S+ (1IN-2n;)/6.  (2.63 S [My(14253+4+5)]

The modified fragmentation functidih,c(z,Mf) is given by

~ 17555c’cdy — -2
Due(zMp=2 f - =2 [Mo(1+2'=3+4)|2P,5(z,€) g’ u’*—,
o Jz y Ztys
XDye(2ly,MPLY,  (2.64 (2.67
where wherez denotes the fraction of parton 2’s momentum carried

by parton 2 with parton 5 taking a fraction (%z). Using

y(1-Yy)8.51, the approximatiorp,— ps=zp,, the three-body phase space

Pl Pc/c(Y)'”{ Ve —P..(y). (265  may be written as
f

P(y) andP’(y) are then=4 andO(¢€) pieces, respectively, - d"1ps d" 1p, (2"
of the unre~gulated splitting kernels given in Eqg.37)— 3leol™ 2p%(27m)"1 2pQ(2m)" m
(2.44). The D functions contain an explicit logarithm af;
as well as logarithmic dependences &which are built up d" 1ps

; ; ; o X8Np1+zp—P3—Ps) | ————
by the integration ory whenc’=c. In Appendix D it is (P1+2ZP2=P3—Pa 2p2( 2wt
shown how to make thés dependence explicit, thereby im- °
proving the convergence of the Monte Carlo integration. (2.68

Comparing with the previous subsection, we see that
when going to the fragmentation case, the hard collineafhe square bracketed portion is just two-body phase space
terms, Eqs(2.46—(2.5)), for the fragmenting parton are re- evaluated at a squared parton-parton energyspf. The ps
placed by a combination of tH2 function and soft collinear dependent part may be rewritten as
factors A™. Nevertheless, a careful comparison of the two

cases shows that the polesdicancel and the final results for d" pg (4m)€ .
physics observables are independent of the cutoffs. This will 0 1 2 dzdbd —(1-2)tys] .

: 2ps(2) 167<T'(1—¢€)
be illustrated by several examples to follow. (2.69

3. Initial state . . .
The allowed range fot,5 is given by the collinear condition

The treatment of the initial state collinear singularities isg< —t,.< §.s,,. Thet,s integration yields
much the same as that for the previous case of final state
fragmentation. The collinear singularities are absorbed into Ses12 1
the bare parton distribution functions leaving a finite remain- J —dtyg(—tyg) 1TE=——(8:810) € (2.70
der which is written in terms of modified parton distribution 0 €
functions. In addition, there are accompanying soft collinear
factors as in the fragmentation case. However, some of thgsing these results, the three-body cross section in the hard
details are different, so a brief summary of the derivation iscollinear region may be written as
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dglB—3+4+5_ dvdalt2 —3+4 tyat Note that in this expression the soft collinear factaiven
THe 2(y)dydag (2812, t13,114) in Egs. (2.61)—(2.63] depend on the initial state factoriza-
ag T'(1—e) [dmu?\© tion scaleu;. TheG functions are given by
2 F(1_2€) S12
1 ~ 1_535cc’dy ~
x| - ;> 5. Poio(z,€)dz(1—2) "€ Gop(X, )= 2 fx VGC’IB(X/erf)Pcc’(y)
c!
(2.79
X §(yz—x)dx. (2.71

Note that a factor of ¥ has been absorbed into the flux With
factor for the two-body subprocess. The delta function en-
sures that the fraction of hadrddls momentum carried by 1
parton 2 into the two-body subprocess Jsin order to be B (V=P (Winl 5.——2 32| _pr 57
able to combine this result with the lowest order contribu- () =Py yin| & 2 ). (278
tion. The delta function may be used to perform thimte-

gration, but one point must first be made, is related to the Then=4 andO(e) pieces of the unregulated splitting ker-
square of the overall hadronic squared center-of-mass energy, o P(y) and P’ (y), are given in Eqs(2.37)—(2.44. An

Sby s1,=yS On the other hand, in the lowest order Subpro-g, 5 yple of 4 hadron-hadron process will be given in the next
cess the relation is;,=xS. It is convenient to rewrite the section

above expression using this latter definition 5. There- . , ~ . .
fore, after they integration, we obtain As in the f|nal.state hadron case, tﬁefunc.tlons' contain
an explicit logarithm ofé. as well as logarithmic depen-

M

dohtB 3 4 5= G p(x/2)dot 2 734 (s, b3, 1) dences ons; which are built up by the integration on In
Appendix D it is shown how to make th&s dependence
as T'(1—e) 477,ur2 € explicit, thereby improving the convergence of the Monte
X 27 T(1-26) | sp, Carlo integration.
1\ dz{(1-2)| ¢
X| = z) 50 ePzrz(Z, 6)7 Z dX I1l. EXAMPLES

In this section we provide five illustrative examples ap-
(2.72 plying the method developed in the previous section. The

Comparing with the corresponding result for final state fragTesults are shown to be in complete agreement with those

mentation, we see that a factor pf(1—z)] € has been available in the literature. We begin by calculating the QCD

changed td (1—2)/z] " “. corrections to electron-positron annihilation into a massive
In order to factorize the collinear singularity into the par- quark pair. The quark mass serves to regulate any would-be

ton distribution function, we introduce a scale dependent parcollinear singularities. There are only final state soft singu-
ton distribution function using th®IS convention: larities and, hence, only the soft cutoff is required. Next, the

QCD corrections to electron-positron annihilation into a

1\| as T(1—e) 477Mr2 € massless quark pair are considered. In this case final state
Gos(X,u1) = Gpp(X) +| — ;) 27 T(1-2¢) 5 soft and collinear singularities are encountered, necessitating
Mt the use of both soft and collinear cutoffs. The example of

1dz inclusive photon production in hadronic final states of
xf — Py (2) Gy j(x/2). (2.73  electron-positron annihilation is then presented, illustrating

z 2 the use of fragmentation functions. Finally, we close the ex-
amples section by showing how to calculate the QCD cor-
rections to lepton pair and single particle inclusive produc-
tion in hadron-hadron collisions. Both examples contain
initial state soft and collinear singularities, necessitating the
use of scale dependent parton distribution functions. Further-
more, the single particle inclusive cross section calculation
also requires the use of scale dependent fragmentation func-
tions.

Next, using this definition, we replace,g(x) in the lowest
order expressiof2.66 and combine the result with the hard
collinear contributior(2.72. The resulting)(«s) expression
for the initial state collinear contribution is

€

as I'(1—e€) 47T,lLr2

27 T (1—2€)
AS(2—2' +5)

1+B—3+4+5_ 4~ 1+2'-3+4
dool =doy

S12

X1 Gorg(Z,up) +

A. Electron-positron annihilation to massive quark pair

Electron-positron annihilation into a massive quark pair
GZ,B(z,,uf))dz. has a particularly simple singularity structure, that of soft
singularities in the final state only. It will therefore be used as

(2.74  afirst example of the method described in the section above.

+A(2—2'+5)
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«
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¢ g (a) (b

FIG. 1. Leading order contribution to electron-positron annihi-  FIG. 2. Real emission contribution to electron-positron annihi-
lation via photon exchange. lation.

