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GRAPHING

A graph is not only a useful visual
representation of data, it can also be an
important tool in analyzing the data.  In this
section, some of the main considerations in
drawing a graph are outlined.

1.    Choose the coordinate axes    to
contain the data points and other necessary
features on as large a scale as convenient.  In
our lab, this generally means using an entire
sheet of graph paper for each graph, and
choosing scales that will spread the data
points as far apart as possible.  However, it
is also important to leave room for the origin
or even for negative values if the graph will
be used to extrapolate to those values.

A “Y versus X” graph means the Y axis
(usually the dependent variable being
measured)  is vertical and is called the
ordinate, and the X axis (usually the
independent variable) is horizontal and is
called the abscissa.  The graph paper stapled
in the report (or bound in the manual)  may
be viewed directly or from the right,
depending on whether more space is needed
for the Y axis or the X axis.

2.     A graph should have a title   .  For
example, “Distance traveled as a function of
time”, “Extension of a spring vs. the load”,
or “v vs. t” if v and t are defined in the
report.

3.    Plot the points  .  Remember to
include the origin    only    if it is properly a data
point.  Each data point must include an
“error bar” which shows the uncertainties in
the data.  An error bar is a line drawn above
and below the point a distance equal to the
absolute uncertainty in the ordinate, and a
horizontal line drawn to the right and left to
the point showing the absolute uncertainty in
the abscissa.

If the uncertainty in the ordinate or abscissa
is so small that the error bar would not be
visible, it may be omitted.  Thus, if the
abscissa is known very accurately, so that its
error bars would lie inside the dot
representing the data point, it is best to omit
the horizontal error bars entirely.  Data
points without error bars are presumed to be
accurate to within the dots shown, but a
small circle may be drawn around each data
point to make sure it is seen.

4.     Draw the graph   .  After the points are
plotted, draw a    smooth curve    (such as a
single straight line) which accurately
represents the plotted points.  Although it is
desirable for the curve to pass through as
many error bars as possible, it is    not  
necessary that the curve pass through each
point.  It is important that the curve is
smooth, with the points scattered more or
less evenly on    both sides of the curve   .  A
correctly drawn curve represents an average
of all the measurements and is therefore, in
general, a more accurate and convenient
expression of the results than the
individually measured points themselves.    If
  the curve is nearly a straight line, use a
  transparent straight edge to draw it  ;
otherwise use a French curve or careful
freehand drawing to obtain a smooth curve.
Occasionally it is necessary to extend the
curve beyond the range of the
measurements.  This is called an
extrapolation and should be indicated by a
dotted line.

Any points which are very far from the
curve (by substantially more than the error
bars) were possibly incorrectly plotted or
measured.  Check to see that they are
correctly plotted; if so, then you might want
to repeat the measurement.  Any point
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ignored (or eliminated) because it is
discrepant (in disagreement with the others)
should be noted and explained.  Plotting the
graph after each individual measurement
will help you catch any gross measurement
errors.

5. As appropriate, use the graph to
   analyze the data   .  We have already noted
how the graph can indicate discrepant data
that should be checked for errors.  Careful
consideration of the smooth curve can verify
or reveal relationships between the
variables, and related comments (such as
whether the data points are consistent with
an expected linear relation) are often
required.  A graph can also be used to
determine numerical values of various
physical quantities.  In the following
example, we will determine a body’s
acceleration and its unobserved initial
velocity.

Suppose the velocity of a ball undergoing
constant acceleration has been measured as a
function of the time, with uncertainties of
± 0.5 m/sec for each velocity and ± 0.1 sec
for each time, as shown:

               t(sec)                                   V(m/sec)            
1.0 ±  0.1 5.6 ±  0.5
2.0 ±  0.1 7.2 ±  0.5
3.0 ±  0.1 11.0±  0.5
4.0 ±  0.1 12.2±  0.5

The corresponding graph is shown below.
We draw the best (in our judgment) straight
line through the data.  The curve is a    straight
  line    because we expect the acceleration, a,
to be constant, and then V and t are linearly
related by

V = V0 + at.

VELOCITY OF THE BALL AS A FUNCTION OF TIME
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The (unmeasured) initial velocity V0  can be
determined by extrapolating the straight line
to t = 0 where we find the   intercept   V0  =
3.0m/sec.  The acceleration is the    slope    of
the line,

a = ∆V
∆t

= Vb − Va

tb − ta
= 15.0 − 3.0

5.0 − 0.0
m/ s
sec

= 2.4
m
s2 ,

where (ta ,Va ) and (tb ,Vb ) are any two
points    on the line   , chosen as far apart as
possible in order to minimize the effects of
imprecision in reading the coordinates.
Students should avoid the common     mistake   
of using two original    data points   to
determine the slope, since this is equivalent
to throwing away all the remaining data.
Note that the slope depends on the units
along the axes, and then is    not   equal to the
tangent of the angle of the line.

The following section (“Least Squares”)
discusses analytic methods of fitting a
straight line to data points.  One of the
results derived there is very useful for our
graphical methods.  That is equation (25),
which simply states that the best straight line
must pass through the    average    data point.
To use this in our example, we calculate the
average time and velocity as

t = 1.0 + 2.0 + 3.0 + 4.0
4

= 2.5sec and

V = 5.6 + 7.2 +11.0 +12.2
4

= 9.0
m
s

and plot that as a single point (with no error
bars since it is not a data point).  Now we
can draw many lines through that average
point and select the one that fits the data
points best or simply (as shown) draw the
one best line.  We could also draw a pair of
lines (through the average Point)  with
barely acceptable slopes (one with the
largest acceptable slope - the other with the
smallest acceptable slope) and use them to
estimate the uncertainty range of the slope.
This is simpler than (and usually more
reliable than) the equivalent methods of LS
Equations 27 and 32, both of which require
calculating at least four sums to fairly high

precision.

Incidentally, the uncertainty in the average
velocity as given by UNC Eq. (16),

σV = ±0.5
4

= ±0.25
m
s

is the same as given by LS Eq. (18) or (31).
The uncertainty in the slope as given by LS
Eq. (32) is simply

σ a =
σV 

σt
= ±0.25m / s

1.12sec
= ±0.2

m
s2

where σ t  is the RMS variation of the
measurement times ti  as

σt
2 = (1− 2.5)2 + (2 − 2.5)2 + (3 − 2.5)2 + (4 − 2.5)2

4
.


