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ERRORS AND UNCERTAINTIES

No measurement is exact.  A knowledge of
the non-exactness of a measurement is
important especially when trying to define
how “good” or useful a certain result is.  For
physics experiments we need quantitative
words to describe how close a result is to the
expected answer and how reliable or
reproducible our results are.

The questions following the section are
meant to illustrate certain concepts.  Your
TA may assign some as homework, or work
them out as examples. It is recommended
you look them over whether or not you work
them out.

Since  the study of errors and uncertainties
is a field in itself (statistics and numerical
analysis) we can not answer all questions in
this short section.  However, for any
students wishing to pursue further study we
recommend the references:

Hugh D. Young,   Statistical Treatment of
  Experimental Data  , McGraw-Hill, 1962.

N.C. Barford,   Experimental Measurements:
  Precision, Error and Truth  , Addison-
Wesley, 1967.

Philip R. Bevington,    Data Reduction and
  Error Analysis for the Physical Sciences  ,
McGraw-Hill, 1969.

John R. Taylor,   An Introduction to Error
  Analysis; The Study of Uncertainties in
  Physical Measurements  , University Science
Books, 1982.

William Lichten,    Data and Error Analysis in
  the Introductory Physics Laboratory  , Allyn
& Bacon, 1988.

     OUTLINE OF TOPICS        PAGE    

A. Definition of Error UNC-1

B. Types of Error UNC-2
Illegitimate Error
Systematic Error
Random Error

C. Measures of Error UNC-2
Accuracy
Precision

D. Definition of Uncertainty UNC-2

E. Notation of Uncertainty UNC-2
(and Error)

Absolute Uncertainty
Relative Uncertainty
Percent Uncertainty

F. Propagation of Uncertainties UNC-3

1.  General Formula UNC-3
a.  Functions of one variable
b.  Functions of two or more 

variables
2.  Specific Cases UNC-3

a.  Addition or subtraction
b.  Multiplication or division
c.  Powers

3.  Approximations UNC-4

G. Estimates of Uncertainties UNC-5

1.  Instrumental Accuracy UNC-5
2.  Experimental Precision UNC-5

a.  Average and standard 
deviation

b.  Uncertainty in the average

H. Significant Figures UNC-7

Rules of Thumb UNC-8

Questions UNC-8

A.      DEFINITION OF ERROR    

ERROR is defined as the difference between
an observation (either directly measured or
calculated from measurements) and the true
value:  Error = Obs.-True.  This can be
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remembered mnemonically as “the true
value is the observed value minus the error.”
(Note the “true” value is not often known
since it is the usual reason for doing the
experiment!  We find then that we will need
another concept, the     uncertainty    , which is an
   estimate    of the error).

B.     TYPES OF ERROR    

ILLEGITIMATE ERROR is that error
introduced by outright blunders. An example
would be misreading a ruler or a
calculational mistake.

SYSTEMATIC ERROR is a reproducible
inaccuracy introduced by imperfect
equipment, calibration, or technique.  An
example would be a shrunken meter stick
which would cause measurements to be
consistently too high.

RANDOM ERROR is a measure of
fluctuation in results during repeated
experimentation.  An example would be
measuring the period of a pendulum three
times and getting 3.1, 3.3, and 3.2 seconds.

C.      MEASURES OF ERROR    

ACCURACY is a measure of how close a
measurement comes to the “true” value.  In
other words, it is dependent on how well we
can control or compensate for    systematic    
errors (and eliminate illegitimate errors).

PRECISION is a measure of how “exactly”
the result is determined without reference to
any “true” value.  In other words, it is
dependent on how well we can overcome or
analyze    random      errors.

D.      DEFINITION OF UNCERTAINTY     

Uncertainty is an    estimate    of the systematic
and/or random errors inherent in the
measurement or calculation.  Often we
cannot know what the “true” value is, and
therefore cannot say what the actual error is.
However, random errors can be estimated
from repetition of measurements and
systematic errors can be estimated from

understanding of the equipment and
technique.  NOTE the technical words
“error” and “uncertainty” are     often used
   interchangeably     since the latter is an
estimate of the former.