Working in the single photon exchange approximation,often convenient to define primed Mandelstam invariants
the leading order Feynman diagram is shown in Fig. 1. Newhich are the ones defined previously minus some combina-
glecting the electron mass and denoting the quark mass by tion of squared masses. In this casg=s;;—m* and t;
the leading order cross section =t;; —m?. Performing the integration ovet we obtain the

well known e=0 result,

1 =
0_ E 2

do —2512 |M2| sz, (31) 2m2

1+——|B, (3.9

S12

4a?

0__
o%=
3s15

QiN
calculated inn=4—2¢ dimensions is expressed in terms of
the (summed and averagethatrix element squared with o= e?/4.
Because the quark mass regulates any would-be final state
— t 2+t 2m? collinear singularity, the appropriate decomposition of the
2 [My2=2Ne'Q}| ——5—+ <. €| (2  two-to-three contribution to the cross section is simply given
S12 12 by Eq. (2.4). For the®(as) QCD corrections we therefore
need the soft cross secti¢®.5), the hard cross sectid®.6),
and the two-body phase space and the virtual corrections.
The real emission diagrams that gi\M 5|2 are shown in
Fig. 2. If we define thédsummed and averagesiquared ma-

22¢ [4g\€ 1 ™ trix element as
I 1-2¢ inl—2€
dr, 16#(512) B F(l—e)fo sint~2€9dé.
(3.3 _ 1 1
M;|?==e*Q2g?> - NCrV, 3.
The center-of-mass scattering angle is denoted land 8 E M| 4 Qad Siz F 39

=1-4m?/s,,. Qq is the quark charge in units @andN
=3 is the number of colors. When masses are present, it ithen

W=t Py 1y T{t (P + M)y, (Pat bs— M) ¥ (Pa— M) Yo (— Pa—Ps+ M)y, 1/sus>+ 2 tf (p3+m)
X Y7 (P3+ Ps+m) y*(Pa— M) v, (Da+t Ps— M)y, ]/S35845+ [ (P3+m) y7(P3+ ps+m)

X y“(—|b4+m)y,,([b3+[b5+m) ’}/0']/3552}' (36)

0

where the strong coupling is denoted byand Cr=(N? dog=do
—1)/2N=4/3. To obtain the hard contributionr,, the
traces may be evaluated in four space-time dimensions.

There is a soft singularity when the energy of the gluon in
Fig. 2 goes to zero. The corresponding soft contribution to Xj
the cross sectionrg, is given by Eq(2.22. In this case, the
sum in Eqg.(2.22 is taken over the final state quark legs
(labeled 3 and ¥and the color connected Born cross sections 5
are related to the leading order cross sectionda,= n s—2m } 3.7
—do,=do,=Crda®. We find P3-PsPa- Ps '

as I'(l—e€) 47T,ur2 € c
27 T(1-26)\ s F

m2

- (ps- p5)2 - (Pa- ps)z

094032-10
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The poles need to be integrated over the soft phase spac

according to Eq(2.17) to extract the singularities in dimen-
sional regularization. Define

(S35) = J—ds, (3.8
(sj9)= | —dS (39
45
| (S35845) = J (3.10
S3sSas

In terms of thep, p, center-of-momentum scattering angle
ps; andp, may be written as

S
3= glz(l,o, ...,0Bsing,B cosb),
(3.1
S
ps= glz(l,o, ...,0-Bsing,— B cosh).
Using these together with E2.12 we find
S4s=2P3- Ps= \S1,E5(1— B sind'sin ,c0s6,
— 3 cosé cosb,),
(3.12
S4s=2P4- P5= Vs1Es(1+ B'sin@sin6;cos6,
+ B cosé cosby).

The gluon energy integrals in EgR.8)—(3.10 may be per-
formed trivially:

4 855122

. dE El 26_

(512) fo ° SoE2
— 1 1 5—26 3 1
sl 2€)% 313

0000009

@ ®)

s

© @

FIG. 3. Loop and counterterm corrections to electron-positron
annihilation via photon exchange.

_ o olas I'l—e) (47T,ur2)5 (A_i S)
dos=do 27 T(1—2€) | s, € ’
(3.1
where
1+82 1
(3.17)
. 1+ 1+p2
AS=4C; |n5+2B 5 28
2B 1 +B +B
L|21+ﬁ+—ln2m—ln 5sln1_18”.

The virtual contribution is obtained from the one-loop
diagrams shown in Fig. 3. In the on-shell renormalization
scheme diagram&) and(d) cancel exactly. The vertex cor-
rection needed in Fig.(d) is shown separately in Fig. 4.
After performing the loop integrals the result for the vertex
valid for g>>4m? is

The remaining angular integrals are well know and are tabuwith

lated in Appendix B. The complete results are

, 11 REY:
I(S35):I(S45):?<_Z+ln5s 2B l 18
(3.19
1 1 1+ . 28
I(S35345)=5123<—Zln1 B lem
1 +8 1+
——In 1= ﬂ+ln5In B) (3.15

We may therefore write the final expression for the soft
Cross section as

I',=(—ieQy) &;(g?CeCu(p,)
(p1+p2)
Alz—m“ﬂa L |u(py), (3.18
= (3.19

FIG. 4. The vertex correction.
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L1, 1+p2 148 1+
B—Z(1+ 3 In1 ﬁ+3,6‘ln1 e
1+ B2 1,1-8 1-8 28
3 2N 1+3+2'P1+3 1+
1-8 272
+2L|21+B 3 ) (3.20
and
2-e N
E:mr(l+6) F (32])

The vertex counterterni, implicit in Fig. 3(b) is fixed in

1)
the on-shell renormalization scheme by the condition that the?tot —
renormalized vertex througtd(g?) evaluated at zero mo-

mentum transfer equals the leading contribufienie A*(q
=0)=—iey*]. This results in

Z,=1-9g°CeC,| — (3.22

PHYSICAL REVIEW D55 094032

consists of two contributions to the cross section: a two-body
term o(?) and a three-body terra® where

)= f

doo(;—; (AS+AD +da?| (326

and

o®=0y= 25, fz [M|%dI;. (3.27

As a check, these results may be integrated to give a total
rate and compared against the known next-to-leading order
result[73] taken from[74]:

004 Cel(32—8p?)Liy(1)

+(16—4p?)F3(t) +(2+p) V1 pFy(t)
+(8—2p2)In(t)In(1+1t)+(— 12+ 2p+ 7p3/4)In(t)
+(3+9p/2)V1-p], (3.28

where gy is the leading order cross section for producing a

The interference of the leading order diagram with the oneair of massless quarks given by

loop renormalized diagrams yields

2\ € v
_ o s I'l—e€) [4mpu, A_
dov=do| 5 F1=2¢) | sy, ¢ Ao
+da?, (3.23
with
. 1+8%2 1+8
Al——ZCF(l Zﬂ |nm ,
(3.29
. 1+8% 1+B8\ [sp
AY=Cr 2(1 TR B)In ﬁ)
1+ 1+p% 1 ,1-B
+3BIr‘ _ -4+ B —Eln 173
-B 28 _ 1-B 2,
+2|nm|nm+2u2m+§ﬂ ,
and
-~  8ma? B?—1 1-p
v 2( s I
do S1 Qq(z ) 4NCF B |n1+ﬂ
m?  tigty
o 13214 5 (325)
S12. sh,

4’

NQ? (3.29

gnp— y
0" 35, 4

and we have also defined

R (3.30

1+V1-p’
with p=4m?/s;, and

Fa(t)=Lix(—t)+In(t)In(1-1),

(3.31
Fu()=6 In()—8 In(1—t)— 4 In(1+1).

