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DIFFERENTIAL
APPROXIMATIONS

In dealing with small differences such as
changes or uncertainties in measured
quantities x, we often wish to know how
large a difference this will cause in a
calculated result f(x).  A simple
approximation for the relation between these
differences ∆f ≡ f (x) − f (x0)  and ∆x ≡ x − x0
is therefore very useful, and a rough
understanding of the nature of the
approximation, and of higher order terms in
the series for the exact difference is helpful.

For most purposes, the ratio of the
differences is extremely well approximated
by the derivative,

f (x) − f (x0)
x − x0

≡ ∆f
∆x

≅ df (x0)
dx0

≡ ′ f (x0) (1)

This is often called a   differential
  approximation   since it become an exact

relation (the definition of the derivative) in
the limit of the differences becoming
differentials, that is, infinitesimally small.
This is valid in discussions of uncertainties
since uncertainties are presumed to be quite
small and, moreover, only need to be known
approximately, even for extremely accurate
results (for example, f may be measured to
an accuracy of eight parts per million while
the eight parts accuracy might only be
determined to be between seven parts and
nine parts.)

For a proof and further understanding of the
differential approximation (1) we may use
the Taylor’s series (see Eq. (1) in our section
“Series Expansions”) in the form

∆f
∆x

= ′ f (x0) + ′ ′ f (x0)
∆x
2

+ ′ ′ ′ f (x0 )
(∆x )2

6
+⋅⋅⋅ .

 (2)

This not only becomes the differential
approximation in the limit of small ∆x , it
also provides an exact expansion for ∆f  that
can be used for other purposes.  For
example, if we happen to have ′ f (x0 ) = 0 ,

then the differential approximation ∆f
∆x

≅ 0

may be too simple and can be improved to
∆f
∆x

≅ ′ ′ f (x0 )
∆x
2

.  This also clarifies the relative

meaning of “small”, using the terminology
“n-th order” for an effect proportional to
(∆x)n .   Thus the second order term

′ ′ f (x0 )(∆x )2 / 2  is small compared to the
first-order differential approximation
∆f ≅ ′ f (x0 )∆x  unless the first-order term is
zero ( ′ f (x0) = 0).   The importance of this
distinction may be seen by considering the
effect of an “order-of-magnitude”
improvement in a measurement x (that is,
improvement sufficient to reduce its
uncertainty by a factor of 10).  If this has a
first-order effect on a calculated quantity f,
then the uncertainty of that quantity f is
improved by an order of magnitude, say
from ± 20% to ± 2%; but if this were a
second-order effect, the improvement would
be two orders of magnitude, from ± 20% to
± 0.2%!

For function of   two    variables, the Taylor’s
series for the difference
∆f ≡ f x,y )− f (x0y0( )  is

∆f = f x ∆x + fy ∆y + f xx
∆x( )2

2

+ f yy
(∆y)2

2
+ f xy (∆x )(∆y)+⋅⋅⋅

(3)

where the notation may be deduced by
comparison with the geometric examples
below or Eq. (4) in the section on Series
Expansions.

A geometrical view   of these approximations
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is that any smooth curve y=f(x) is well
approximated near any point y0 = f (x0)  by
the line

y = y0 + (x − x0 ) ′ f (x0 ) (4)

that is tangent to the curve at that point.
Near any   minimum   or maximum point
( ′ f (x0) = 0)  the curve is approximately the
parabola

y = y0 + (x − x0 )2 ′ ′ f (x0 )/ 2; (5)

′ ′ f (x0 ) > 0  for a minimum, ′ ′ f (x0 ) < 0  for a
maximum.  A smooth surface in three
dimensions, z= f(x,y), is well approximated
near any point z0 = f (x0 , y0 )   by the   tangent
   plane   

z = z0 + (x − x0)
∂f

∂x0
(x0 , y0)

+(y − y0)
∂f

∂y0
(x0 , y0 ).

 (6)

Near a    minimum    or maximum
∂ f

∂ x
=0 and

∂ f

∂ y
=0( )  any surface is approximately

the    elliptical paraboloid

z = z0 + (x − x0)2

2

∂ 2 f

∂x0
2 (x0 ,y0 )

+ (y − y0)2

2
∂ 2 f
∂y0

2 (x0 , y0 )

+(x − x0)(y − y0)
∂ 2 f

∂x0∂y0
(x0 ,y0);

(7)

the z=constant cross sections are ellipses
whose major axis is not along the x or y axis

unless ∂ 2 f

∂x∂y
=0.   As in (5), (7) is a minimum or

maximum depending on whether the sign of
∂ 2 f

∂x2 and
∂ 2 f

∂ y2
 is positive or negative; if

∂ 2 f

∂x2 and
∂ 2 f

∂ y2
  have opposite signs, the point is

neither a maximum nor minimum but is the
saddle point in a hyperbolic paraboloid.