E.      NOTATION OF UNCERTAINTY     
   (and ERROR)   

ABSOLUTE UNCERTAINTY indicates the
magnitude of the uncertainty in the result in
the    same units    as the result.  We will use the
symbol1 σx for the absolute uncertainty in
the quantity x.   For example, an uncertainty
of σ L = 2cm  in a length L of three meters
would be expressed as L = 3.00 ± 0.02m.

RELATIVE UNCERTAINTY indicates the
uncertainty as a fraction of the result.  For
our previous example the relative
uncertainty is

±0.02meters
3.00 meters

= ±0.007.

PERCENT UNCERTAINTY is just the
relative uncertainty multiplied by 100% to
express the fraction as a percentage.  We
will use the symbol (please refer to previous

footnote) ex  to represent the percent
uncertainty in the quantity x.  Thus in our
previous example the percent uncertainty in
L would be:  ±0.007(100%) = 0.7%.  The
relationship between absolute and percent
uncertainty can thus be expressed:

ex =100%
σx

x
 
 

 
 (1)

σ x = x
ex

100%
 
 

 
 (2)

                                                
1 Symbolic notation for uncertainties is not
standardized.  Some authors use the symbol sigma
(σ )  to specifically denote standard deviation.  Often

a capital or lower case delta (∆xor δx)  is used to
denote absolute uncertainty in the quantity x.  The
symbol (e) is not standard at all.
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F.     PROPAGATION OF UNCERTAINTIES    

Any calculations using quantities which are
uncertain will lead to uncertainty in the
result.  For example if z is a function of x, as
z = f(x), then an uncertainty σx in the
quantity x will give us an uncertainty σz  in
the quantity z : z ± σz = f (x ± σ x ).  Thus we
could find the uncertainty in a calculated
quantity from the differences

±σ z = f (x ± σ x ) − f (x ) (3)

For example, if we measure the side of a
square to be x = 3.0 ± 0.05cm  then the area
of the square z = x2  is uncertain by the
amount σ z = ±0.3cm2  [since (3.05)2 = 9.30
= 9.0 + 0.3 and (2.95)2 = 8.70 = 9.0 - 0.3].
Note the distinction between “+” or “-” sign
in Equation (3) is unnecessary for    small    σx
(see Question 8).

1. GENERAL FORMULA

a. Functions of one variable

Utilizing the definition of a derivative we
find Equation (3) for small uncertainties (see
Question 9 and section on Differential
Approximations) can be written as:

σ z = σ x
∂f
∂x

(4)

In our example above, dx2

dx
= 2 x  so Equation

(4) yields σ z = σ x (2 x) = 0.3cm 2  as before.

b. Functions of two or more variables

Where the quantity z is calculated from two
(or more) variables x, y, w which are
independent,2

                                                
2Two quantities x and y are correlated or   not
independent if, for example, a high value of x is more
likely to be observed with a high value of y  than with
a low value of y.  In general where the quantity z is
calculated from correlated quantities x and y:

z = f(x,y,w)

the uncertainty in z is found from combining
the uncertainties in quadrature (square root
of the sum of squares):

σz = σ x
∂ f

∂x

 
 

 
 

2

+ σy
∂ f

∂y

 
 
  

 

2

+ σw
∂ f

∂w

 
 

 
 

2

(5)

2. SPECIFIC CASES

General formulas (such as Equation (5)) are
often pleasing to the student and TA because
they are all-encompassing.  However, they
can often degenerate into busy-work

                                                                        
z = f(x, y) (6)

the absolute uncertainty σz  in z is given by:

(σz )2 = (σ x )2 ∂f
∂x

 
  

 
  

2

+(σ y )2
∂f

∂y

 

 
  

 

 
  

2

+ 2σ xy
2 ∂f

∂x

∂f

∂y

 

 
  

 

 
  

(7)

where σx is the absolute uncertainty in x, σ y  is the

absolute uncertainty in y and σ xy
2  is the covariance

between x and y.