The next-to-leading order corrections are shown in Fig. 5 for
Js=11 GeV andn=m,=5 GeV. The two- and three-body
contributions together with their sum are shown as a function
of the soft cutoffdg. The bottom enlargement shows the sum
(open circleg relative to +5% (dotted lineg of the analyti-

cal result(solid line) given in Eq.(3.28. The result quickly
converges to the known result.

It is satisfying that the fully inclusive rate from the slicing
method agrees with that from Rdf74]. Having made this
necessary check, the results may be used to histogram a wide
variety of observables and to study various physics issues.
We refrain from any such studies here, and instead pass to
our second example.

B. Electron-positron annihilation to massless quark pair

The process to be studied in this section is similar to that

Observe that the sum of the soft and ultraviolet renormalize@f the last section, but with one key difference: the quarks

virtual terms is finite AS+Aj=0, as required27]. We are

are considered massless from the beginning. Therefore, in

therefore free to return to 4 dimensions with the finite re-addition to the final state soft singularities there are final

maindersAZ+ Ay . The final result for the)(as) correction

state collinear singularities. The leading order cross section

094032-12
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B T I e A The pole needs to be integrated over the soft phase space
according to Eq(2.17). To this end, define

0.4F

0.3F

[ (S35545) = f ds. (3.39

ozf S35545

ol (mb) o4 Using the masslessBE1) form of Eq.(3.12, the energy
F integral Eq.(3.13, and the angular integrals given in Appen-

0.0F dix B, the result is

0.50 EHH+H
0.48

= = 1 (1 2
g B l(Sas8as)= 5| 5~ ZInds+2In?6;|. (337
0.0 il | Ll | E Si2\ ec €
1072 1074 1073 1072
ds We may therefore write the final expression for the soft cross

. I section as
FIG. 5. The next-to-leading order contribution to the total cross

section for producing a massive quark pair in electron-positron an- T(1—¢) (47 2\ €
nihilation via single photon exchange. The two- and three-body dos=do® s € Fr
contributions together with their sum are shown as a function of the 27 I'(1-2¢€)\ spp
soft cutoff ;. The bottom enlargement shows the suopen s s
circles relative to+ 5% (dotted lineg of the analytical resultsolid N2 M1 s
line) given in Eq.(3.28. X €2 t—tA (3.38
with
1 =
0_ 2
do 28122 IM,|%dI", (3.32 AZZZCF,
is expressed in terms of tisummed and averagedhatrix AS=—4CeIn &, (3.39
element squared
. A5=4CgIn?5;.
i 2_ a2| tatias . . . . .
[M,|“=2Ne*Qg 2 € (333 The final state hard collinear cross section was derived in
12 Sec. Il B 1. The relevant splitting i$— qg. From Eq.(2.45
calculated from Fig. 1, and the two body phase space e have
2\ €
2%¢ [4m\¢ 1 ™ as T'(1—e€) [dmuf
S e I i 1-2e dod299= g0 —
sz 16#(312) F(l—E)fo Sin 0deo. (334) HC 27 ['(1-2e€) Si,
. . . . . Af99
In four space-time dimensions, integration over the phase % +AJ99) (3.40
space produces the result shown previously in B9.
For the QCD corrections we need the soft cross section |
(2.5), the hard-collinear cross secti¢®.25), the hard—non- Wit
collinear cross sectio2.26), and the virtual contribution. 4—qg_
The real emission diagrams are shown in Fig. 2 where the Al =Cr(32421n 4y),
quark lines are to be interpreted as massless. The two-to- 4—qg ) 5 (3.4
three body matrix element squarkd |2 needed to evaluate Ag =Ce[ 72— m73—In" 65
the hard—non-collinear cross section Eg.26 follows di- —In 8.(3/2+21n8y)].

rectly from Eq.(3.5 of the previous example by setting

=0 and evaluating the traces in four space-time dimensions. The interference of the one-loop diagrams in Fig. 3 with
The soft cross section Eq2.5 may also be obtained from he |eading order diagram yields the virtual contribution. In
the results of the last example by settimg=0 in Eq.(3.7)  Fig. 3, diagramgb) and(d) add to zero via the Ward identity.
giving Diagram (c) vanishes for massless quarks. This leaves dia-
gram(a), comprised of the vertex shown in Fig. 4 evaluated

2\ €
doe=dod 25 IA-e) [4mu for massless quarks. The result for the vertex is
s 27 T(1-2€) | sy, F B
S I,=(=ieQq)d;u(pz) v, u(p1)¥(0?),  (3.42
f (—)ds 335
P3-PsP4-Ps with
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2 € Frrrrm TorTTT T TorrTTT TorrTTT Tt

o Os dmpy | T'(l—e) 0010 =
NA)== 2. CF Z2 | Tai—20 : E
0.005 - =

1 3 w2 0.000 =

X ?+Z+4+F . (3.43 o) (@b) | ]

—0.005 — —
We may therefore write the final expression for the virtual :

Lo . -0.010 -
contribution to the cross section as

[ [ [

401075 E I—E
as I'(l—e) 477,ur2 € 3.75-10”
doy=do®| —
27 I'(1-2€)\ Sp» 3251075 E
A% A
X —22+?1+A” , (3.49 °
€ FIG. 6. The next-to-leading order contribution to the total cross
with section for producing a massless quark pair in electron-positron
annihilation via single photon exchange. The two-bddggative
Ay=—2Cg, and three-bodypositive) contributions together with their sum are
shown as a function of the soft cutoff with the collinear cutoff
v .= 64/300. The bottom enlargement shows the dompen circle
Ar=—3Cg, (3.45 relative to +5% (dotted line$ of the analytical resultsolid line)

given in Eq.(3.48.
AY=—2Cg(4—m?13).

The full two-body weight is given by the sumdog  examining the nature of the three-body phase space for this
+doy+2do]ic99. The factor of two occurs since there are case. Neglecting both initial and final state masses, four-

(A5+AL+2A3799)

two quark legs, either of which can emit a gluon. At this momentum conservation yieldg,= Sz4+ Szs5+ Sy5. The soft
+2A{799=0 as required27]. The finite two-body weightis (2.7), can be recast a&s< 5,5;,— Sgs. This is shown as the
given by region S in the plot 06,5 versussss in Fig. 7. Two collinear
(3.46 shown as the regions labeled C in Fig. 7. There are two small
' regions labeled “m” which are properly included in the col-
while the three-body contribution is given by — &, in calculating the hard collinear contributiopsf. Eq.
(2.35] these regions are excluded. They are also not in-
U(S)ZUHEZFJHEZ [M3|?dT;. (3.47  with some effort, it is possible to analytically evaluate the
12 required integral$2.33 over the m regions. The resilie-

point we have a finite result sino&5+A5=0 andAT+A]  region is defined byEs< Ss\/s;J/2 which, taken with Eq.
regions defined by the constraingsg or S;5<5.S1, are
O.(Z)ZI do 2
27
linear regions C. However, using a fixed upper limit of 1
1 cluded in the hard—non-collinear three-body integrations.
dived in Appendix G is that occurrences of IIn & in Eq.

A necessary check may be made by integrating these r
sults and comparing with the known analytic answer. The
contributions fromo(?) (negativé and o® (positive and
their sum are shown in Fig. 6 fofs=500 GeV as a func-
tion of the soft cutoff 55 with the collinear cutoff & —|  f— 8sp
= §,4/300. The known result may be found &6], for ex-
ample, and is given by

S45

C
as
o= ‘TOE3CF : (3.48
where oy is given in Eq.(3.29. The bottom enlargement d:s12 desi2
shows the sunfopen circleg relative to+5% (dotted line$ l
of the known result(solid line) given in Eq.(3.48. Very S C

good agreement is found belof¢~2x 10 3. 5 T %5

Before proceeding further, it is instructive to examine 12
some issues related to the cutoff dependence of this tech- FiG. 7. Thes,ys,s plane for electron-positron annihilation to
nique. As shown in Fig. 6, the answer converges to thénassless quarks showing the delineation into soft S and collinear C
known result fors;<10" 2 when §.= §4/300. We have im- regions. The triangles marked “m” give vanishing contribution for
posed the requiremerd. < §s which may be understood by §.<4;.

094032-14



TWO CUTOFF PHASE SPACE SLICING METHOD PHYSICAL REVIEW B5 094032

e Y
q
.‘Y*
(a) (b)
e q

FIG. 9. Leading order perturbative contribution to inclusive
photon production via photon exchange.
FIG. 8. Leading order non-perturbative contribution to inclusive

hot ducti ia phot h .
photon production via photon exchange 1 do ng

_ U_EZZN; QD 1(2). (3.51)
(2.47 are to be replaced by BIn 5,—Li,(5./5s). From the N B ]

properties of the dilogarithm function we note that the cor- Additionally, there are two- and three-body pieces that
rection term vanishes a8/ in the limit of small 8. . Ac- make up the leading order pe_rturb_atlve contribution. The
cordingly, the contributions from the regions denoted by m inF€ynman diagrams are shown in Fig. 9. Because there are
Fig. 7 may be made negligible by requiring,<d,. Of only final state collinear singularities present, the relevant
course, as’, and 5, become smaller the statistical errors on décomposition of the two-to-three contribution to the cross
the sum of the two- and three-body weights increase. In pracsection is into collinear and non-collinear terms=oc

tice, one must compromise between the errors induced by 9c- The collinear termc is handled as discussed in Sec.
larger cutoffs and the statistical errors. For many calculationd! B 2. In this case there are no soft singularities so the soft-
it has been found that choosing. to be 50-100 times collinear termsA®® are not present. The two-body piece fol-
smaller thand, is sufficient for answers accurate to a few lows from Eq.(2.60:

percent. Acceptable ranges fég must be determined on a

case by case basis, as illustrated by the examples shown here. 1 do®@ a M _
Furthermore, the sign of the deviations &sgrows differs T T4z ZZNE ;—:1 Qa‘Dy,f(z,Mf) (3.52
from process to process. M -

C. Electron-positron annihilation to photons once the replacement,— a is madeD v1(2,My) is as given

. . . . in Eq. (2.64 and may be expanded usirg., (x)=5(1
In this section we consider an example fragmentation pro-_ 2 _ S g :
cess, inclusive photon production in hadronic final states o{ X)+ O(a”) and D,(x)=0(a) for i=g,q. The leading

electron-positron annihilation, calculated to leading order in
the electromagnetic coupling. For pedagogical purposes
only the radiation of photons from the final state quark or ~ _ 1dy B =frag
antiquark will be included, i.e., initial state radiation will be Dya(zMp= | <7 o(1=2ly)Pogiy)
neglected. This process is different from the previous two
examples in that there are final state collinear singularities :ﬁf;gg(z), (3.53
only, and they are removed through the factorization proce-
dure. _— ) ) ]

The diagram for the leading order non-perturbative conWhereP™9is as given in Eq(2.65 with
tribution is shown in Fig. 8. The cross section from Eq.
(2.52 is 1+(1-2)%—ez?

Pro(z,€)= —————. (3.54)

yli
erm in « is therefore

dog'® "= dzD,4(2)dol © "%, (3.49
q

The final result for the two-body piece of the leading order

To simplify notation it is helpful to write the Born-level total perturbative contribution is

cross section fore*e*—>qa in terms of that fore*e” N
ot 1 do® a X |1+(1—z)2

el N 4
o dz 2N27-r 21 Q z

B oy
0'8+ei_>qq=NQ(210'8+e —ptp . (3.50 z2(1-2) 6.8
C

XIn
M{

+z]. (3.595
+a— + o +, -

We further denoteo§ © =" by o, and o © ~# * by

0, Taking into accounD ,4(2)=D,4(2), and lettingf

denote the quark flavor, we arrive at the result for the leadind he complementary non-collinear pieeg follows from the
order non-perturbative contribution matrix element represented in Fig. 9:
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q I
o<3>=if S [Myl2dr
25 c 3 3
4e® 2535 Sss  Sus .
- —N 4j_dl“( S Y
3s? Zl Qi ¢ °\sgSus Sus Szs
(3.56 ] r

We could now study the cutoff dependence numerically as in FIG. 10. Leading order contribution to Drell-Yan production of

the previous examples. However, the integration over phas% lepton pair via photon exchange.
space may be performed analytically and rather straightfor- 3) ng
wardly so we take this route to demonstrating #heinde- 1 do =Ni E 4| g 2(1-2)
2 Qf [_dX4
™ f=1 c
1— Xy zZ+ Xg4— 1

(1—x4)(z+x%x4—1)

pendence of the full result. To this end, consider, in the vir- o0,, dz
tual photon rest frame, the three-body phase space

(3.69

+ +
1 1 1 d®p,d3ps z+x,—1  1-x4

o|r3=§(277)5E—3 E S(\s—E3—E4—Eg).

This is to be integrated over the non-collinearégjion de-
(3857 fined by s45> 6.5 and sz5> 6.5 which is equivalent to +z
R +0.<X4=1—6.. The integral may easily be performed.
Let g* denote the virtual photon four-momentum. Takipg  Dropping terms of9(8,), the final result for the three-body
along thez axis and defining,=2E, /s, z=2Es/\/s we  piece of the leading order perturbative contribution is
may write the four-momenta as

1 do® N a % 4 l+(1_2)2| (Z)
— =2N— —In| | —2z|.
d=1s(1,0,0,0, (3.59 gu, dz 2 AT 2 5
(3.69
p5=z\/—§(1,0,0,]), (3.59 Adding the non-perturbative3.51), perturbative two-
2 body (3.59, and perturbative three-bod$.65 contributions
% we obtain the well known resul75,76|
S .
Pa=X4—(1,5in6,0,c089). (3.60 1 do_2N§ | & a L1+(1-2)?
U_WE_ ~ Qfy Dy(2)+ EQf—Z
Momentum conservatiog= ps+ p,+ ps gives
x| Z1-2)s (3.6
n———|1, .
e Sing.0 s Vs M2
p3= 3,—x475|n6, ,—x47cosa—z7.

(3.61) which is independent of. .