The covariance is a measure of how x and y are
correlated.  If it is zero, then we say the two variables
are independent and equation (7) reduces to equation
(5).  For completeness we note that if z and u are two
quantities independently calculated from x and y:

z=f(x,y); u=g(x,y)  (8)

then the covariance of u and z is given by:

σ zu
2 = σ x

2 ∂f
∂x

∂g
∂x

 
  

 
  + σ y

2 ∂f
∂y

∂g
∂y

 

 
  

 

 
  

+σ xy
2 ∂f

∂x

∂g

∂y
+ ∂f

∂y

∂g

∂x

 

 
  

 

 
  

(9)

The subject of correlation and covariance is a bit
sophisticated, and we recommend that the interested
student look at the references.  See also Questions 15
and 17.
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keeping the student from learning some
“horse sense” about the dominant sources of
uncertainty in a specific case.  The three
most common types of uncertainty
calculations are given below (assuming
σ xy

2 = 0  , that is x and y are independent).

a. Addition (Or Subtraction)

Let z = f(x,y) = x + y, for which
∂z
∂x

= ∂z
∂y

= +1.  Equation (5) then is:

σz = σ x
2 +σy

2
(10)

It can be shown you get the same result for
subtraction (see Question 10). Thus, for
addition and subtraction the absolute
uncertainty of the result is the combination
(in quadrature) of the    absolute    uncertainties
in the primary numbers.

b. Multiplication (Or Division)

Let z = f(x,y) = xy, for which
∂z
∂x

= y,
∂z
∂y

= x. .  Equation (5) then is:

(σz )2 = (σ x )2 y2 + (σy )2 x 2

Dividing by z2 = x2 y2  gives us a relation
between the relative uncertainties:

σ z
2

z2 = σ x
2

x2 +
σ y

2

y2 (11)

Taking a square root and multiplying both
sides by 100%:

ez = ex
2 + ey

2
(12)

It can be shown you get the same result for
division (see Question 11).  Thus, for
multiplication and division the percent
uncertainty in the result is the combination
(in quadrature) of the    percent   uncertainties
in the primary numbers.

c. Powers

Let z = f (x ) = axn  where a and n are
constants (have zero uncertainty).  Then
∂z
∂ x

= naxn−1 = nz
x

, so Equation (4) is:

σz = σ x
nz

x
 
 

 
 

and division by z gives us:

σz

z
= n

σx

x
 or ez = nex (13)

Thus, for a power the percent uncertainty in
the result is n times the percent uncertainty
in the primary number.

3. APPROXIMATIONS

Note that the combined uncertainty is
usually dominated by the largest single
uncertainty, which therefore is a fair-to-good
approximation of the total combined
uncertainty.  For example, a 4% distance
uncertainty and a 3% time uncertainty give a
velocity (distance ÷ time) uncertainty,

4%( )2 + 3%( )2[ ]
1

2 = 5%, which is not much

larger than the 4% distance uncertainty
alone.  (A combination 4% + 3% = 7% is
incorrect unless the distance and the time
measurements were correlated in such a way
that over-large distance measurements were
accompanied by over-small time measure-
ments, a correlation which contradicts the
assumption of uncorrelated independence of
the uncertainties.)

Any single uncertainty less than 1/3 the size
of others can be considered as negligible in
the sense that it would raise the combined
uncertainty by a factor closer to 1 than

1+1/ 9[ ]
1
2 = 1.05 and thus would not affect

the only significant figure of our
uncertainty.  Even if two uncertainties were
the same size, their combined uncertainty is
only larger by a factor of 2 = 1.4  than
either uncertainty alone.
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Thus, the largest single uncertainty in the
calculated result is usually an acceptable
approximation to the routinely required
estimated uncertainty.