The mass-shell conditiopZ=0 can be used to fi€; as D. Drell-Yan
Our next example is that of the QCD corrections to lepton
\/§ —s pair production in hadron-hadron collisions which illustrates
ESZ?\/XPLZ +2x,42C0Ss0. (362 the method for handling initial state collinear singularities
developed in Sec. Il B 3.

i 3 _ 2 3, _ 2 The leading order contribution mediated by a virtual pho-
Writing d"p, =27 d cos6 EdE, and d°ps=4mEgdEs, the ton is shown in Fig. 10. The leading order partonic cross

phase space delta function may be used to perform the cosSection
integral. The invariantss,, S5, ands,s may then be written
in terms ofx, andz as

1 =
do¥=— M, |?dI" 3.6
S3s=S(1—Xy), 23122 IM,|*dT", (3.67)

Sus=S(z+x,—1), (3.63 is expressed in terms of tr(e_ummed an_d averag)ematrix
element squared calculatedrir=4—2¢ dimensions

33425(1_2). o 2
2_ 402
E |M2| € QfN

(3.69

2,2
[SERATE! )
— €

The three-body piece is now s?
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S F Vs1o
pl: T(laoy e 10131
(3.79
K2 _ s 1,0 0-1
ﬁg pZ_T(II"'II )'
(a) (b) . . .
Using these together with ER.12) we find
FIG. 11. Real emission contribution to Drell-Yan production of
a lepton pair via photon exchange. ti5= —2p1-Ps= — VS12E5(1—cosb,),
(3.79
and the two-body phase space tos= — 2Py Ps= — \S1E5(1+C0SH;).
2%¢ [4m\c 1 m Using the energy integral E¢3.13 and the angular integrals
S O I 12 .
drz_lﬁﬁ( 512) I'(l-e) fo sin*€0do. (3.69  given in Appendix B, we find

For the QCD corrections there are five pieces to consider: 1 /1 2
the finite hard—non-collinear partonic cross section Eqg. |(t15t25)=—<———
(2.26, the mass factorized hard-collinear cross section Eq. 2815\ 2 €
(2.74), which consists of two pieces, the soft part of the _ ) _
initial state factorization counterterms and the mass factoryve may therefore write the final expression for the soft cross

In 85+ 2 |n255) . (3.79

ization residualgthe G functions, the soft cross section Eq. section as
(2.22, and_ the_ virtual corrections. o _ _ Tag T(1—e) 477Mr2 €
Shown in Fig. 11 are the real emission diagrams that give dog=do’| —
|[M;|2. Defining the(summed and averagethatrix element 2m [(1-2¢)\ sp
squared as s as
2 1 s
X|—+— .
2 + . +Ay ], 3.77
- 1 1C
2_ " 41242~ F .
E |M3| 4e Qfg S§4 N ‘;[,' (37() with
S__
we find A>=2Ck,
W=t psy*pay” 1 {—tr[P2¥.(P1— Ps) Y D1V P2 Aj=—4C¢In &, (3.79
- pS) ’YV]/tiS_l— 2 tr[ lbz?’g( pZ_ p5) ')’Mpl')’a(pl A8:4CFIn255 .
—Ps) v, W tistos— [ P2y (2= Ps) Y*P1 7. (D2 Because the quarks are massless, there is a collinear sin-
2 gularity when the gluon becomes collinear to either of the
—bs) vol/tog)- 3.7 initial state quark lines. This singularity is removed through

the factorization program described in Sec. Il B 3. The soft-

The hafd—”on'co”'”e?“ partonic cross section Is obtained b?follinear pieces of the initial state factorization counterterms
evaluating the traces in four space-time dimensions. : .
2re given in Eq(2.74 as

There is a soft singularity when the gluon’s energy goes t

zero in the real emission diagrams. This contributes to the _ 2\ €
. . as I'(l—e) (dmu;
soft cross section presented in £g.22). The sum runs over do®=do% —
the initial state quark lineflabeled by 1 and 2 The color 2m I(1-2¢) | spp
connected Born cross sectiday,= — Crda®. We find s
X | —+A, (3.79
2\ € € 0
doeedod| 2 I'(l—¢) (47%) }c
Og—= U0 | 7—
S 27 I'(1-2¢€)\ si5 F with
s se— In 8¢+ 312
X | | ———]dS. (3.72 AT=Cr(2In6s+3/2),
P1-PsP2-Ps (3.80
The integration of the pole over the soft phase space measure AY=Cg(2In s+ 3/2)Ins—122.
(2.17 is written in terms of uf
(o) = 1 ds. 37 The one-loop virtual diagrams are shown in Fig. 12. As in
(tystzs) = tystos (3.73 the case for electron-positron annihilation to a massless
quark pair, diagramgb) and (d) add to zero via the Ward
In the p;p, center-of-momentum system we take identity, and diagrantc) vanishes for massless quarks. This
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The final finite two-body cross sectio_n is given by the sum
of the residualG terms from both theyq and qg initiated

=S —

% processes and the finite two body weights from dteepro-
cessAj+Aj+2A5. The result, summed over all parton fla-
vors, is

@ ®
ag ~
0_(2)= Z)Zf j dXAdXBdO'O
X[GialXa 1) Gia(Xg , 1) (Ag+ Ao+ 2A%)
S -
o +Gra(Xa,11) Gra(Xp s 1)

©) () ~,
+Ga(Xa, 1) Girg(Xg 1) + (Xa—=Xp) ] (3.83

FIG. 12. Loop and counterterm corrections to Drell-Yan produc-

tion of a lepton pair via photon exchange. -~ ) ) .
The G functions are given in Eq(2.75. The three-body

leaves diagranta) for which the vertex shown in Fig. 4 is contribution is given by
needed, for massless quarks. The result is given in Eq.
(3.42. The final expression for the virtual cross section is

o®= > dXadXgGi/a(Xa, 1)

27w I'(1-2¢€)\ s A
( 2 X Gjp(Xg,ur)daij, (3.89
v v

x| = +—=+A8], (380 . . o

e € with the hard—non-collinear partonic cross section given by

with
R 1 - -
Az=—2C¢, da”:—f > IM§V|2dr . (3.85
2812) He

Al=—-3Ck, (3.82

, Physical predictions follow from the sum(®+ o®) which
Ag=—2Cr(4—713). is cutoff independent for sufficiently small cutoffs. The re-
sults may be integrated to obtain the total rate @f

At this point we pause to note that the two-body weight iS>Qr2nin and checked against the know(a.) corrections

finite: AS+A%=0 andAj+Aj+2A3=0. The factor of two
occurs since there are two quark legs, either of which can
emit a gluon. S 402 1 q 1 q

In addition to thegq initiated processes, there are atgp 7= szmin Q sz,S XAsz,SXA X8
initiated processes at this order of perturbation theory, as
shown in Fig. 13. The singularities are initial state collinear dfrqq
only in origin and arise from the splitting in diagram(b). X HE,GHA(XA 1) Gjre(Xp w“f)d_Qz
They are removed by factorization. As tRg(z) kernel is 1=a.49
finite for z=1 there are no soft singularities. This implies

that theASterms in Eq(2.74) are not present; only the finite +_E,[Gi/A(XA 1) Ggra(Xg s 1)
G terms remain. a9
do
%, | L +43nyA4u>Guax54u)]d5§], (3.86

2

whereQ? is the square of the lepton pair invariant mass and
G Sis the hadron-hadron center of mass energy squared, which
@ ®) is related tos;,, the parton-parton center of mass energy
squared, vias;,=xxxgS. Defining z=Q?/s;,, the O(ay)
FIG. 13. Quark-gluon initiated contribution to Drell-Yan pro- hard scattering partonic subprocess cross sections are given
duction of a lepton pair. by [77]
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FIG. 14. The next-to-leading order quark-quark contribution to
the Drell-Yan cross section. The two-bodyegativeé and three-
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FIG. 15. The next-to-leading order quark-gluon contribution to
the Drell-Yan cross section. The two-bodyegative and three-

body (positive contributions together with their sum are shown as abody (positive contributions together with their sum are shown as a

function of the soft cutoffé; with the collinear cutoffé,= §4/50.
The bottom enlargement shows the s(mpen circle relative to
+5% (dotted line$ of the analytic resultsolid line) given in Eq.