G.    ESTIMATES OF UNCERTAINTIES   

Deciding the uncertainties in primary data
depends on the circumstances and method of
taking data.  However, before discussing
that, let us agree on the   level   of uncertainty.

The size of the uncertainty depends upon the
meaning attributed to it.  It is often
incorrectly assumed that the uncertainty
should be an “error limit” in the sense of
being large enough that the correct value is
   certain    to be within the limits.  Taken to its
logical extreme, this would lead to error
limits much too large to contain any
information about the actual uncertainties or
fluctuations in the measurements.  On the
other extreme, we also want to avoid
uncertainties so small that they would be
   unlikely    to contain the correct value.  We
will adopt the usual criterion of a “   68%
   confidence level”    uncertainty, representing
an estimation that the error limits have a
68% probability of containing the correct
value (and conversely, a 32% probability of
not containing it)3

1. INSTRUMENTAL ACCURACY

All measuring instruments have an inherent
“limiting accuracy” due to imperfections in
manufacture.  A simple way to estimate
uncertainty is to consider the    smallest
   divisions   that can be read unambiguously
and take    half   their size as the limiting
instrumental accuracy.  For example a meter
stick with 1 mm divisions has an implied
inherent uncertainty of ±0.5 mm.  The

                                                
3 This corresponds to a “standard deviation” in

statistical theory-68% of the deviations from the
mean of a Gaussian distribution are smaller than the
RMS deviation (square Root of the M   ean of the   
Squares of the deviations).   
Another criterion used is the "Probable Error''
representing an estimation that the error limits have a
50% probability of containing the correct value.

student is expected routinely to record at
least this uncertainty for each measurement
or instrument.

2. EXPERIMENTAL PRECISION

Even if our measuring instrument had
perfect accuracy, different measurements of
the same quantity, say x, would yield
different results x1, x2 , x3 ,... due to
uncontrollable fluctuations in that quantity.
“Uncontrollable” means that, even if we
knew exactly the mean value of the quantity
(x0)  and the exact RMS size of the
fluctuations (s0) and their reason (such as air
molecules hitting a mass and changing its
location), we could not predict the
measurements x1, x2 ,...   We might, how-
ever, be able to predict the distribution of an
  infinite    number of such measurements.  For
example, if the fluctuations are indeed
random, statistical theory says the
measurements will have a Gaussian

distribution e
−(x −x0 )2 /2s0

2
 as shown.  This

means (among other things) that the most
probable result of a measurement is the
mean (x0)  and that 68% of the fluctuations
are smaller than the RMS deviation
(x0 − s0 < x < x0 + s0).

What we want to do is use a   finite    number of
measurements, x1, x2, x3, ..., xN to obtain an
estimate (s) for the exact size (s0) of the
fluctuations, an estimate ( x ) for the exact
mean (x0)   and the uncertainty ( σ x ) of this
estimated mean. The best values to use for
these estimates are the    standard deviation    (s)
and the    average    ( x ) and the    precision   
( σ x = s / N ), which we will now discuss.
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a. Average and Standard Deviation

Let x1, x2 , x3 ,..., xN  be N readings of a
physical quantity.  The    average    x  of this set
of readings is:

x =
x1 + x2 + x3... +xN

N
≡

Σx

N
, (14a)

and the    deviation    of each of the readings
from the average is

δi ≡ xi − x . (14b)

The    standard deviation,   s, of this set of
readings is defined as the square root of

s2 ≡
Σ δi( )2

N − 1
= Σ x − x ( )2

N − 1
=

Σ x2 − 2xx + x 2( )
N − 1

=
Σ x2( ) − Nx 2

N − 1

(15)

The root-mean-square, RMS, deviation is
the same except for dividing by N instead of
N-1.  [These calculations are done on many
calculators simply by inputting each number
( x1, x2 , ..) using a special accumulation
button (most are marked Σ + or M + ) which
accumulates the sum of the numbers (    ∑    x)
the sum of their squares (    ∑    x2), and the
number of numbers entered (N =     ∑    1).
Another button (marked x ) will then give
the average of the numbers entered and
another (marked σ n−1  or s) will give their
standard deviation.  (Some also have buttons
marked σn  which give the RMS deviation.)
Even if your calculator does not have such

functions, you can accumulate     ∑    x and     ∑    x2

and use the last forms of (14a) and (15) to
quickly find x  and s.  [Warning:  Do not
round off before subtracting the nearly-equal

numbers in Σ x2( ) − Nx 2 .( ) ]

For example, if N = 6 readings were found
to be 18.1, 18.2, 18.3, 18.5, 18.6, and 18.7,
the average would be x =18.4, the
deviations would be -0.3, -0.2, -0.1, +0.1,
+0.2, +0.3, and the standard deviation would
be s = 0.28/ 5 = 0.24 .  We see that the
deviations add up to zero (a check that we
have done the arithmetic correctly) and that
4/6 (~68%) of the deviations are smaller
than the standard deviation and 2/6 are
larger, as expected.

We may take the standard deviation s = σx
as the random uncertainty of any    single   
measurement (see references).  Thus, in our
example, the 3rd reading is 18.3 ± 0.24.

b. Uncertainty in the Average

As we increase the number of
measurements, the individual readings will
continue to fluctuate by about the same
amount, s, but the average will change by
less and less.  It may be shown (see
Question 21) that the random uncertainty in
such an average may be taken to be the
square root of

σ x 
2 =

Σ δi( )2

N(N −1)
= s2

N
, (16)

which we note is smaller, by a factor of
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N , than the random uncertainty in the
individual readings.  Therefore, we can
increase our    precision    (but not our accuracy,
see Question 22), by repeating the
measurement many times.

In our example, we would state our resulting
average as

x = 18.4 ± 0.1

since σ x = 0.28/ 30 = 0.24/ 6 = 0.097.  In
order to improve the precision by an order of
magnitude (factor of ten) to ± 0.01, one
would have to increase the number of
measurements by two orders of magnitude
(a factor of 102 =100 ) to N = 600.

H.    SIGNIFICANT FIGURES   

It is generally proper to assume that all
digits needed to write down a number are
significant.  Therefore, numbers reported
with higher precision than appropriate are
misleading and incorrect, so the student
must learn how many figures are actually
significant.  The basic rule is that no
completely uncertain digits should be used.4

We have already discussed how to estimate
the uncertainty in every number used in lab,
so it is relatively easy to round off such a
number to the first decimal place of the
uncertainty.  For example, the overly precise
number 11.378965 ±  0.2 should be rounded
off to 11.4 ± 0.2.

The uncertainty itself is uncertain and
therefore should not be reported with
undeservedly high precision.  In this lab,
                                                
4 Outside of our lab, it is often (but not always)
presumed that all digits given are certain.  Then a
number such as 10.6 has an implied error limit of
± 0.05.  In our example, 11.4 ± 0.2 would then be
written as 11 and might be considered to have two
(instead of three) significant figures.  A compromise
form of these slightly different presumptions would
say that our example has three significant figures but
would insist on printing the uncertain digit in smaller
type, as 11.4.  In our lab, these ambiguities are settled
by including one uncertain digit but insisting on its
uncertainty being given.

although we may take pains with
uncertainties, they are not expected to be
known to better than one significant figure
(except perhaps when the first figure is 1)
and should not be reported with higher
precision in your final results.  For example,
an uncertainty you have calculated to be
± 0.356 should be written as ± 0.4 in a final
result, but you have the option of rounding
± 0.146 to either ± 0.1 or ± 0.15.