(3.87.

doqq

dQ?

n(1-2)

+

=005 CF[4(1+22)

(1+2%) w2

1-z

Inz+
3

—8)5(1—2)
Q2

|n—2'
%

2P (387

and

3, 3,
72t 357

(1-2)?
Z

ag 1

90572

d"qg

dQ?

Q2
— 1+,
Mt

+2Pg4(2)| In (3.89

where

47a’Q;

NS, (3.89

Oo=

Paq(2) and Py (2) are the splitting kernels given in Egs.
(2.55 and(2.58.

We show numerical results for the cutdfi)dependence
for proton-proton collisions at/S=28.28 GeV withQ,,,
=10 GeV. Hard scales are set to the lepton pair mass
= u,=Q and the number of flavors taken to be= 3.

Shown in Fig. 14 is the next-to-leading order quark-quark

contribution to the Drell-Yan cross section. The two- and
three-body contributions to the cross sectioegative and
positive, respectively and their sum are shown as a function
of the soft cutoff§;. The collinear cutoffé,= 6/50. The

function of the collinear cutoff,. The bottom enlargement shows
the sum(open circlegrelative to+ 5% (dotted line$ of the analytic
result(solid ling) given in Eq.(3.88).

bottom portion of the figure shows the suimpen circleg
relative to =5% (dotted line$ of the analytic resul{solid
line) given in Eq.(3.87).

Finally, we show the next-to-leading order quark-gluon
contribution to the Drell-Yan cross section in Fig. 15. The
two- and three-body contributions and their sum are shown
as a function of the collinear cutoff,. The bottom enlarge-
ment shows the surfopen circles relative to+5% (dotted
lines) of the analytic resultsolid line) given in Eq.(3.88.

In both cases, nice agreement is seen with the known
analytic result, providing a cross check on the use of the two
cutoff phase space slicing method.

E. Single particle inclusive cross section

Our final example is that of the single particle inclusive
cross section in hadron-hadron collisions. The input needed
for this calculation includes the squared matrix elements for
the 2—3 subprocessel78] and the results for th€(a?d)
one-loop contributions to the-22 subprocessd87,78. For
the purpose of this example, the notation [8f] will be
used, since much of the input needed can be found in the
appendixes of that paper. The partons are labeled-a8
—1+2 andA+B—1+2+3 for the 2-2 and 2-3 sub-
processes, respectively. A flavor latsg| is used to denote
the flavor of partorA, and similarly for the other partons.

The lowest-order contribution to the inclusive cross sec-
tion for producing a hadrom in a collision of hadrons of
typesA andB can be written as

doB= !

Ga, 1a(Xa)Ga, 18(Xp)
2XAXBSaA,aB,al,a2 ap/ ag/

(4mag)?
mlﬁ(“ (a,p)dr,
(3.90

where a={a,,ag,a;,a,} and p={p%,p&,p¥,p4} denote

X Diya,(z1)dXadXgdzg
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the sets of flavor indices and parton four-vectors, respec- (1IN—2n;)/6, a=gluon,
S\I/\;aéyr/] g’;e factors appearing in the spin/color averaging are V(a)zlch/Z, a=quark or antiquark.

It will be convenient for subsequent expressions to adopt the

2(1=€)V,  a=gluon, following notation:

w(a)= 2N, a=quark or antiquark,

with N=3 andV=N2-1. The factordI', is the differential
two-body phase space element from ER.11). Equation
(3.90 gives the contribution where parton 1 fragments into
the hadrorh. Care must be taken to explicitly include in the The one loop virtual contributions can now be written as

sum overa those terms corresponding to the case where

3 47T/.L2R)er(l—6)
| 2pa-ps/ T(1-2¢)°

(3.93

parton 2 fragments intb. For compactness, these terms will . 1

not be explicitly written. The squared matrix elements for the do’= DXpXGS 2y 4 Ga, /a(Xa) Gag 18(Xp)
- > ACB 91

various subprocesses, denoted #¥(a,p), may be found )

in Ref.[37]. (4may)

Next, consider the one-loop virtual corrections to the 2 X Dhya,(21)dXadxgd2,

w(aa)w(ag)
—2 subprocesses. These take the form

as (A AL
1 X]:Z —2+?+A0 dr, (3.99
do © 2XaXgS aA,aBE,al,az Gay 1a(Xa) Gag /6 (Xs)
X Dhya,(21)dxadxgdz; where
(4mag)? as 477,qu ‘T(l-e) _2 C(an)¢(4)(§ 5) (3.95
w(aa)w(ag) |27 | 2pa-ps/ I'(1—2¢) n
x y(a,p)dr’, (3.9
— @4 (ap
where ; y(an) ¢ (a,p)
1 Pm" P
- - - - 1 1 = m'Pn| (40
yO@p)=yap)| -5 2 Cla)—- 2 @) +5 mE (pA )¢ (@,p), (3.96
€ " n m#n
1 pm'pn)
+— > In(— yi9(a,p) 2 o o
e qn PP == S @ +ulan. @9
’IT2 N 6
% > yD(ap)+ o )(a p)+O(e). Next, the contributions from the-2 3 subprocesses in the
n

limit where one of the final state gluons becomes soft are
(3.92  needed. The contributions of the-23 subprocesses may be

written as
This expression for(®) differs slightly from Eq.(35) in Ref.
[37] because we have chosen to extract a diffekedepen- 1 (47ary)?
dent overall factor: a factor ofl'(1+€)l'(1—¢€)~1 do2—3= T
+ 27?16 has been absorbed into the above expression for 2XaXgS W(aa)W(ag)
(®. Furthermore, the arbitrary scal@ s used in Ref[37],
in order to match the conventions used elsewhere in the X > Ga, /a(Xa)Gap/a(Xs)
present work, has been chosen to g 2g. The expres- 8a-8p.81,82,33
4 6
sions for the functlonsb( 9 and y$2 may be found in Ap- X Dyya (21)dXadXdZ;
pendix B of Ref.[37]. The guantitieC(a,,) and y(a,) are
given by XWV¥(aa,ag,a;1,82,83,P4,Pg.P1 . P5 . p5)dl ;.
N=3, a=gluon, (3.99
Cla)= c _f a=quark or antiquark The expressions for the-23 squared matrix elements ap-
3 -d q ’ pearing in Eq.(3.989 may be found in Ref[78]. As noted
earlier for the two-body contributions, one must include in
and the sum all possible parton to hadron fragmentations.
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Consider the case where the soft gluon is parton 3. In thisising the integrals given in Appendix B. The resulting soft

limit, the function¥ may be expanded as contribution may be written as
V(aa,ag,a1,82,a3,Ph,PE.PL . PY . P5) do®= ! G, a(Xa)Ga. s(Xp)
ArA4B 1 A1,42,43,MaAMB M1 1 M2 1 M3 2XAXBSaA,aB,a1,a2 aA/A A aB/B B
Pm:Pn 2
~ > S g (47 a)
3.9 . . X - >
inn Pm* P3Pn- P3 Dh/al(zl)dXAdXBdle(aA)W(aB)
X‘//(4C)(aAaaBaalaaZapAvaapl p%). (3.99 as [AS A
sz —2+?+A8 dr, (3.100