The correct numbers of significant figures
must be used for all data recorded and for all
final results.  For convenience, intermediate
calculations will be allowed to be written
down with one or two extra (insignificant)
figures, but students should avoid
absurdities such as ten-figure numbers for
experiments that are only good to 1%.

    Ambiguous Trailing Zeros   

It should be understood that zeros are
generally considered as significant figures
except for zeros in front of a number (called
leading zeros) used to indicate the decimal
point.  For example,

4.0670 has five significant figures
(intermediate and trailing zeros are both
significant) while 0.00986 has three
significant figures (leading zeros are not
significant figures).

A trailing zero leads to ambiguities only if
there is no decimal point.  For example, it is
unclear if the number 800 has one, two, or
even three significant figures.  To avoid this
ambiguity, it is better to write such numbers
in exponential notation.  Thus 8.0 ×102  has
two significant figures while 8.00 ×102  has
three significant figures, etc.

It is interesting to note that, if we were only
concerned with the orders of magnitude of
uncertainties we could replace explicit
uncertainty calculations with corresponding
consideration of the proper use of significant
figures.  Thus, the absolute uncertainty is in
the last decimal place written, and the
relative uncertainty is known by the number
of significant figures (N significant figures
is 10−N  relative uncertainty or e = 102− N%).
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These are related to the following simple
  rules of thumb    for significant figures
corresponding to uncertainty formulas (10)
and (12):

   RULES OF THUMB

1.   In addition and/or subtraction, the
  result is known only to the decimal place
   given by the least accurately known term. It
   can have fewer significant figures than
   either term if the operation involves
   subtracting two nearly equal numbers   .

Example:  If we add two numbers, N1=
102.36 and N2= 12, the result is 114,    not  
114.36.

Example:  If we take the difference between
two lengths, L1 = 1021.6 cm L2 = 1023.5
cm, the result is 1.9 cm.  Even though each
term has five significant figures, the result
has only two.

2.   In multiplication and/or division, the   
  result is known only to as many  significant
  figures as occurs in the least accurately
   known factor  .

Example:  If we multiply 327.6 by 0.28, we
obtain 92,    not   91.728. Such use of
significant figures can aid a more intuitive
understanding and facilitates the calculation
of more precise uncertainties.

    QUESTIONS     (The TA may assign some of
these as homework or work them out as
examples to illustrate concepts).

   Section A and B   

    Question 1   . Al Caggie measured the
acceleration of gravity to be 975 cm/sec2 as
compared to the true value of 980 cm/sec2.
What is his error?

    Question 2   . Kermit the Frog measures the
length of his legs with a steel meter stick
and finds that the average of his
measurements yields a result of 0.582
meters for the length.  He subsequently
learns that the meter stick was calibrated at
25˚ C and expands at the rate of 0.5 mm/˚ C,

i.e., at 27˚ C it would be 1 mm longer.
Kermit made his measurement at 20˚ C.
What type of error is involved here?  What
is the “true” length of his legs?

    Question 3   . Five engineering students
independently measured the length of the
blackboard in a lecture hall with a 1 ′ ′ 2  ruler.
Their results ranged from 3 ′ 2 1 ′ ′ 0  to 3 ′ 3 ′ ′ 3 .
What type of error is involved here?  (Hint -
it is not the wrong major).

    Question 4   . Fannie Farkel discovers after
finishing her calculations that her calculator
has been giving a random fictitious number
every time she pushed the square root
button.  Thus her final answer is wrong.
What type of error is involved here?

   Section C, D, and E   

    Question 5   . Given the mass of an object
is 32 ± 8 gm, what is the percent
uncertainty?

    Question 6   . Can you say what percent
0.02 cm is of zero cm?  Why or why not?

    Question 7   . Often you will need to
express the difference of a quantity (x1)
from another (x2) as a percent (of either x1 or
x2) Given x1= 980 and x2= 975 from
Question 1 above, what is the percent
difference in terms of x1? In terms of x2?  In
terms of the average of x1 and x2?  Is the
distinction between these three possibilities
important in this case?