Next, one must integrate over the soft region of phase
space defined byEz<85y2pa-pp/2. This is easily done where

=> C(a)yW(a,p), (3.101)

Pm:Pn

(40)
o pB> yEo(a.p), (3.102

- 1
Ai=-2In6,3 Clan@p -5 > '”(
m;&n

(pl'ps)—FLiz( P2-P3

+21n 5In( Pa- p3”
Pa-PB Pa-Ps p

AP

=2 |n252 Clan) p@(a,p) + (P9 + w‘“))

(3.103

pz-p3)+Ll (pl P3

pz'ps)
Pa‘Ps Pa-Ps '

AP

(D) + (4c>)[ +21In8dn (

After the collinear singularities associated with the two 2P Pe
parton distribution functions and the fragmentation function Ag"":E [2Ind6sC(a,) + y(a,)]In >
have been factorized and absorbed into the corresponding AB Mt

bare functions, there will be soft-collinear terms left over due )

to the_ mlsmgtch between the integration limits of the collin- +[21n5,C(ay) + ¢(a;)]In Pa-Ps
ear singularity terms and the factorization counterterms. In ?
addition, there can be collinear singularities associated with

the non-fragmenting parton in the final state, corresponding +v'(az). (3.106

to gluon emission ogq production. Collecting together both

types of collinear terms, the result can be written as follows:
Here u; and M; are the initial and final state factorization
scales. The functiony’(a) is given in terms of the hard

do®'= Ga. a(Xa)Ga 5(Xg) collinear factors of Eqs(2.46—(2.51) as
2XpXgS apag.ag.ay A B
X Dpya. (21)dXadXgdZ _(4may®
et TR  w(ag wiag) AJ799,  a=quark or antiquark,
"(a)= — 3.10
s ion coll v A3~99+A8%,  a=gluon. (3.107

After the mass factorization has been performed, the bare
where o . . .
parton distribution functions and fragmentation functions

have been replaced by scale depend?ﬁtfunctions. In ad-

dition, there are finite remainders involving ti@ and D

A= 21In8.C(a,) + , 3.10
: 2[ n8.Clan) + y(ay)] (3105 oL ¢
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~ 1 (4mag)?  as

o= s
2XaXgS a, ag.a;.a, W(@a)W(ag) 27

dxadxgdzy (@, p)dl' 5[ Ga, ja(Xa . 1) Gay 18(Xe »14F) Dpya, (21, M)

+Ga, a(Xa 15)Gay 8(Xp ,4F) Diya, (21, M7) +Gq, a(Xa . 45) Ga 5(Xe » 45) Diya, (21, MF) . (3.108

At this point, all of the singular terms have been isolatedhadronic final states of electron-positron annihilation was
as poles ine or have been factorized and absorbed into theresented, illustrating the use of fragmentation functions. Fi-
bare parton distribution and fragmentation functions. Ehe nally, the QCD corrections to lepton pair and single particle

dependent pole terms all cancel among each other: production in hadron-hadron collisions were given. These
examples include both initial and final state soft and collinear
AZ+AZ=0, (3.109  singularities. The use of scale dependent parton distribution
b s ol and fragmentation functions was explained._ _ _
1TATtAT=0. (3.110 The Monte Carlo results, integrated to give an inclusive

cross section, were shown to be in complete agreement with

The finite two-body contribution is given by those available in the literature. This is not the end of the

(4rray)? utility of the method, but only the beginning. Given the full
do?2=doB+do+ — = access to the parton four-vectors and corresponding weights,
XaXBS ay ag a2, W(8a)W(3g) we are free to combine them in any way that is consistent

with an infrared-safe measurement function, which may in-

clude a jet finding algorithm and experimental cuts.

@, The method has been applied to a wide range of hard

X ——[AY+ A+ A dxadxgdz,dl,.  (3.111)  scattering processes and it has been found to be both simple
2m to implement and numerically robust.

X Ga, a(Xa 1) Gay 8(Xp ,4F) Diya, (21,M7)

The three-body contribution, now evaluated in four dimen-
sions, was given in Eq.3.98 where now the soft and col-
linear regions of phase space are excluded. ACKNOWLEDGMENTS
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IV. DISCUSSION AND CONCLUSIONS APPENDIX A: COMPARISON WITH OTHER METHODS
A technique for performing next-to-leading-logarithm cal- 1o eggential difference between the phase space slicing

culations using Monte Carlo techniques was described in d&sq the subtraction methods may be gleaned from the fol-
tail. The method uses two cutoff parameters which serve tq,

separate the regions of phase space containing the soft aeglv;rt]gd:smple exampl¢37]. Consider an integral to be cal
collinear singularities from the non-singular regions. The
main derivations for experimentally degenerate, tagged, and
heavy quark final states were given, as was a discussion of 1dx 1
initial state factorization. We provided five illustrative ex- = lim [j —XF(x)— —F(0) !, (A1)
amples applying the method. o+ Jo X €

The first example was that of the QCD corrections to
electron-positron annihilation into a massive quark pair. The
quark mass serves to regulate any would-be final state colwhereF(x) is a known but complicated function related to a
linear singularities. The final state soft singular region is detwo-to-three body matrix element. The variabkleepresents
lineated using one cutoff. The second example was that ofither the energy of an emitted gluon or the angle between
QCD corrections to electron-positron annihilation into atwo massless partons. In a traditional fully or single particle
massless quark pair. In this case final state soft and collineanclusive calculation the integralwould be performed com-
singularities are encountered. Both soft and collinear cutoffgletely analytically.
are therefore required. They should be chosen such&hat In the subtraction method one simply adds and subtracts
< 65. The third example of inclusive photon production in F(0) under the integral sign:

094032-22



TWO CUTOFF PHASE SPACE SLICING METHOD PHYSICAL REVIEW b5 094032

1dx 1 A large collection of these appear in the appendix &f].
I'= lim [J < XTFC)=F(0)+F(0)]-_F(0) Others may be found in the appendix [@f5] or else com-

0 puted as explained ifi70]. Here we collect together the re-
1dx sults covering most of the cases encountered using the two
:f —[F(x)—F(0)], (A2) cutoff slicing method. The first two are frof#5] with A?

0 X #B2+C%

giving a finite and numerically calculable result. No approxi-

mations are made; however, in any numerical implementa- I~y
tion there will necessarily be a lower limit related to machine 1OD= 7 In ATVBHC —(n—4)
precision below which the integral must be cut off. This is VyB%+C? A—B?+C?
not a problem in practice.
In the phase space slicing method, the integration region oL 2\B?+C?
is divideq into two.parts @Ex<.5 and 6<x<1 with 6<1. A E: A+ B2+ C?
Maclaurin expansion of (x) yields
— i sdx E +£|n2 w (B2)
= lim | ] 5xFO0 N
+fldx F(x) 1F(O)
_XE X)— —
s X € 1002 _m 1—£(n—4)—A
2 2 2 2 2
fldx A?—-B2-C 2 VB?+C
= | —F(X)+F(0)In &+ 0O(5). A3
X FOO+F(©) (5) (A3) N
XIn| —=== |, (B3)
Clearly, the parametef must be chosen small enough so that A—\B°+C

the term linear ind may be neglected. At the same time it

must not be so small as to spoil the numerical convergence
of the first term. where we drop?((n—4)?) terms. The second two are from

[69] with b= —a. If A2=B?+C?
APPENDIX B: SOFT INTEGRALS

In evaluating the soft integrals we encounter angular in- |(LD_ o 1 1 [A+B a3
tegrals which may be written in the form n T aAN—4| 2A
|(k"):JWd9 sin" 3¢ dea sin" =4 Linoaa|AB
n o 1], 9% 2 X 1+4(n 4)“Li, oA || (B4)
a+bcosf,)
( ) B
(A+Bcosf;+Csinfd;cosb,) whereas ifA%# B?+ C?
|
. T 2 (A+B)? TN A-\B?+C? 1 _[A+{B*+C?
" aare) |na T gz T 2N AT ) 2 am e
oL B+ B2+C? oL B— \B?+C? 85
i NN o B B e ’ (59

again dropping?((n—4)?) terms in the second of these. The a 45 singularity as it pertains to the discussion given at the
dilogarithm function Lj(x) is defined in[79] and numerous end of Sec. Il B. Recall that this region is defined by
useful properties are summarized[B0].

i VS12_ . _ VS12
APPENDIX C: RECOVERING THE O(4./6;) TERMS hard: = 6s——<Es<——,
In this appendix we integrate th&,(z, €) splitting kernel
over the hard-collinear portion of phase space for the case of collinear:  0<S45< 5:S1>. [(o%))]
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From Eq. (229 we have sz =(ps+ps)2=2p3-Ps
=(2p3- P49)Z ands;,= (P3+ Pag) *=Sss+ 2P3- P45 Which to-
gether yield S3,=2(S15—S45). USing Es=(S1o—S34)/2V/S1>
the hard condition becomes

1-6,

< T=seisy, (C2

0=z

The approximation made in Sec. Il B 1 was to sgi=0 in

the denominator, in light of the collinear condition. This re-
sulted in a decoupling of the and s,5 integration limits in
Eq. (2.36. Relaxing thes,s=0 approximation gives rise to

termsO(6./65) as now described.
Keeping thes,s dependence, the required integral is

| J’ (sCle d 545( 545) €
0 Sys |\ S12

f(l— 05)/(1=s45/517)
X

. dZ z(1-2)] “Pyq(z,€). (C3)

We may expandP,4(z,€) aboute=0 and make a change of

variablesu=s,5/s;,, giving

60
|=ch u~ 1" €F(u)du, (C4)
0
with
(1765)/(1fu)d 1+72
F(u)—f0 Z 1 —€(1-2)
I 1 Lz C5
—eln[z(1-2)] 57— (C5)
F(u) may be evaluated with the help of
ad 1+22_ 1 2 21In(1 C6
fo 27—y =—a1+5]-2In1-a), (Co)
a a
fdz(l—z)=a 1——), (C7)
0 2
fad InZ—L' 1 m Cc8
941 Ip(1-a)- &, (C8)
J'ad In(1-2) 1I 21 co
. z——, — 3In"(l-a), (CY
Jad ZInz_ L a L aI
. =2 +Z —a +§ na
2
+Li2(1—a)—€, (C10

PHYSICAL REVIEW D55 094032

jad ZIn(1-2) 3 L a (1
N T B R Cl
3 1-|—a 1| 1
X E—a E —En( —a)|.

(C11)

The resulting terms itfr (u) may be integrated over using

o . [1-6) 1 ,
f duut¢ =|-Z+ma), =012,
0

1—u
(C12

Pd R | N S R
, duu n 10|~z tInd|ins

—Liy(8:/6s) (C13
for the terms multiplied byo(€°) in Eq. (C5), and

Sc 1-6 1
—1—€1n2 S| — 2
fo duu In (1 1 u>_ eln s, (Cl19

Jﬁcd 1 170 i| TR B TR S
, dud Tou) T a0 15 hs
(C19

S 1-68,\" [1-6

—1—¢€ S S| _ P
fo duu (1_u)ln(1_u)—0, i=1,2,

(C16)

5 _ 1— 68,
f duu 1L, 1— =0 (C19)

0 1—u

for the terms multiplied byO(e') in Eq. (C5). Terms con-
taining or leading to contributions d@P(5;) or O(J;) have
been dropped. Taking the coefficients o ahd e gives the
desired result:

AJ799=C(3/2+21In 5y), (C19
AJ799=C[7/2— 7%13—In? 5+ 2 Liy( 5./ 55)
—In 8.(3/2+21n8y)]. (C19

The second equation is identically EQ.47) with the addi-
tion of the advertised L{d./5s) term. A similar analysis
may be performed for th®y splitting case with the same
result: InéJn ,—In &lIn 8,—Liy(./5s).

APPENDIX D: IMPROVING CONVERGENCE OF TILDE
TERMS

We want to demonstrate how the numerical convergence

of the D and G functions may be improved. To this end
consider the integral
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1-ssdy ~ vergence will be improved if we rewrite the result in a form
FFJ VGJ(X/%M)Pij(y)- (D1)  where the logarithmic dependence énis manifest. To do
X so, use the fact that
with
lim[(1-y)Pjj(y)]=2C;&, (D3)

1=y s y—1

ﬂf

F>i,-(y>=Pij(y>ln( ) Pi(y). (D2

with C4=N andC,=Cg. Now add and subtract the leading
Here a logarithm ofs; is being built up numerically. Con- singular piece under the integral sign:

_ 1=osdy —Y Sz 1511 1-ysp
Fi= ~ | Gy, )Py (Y)In| 8e—= =5 | = G;(x/y, w)Pij(¥) = Gj(X, ) 7 —7IN| Se—— —
x y wf Y Yo i
2C; 5;i 1-ys
Gyt m) Tin| 8, 22 (D4)
Yo
Regrouping terms gives
~[rssdy 2C; 6 1-ysp
Fi= Gj(Xly,m)Pij(y) = Gj(X, ) 7 In| oc——— | =G;(X/y,u)Pjj(y)
X y y ,(Lf
Ci5|1 1- Y S12
+G;(X, In| 50— — | . D5
00 T V2 ] (D5)
The last term may be evaluated with the help of
1-55 dy 1—y) 1 ads 1 Ja(l—x)
a =—=In?| —— |+ 5In? : D6
J, s 2" 152 (09
The final desired expression is
512 1_X 312 55 lf&sdy
Fi=Ci8,G(x,u)| In?| 6;— ——| —In?| 6.— +f —1| Gj(xIy,u1)P;;
i i Oij j( ) ( CM% X ) chZ 1_5s> . y ]( ) |J(Y)
C, 6i; l1-ys
~Gi(x) Ty |l o = |~ Gy, mP.J(y)] (D7)
,U«f

The Iné; is now evident in the first term, and absent from the second integral term. Numerical convergence will therefore be
greatly improved.
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