   Section F   

    Question 8   . Using Equation (3) repeat the
example z = x2 where the uncertainty in x =
3.0 cm is now σ x =±0.5cm . Does it make a
difference whether you use the “+” or “-”
sign in Equation (3)?

    Question 9   . Derive Eqn. 4 from Eqn. 3
for small uncertainties recalling the
definition of a derivative.

    Question 10   . Given z = f(x,y) = x-y; prove
that Equation (10) is still valid.
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    Question 11   . Given z = f(x,y) = x/y; prove
that Equation (12) is still valid.

    Question 12   .  Given that the percent
uncertainty in x is 3% and the percent
uncertainty in y is 5%, what is the percent
uncertainty in z = (x / y) ?

    Question 13   . Given z = ln(x), derive an
expression for both the absolute and percent
uncertainty of z in terms of the absolute (or
percent) uncertainty in x.  (Note ln is the
“natural” logarithm, i.e., log to the base e).
Given x =1.0 ± 0.05  what is the uncertainty
in ln x?

    Question 14   . Given z = R sin θ, derive an
expression for the percent uncertainty in z in
terms of the percent uncertainty in R and the
absolute uncertainty in θ.

    Question 15   . Compare the following three
statements:

(a)  If z = 2x the absolute uncertainty in z is
σ z = 2σ x .

(b)  If z = x + y and the absolute uncertainty
in x and y are the same, then

σ z = σ x
2 + σ y

2 = σ x 2 .

(c)  If y = x in (b) then clearly z = x + x = 2x
as in (a), so σz = 2σx , which contradicts

the (b) result σz = σ x 2    Which one is
wrong and     why   ?

    Question 16.  At one second intervals a
cart's position is measured along a meter
stick (in cm):

         X0      X1      X2      X3       X4      X5
| | | | | |

        0.1      5.3     10.9    15.8    21.5    25.9

Five observers (A thru E) calculated the
velocity according to the following methods:

A took how far the cart went in 5 seconds,

divided distance by time to get

V A = x5 − x0

5 sec
= 5.16cm/ sec

B took how far the cart went from X0 and
divided by the time to each point.  He then
averaged the five velocities to get his “best”
velocity:

X1 − X0

1
= 5.2; 

X2 − X0

2
= 5.4;

X3 − X0

3
= 5.23;  

X4 − X0

4
= 5.35;

X5 − X0

5
= 5.16;

Average is VB = 5.27 cm/sec

C calculated how far the cart went each
second and took an average of these
numbers to get the best velocity.  (X1–
X0)=5.2; (X2–X1)=5.6; (X3–X2)=4.9; (X4–
X3)=5.7; (X5–X4)=4.4; Average is VC = 5.16
cm/sec.

D calculated the distance traveled in each 3
second interval, and averaged the resulting
three numbers to get his best velocity:

X3 − X0

3
= 5.27;   

X4 − X1

3
= 5.40 ;

 
X5 − X2

3
= 5.00;

Average is VD = 5.22 cm/sec.

E took every other velocity from observer C
and averaged:  (X1–X0)=5.2; (X3–X2)=4.9;
(X5–X4)=4.4

Average is VE = 4.83 cm/sec.

16a.  Why did “C” get the same result as
“A” even though he did a more complicated
calculation?  Show mathematically they
really did the same calculation. What lesson
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is to be learned here?

16b.  Using the general error propagation
formula (Equation 4) calculate an expression
for the absolute uncertainty in the mean
velocity for each observer.  To simplify the
algebra, take the absolute uncertainty in
each position to be the same:

σ = σ0 = σ1 = σ2 = σ3 = σ4 = σ5

Hence for V = f ( X0 , X1, X2 , X3 , X4 ,X5) Eqn.
(5) reduces to

(σV )2 = (σ )2 ∂f
∂X0

 

 
  

 

 
  

2

+ ∂f
∂X1

 

 
  

 

 
  

 

 
 
 

2

+ ∂f
∂X2

 

 
  

 

 
  

2

+

∂ f

∂X3

 
 
  

 
 

2

+
∂f

∂X4

 
 
  

 
 

2

+
∂f

∂X5

 
 
  

 
 

2  

 
 

Express your results for σV  as a number
times σ  (different numbers for A, B, C, D,
E in general).

16c.  Based on your results from 16b, which
observer gives the most precise result?  Can
you say which observer gives the most
accurate result? Why or why not?

16d.  Compare E's result to D's.  Which is
better?  Why is one observer's technique
better than the others?

16e.  What is the weak point in B's method?
(Clue - why does he get an average which is
higher than everyone else’s?)

    Question 17   .  Suppose we convert a set of
Cartesian coordinates x and y into polar
coordinates:

R = x2 + y2  θ = arctan(y / x ).

Given that the uncertainties in x and y are
independent (i.e., σ xy

2 = 0 ) are the

uncertain-ties in R and θ independent?
(Hint:  Calculate σ Rθ

2  using Eqn. 9).

   Section G    

    Question 18   .  What is the instrumental
uncertainty for a balance which has
divisions of 0.1 gm?

    Question 19.    If I average four numbers,
each (independently) with absolute
uncertainty of ± 0.8, what will be the
absolute uncertainty of the average of the
four numbers?

    Question 20.    Suppose we are trying to
determine whether a measurement “p” is
consistent with a calculated value “q” of the
same quantity, where q has negligible
uncertainty and p has uncertainty σ p .  If
they differ by p − q = (1.6)σ p , which of the
following is true?

a. Surely p ≠ q  (measurement and
calculation are not consistent).

b. Not sure, but probably p ≠ q .

c. Not sure, but probably p = q.

d. Surely p = q (measurement and
calculation are consistent).

Reanswer for  p - q = (0.6) σ p .

    Question 21.    Derive Equation (16) from the
propagation of uncertainties formula (Eqn.
5) and the definition of an average (Eqn.
14).

    Question 22.    Suppose we have a watch (not
unlike our digital laboratory timers) which
only measured to the nearest second.  What
is its limiting accuracy?

Using this timer we measure the period of a
pendulum three times and get 11 seconds
each time.  What is the precision of our
measurement?

Unknown to us, another student was timing
the period of the pendulum at the same time
but with a timer that measured to the tenth
of a second.  He got 11.4 seconds for the
three measurements which is consistent with
our timer since ours reads only to the nearest
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second.  Who has the best measurement of
the period?  Why?

If we made a million measurements and got
11 seconds each time would our answer be
any better?  Why?

   Section H    

    Question 23   .  The latitude of the observatory
at Davis is given as   38o3 ′ 2 2 ′ ′ 8 N .   (Recall

  1
o = 6 ′ 0 , ′ 1 = 6 ′ ′ 0 ).

a. What is the implied uncertainty in
the latitude?

b. Given that the radius of the earth is
6.371×106  meters, what is the uncertainty in
the position of the observatory in meters?  Is
the uncertainty larger than the size of the
campus?

c. Write the latitude in decimal degrees
with the correct number of significant
figures.

d. Suppose the next digit was measured
(e.g., 28. ′ ′ 3 ) what would be the implied
uncertainty?  Would you now be able to tell
which side of Hutchison Hall
(approximately 15 meters wide) the
observatory is on?

    Question 24   .  The number 0.0070001
rounded to two significant figures is what?

    Question 25   .  The number 3758 rounded to
three significant figures is what? To two
significant figures?  to one significant
figure?

    Question 26   .  How many significant figures
has:  900.000?, 0.005070 ?, 13.80?

    Question 27   .  Give the answers with the
correct number of significant figures:

a. 19.293 –12.3  = ?
b. 19.293 ÷  12.3  = ?
c. 9.278 – 2.9 π  = ?


