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THE METHOD OF LEAST
SQUARES

The name “Least Squares” is associated with
a broad range of analytical techniques that
share a value judgment that the “best” result
is the one that will leave errors (deviations)
δ i  whose   squares   have as   small   a   sum    as
possible:

(δ i )
2 =

i
∑  minimum. (1)

A.  EXAMPLE

Let us see how this criterion is used to
determine the slope m and intercept b of a
straight line

y(x) = mx + b (2)

which fits three data points

y(1)= 1± 0.2, y(2) = 3 ± 0.2, y(3) = 4 ± 0.2
(3)

as closely as possible, as in Fig. 1.

The deviations are the vertical distances

δi = Yi − (mXi + b) (4)

between the data points and the straight line.
We wish to find the values of m and b which
yield the smallest possible sum of squared
deviations

δi
2

i=1

n

∑ = (Y i − mXi − b)2

i=1

3

∑ (5a)

          
= (1− m − b)2 + (3 − 2m − b)2

+ (4 − 3m − b)2
(5b)

= 26 + 14m2 −38m + 3b2

−16b + 12mb
 (5c)

= 1

6
+ 2(m − 3

2
)2

+ 3[(b +
1

3
) + 2(m −

3

2
)]2

(5d)

The final form (5d) is not easy to derive
(Question 1), but has been chosen so that the
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following features are obvious:  the smallest
possible sum of squared deviations is 1

6
 and

the “best” values of m and b are mo = 3
2
 and

bo = − 1
3

 since any other values will yield

Σδ 2  larger than 1

6
.

A more straightforward way to find the
values of m and b that minimize (5c) is
simply to set the derivatives

∂
∂m

δ 2 = 28m − 38 +12b = 0∑  (6a)

and

∂
∂b

δ 2 = 6b −16 +12m = 0∑ (6b)

equal to zero and solve.  The b equation
yields the best b value

b = 16 −12m
6

= 8
3

− 2m (7)

for arbitrary m, as seen in the last term in
(5d).  If we substitute (7) into (6a), we find

28m −38 +12(
8
3

− 2m) = 4m − 6 = 0  (8a)

or

mo = 6
4

= 3
2

(8b)

and then substitute this back into (7) to find

bo = 8
3

− 2mo = 8
3

− 3 = − 1
3

(9)

as before.  Thus, the “best fit” line is

y = mox + bo = 3
2

x − 1
3

, (10)

as shown in Fig. 1, since any other line
would have a larger sum of squared
deviations (5).

Before obtaining general forms for mo  and
bo  and their uncertainties, let us consider
unequal uncertainties in the data.

B.  UNEQUAL WEIGHTING

So far, we have treated each data point as
having equal uncertainty σ and, therefore,
equal importance.  With unequal
uncertainties, the more certain data points
(those with small uncertainties) should have
more importance.  In particular, we should
try to get deviations δi  as small as their
uncertainties σi .  That is, a deviation/
uncertainty ratio (δi / σ i ) smaller than 1
should be expected for most (68%) of the
points, with ratios larger than 1 as seldom as
possible.  The quantity we wish to minimize
is then the sum of squared   relative  
deviations,

χ 2 ≡ δi

σi

 

 
  

 

 
  

2

=∑ minimum.  (11)

If the theory has no adjustable parameters,
and the uncertainties have been chosen
appropriately (as in the section on Errors
and Uncertainties), then we expect the
deviations (δi ) to be about equal to the
uncertainties (σi ), and  χ 2  to be about
equal to the number of data points (n).  If we
can reduce χ 2  by adjusting some
parameters (such as adjusting m and b to
mo  and bo ) then we expect χ 2  to be about n-
p, where p is the number of adjusted
parameters (p=2 for m and b).  If one of the
adjustable parameters (say m) changes from
its optimum value (mo ),  χ 2  must increase,
and we can define the uncertainty (σ m ) to be
the amount of change that will increase χ 2

by exactly 1:

χ 2(mo ± σ m ) = χ2(mo )+1.

When χ 2  is a quadratic function of m (as it
is in a straight-line y=mx+b fit), we thus
expect to have exactly
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χ 2(m) = χ2 (mo) + (
m − mo

σ m
)2 . (12)

   Example:  Weighted Averages.  

Suppose we have a number of independent
measurements (q1 ± σ1 ,q2 ± σ 2 ,..., qn ± σn )  of
some quantity q, and we wish to calculate
the “best” value of q and its uncertainty
(σq ).  To minimize

χ 2 = qi − q
σi

 

 
  

 

 
  

2

= qi
2

σi
2

 

 
  

 

 
  

i
∑

i=1

n

∑ −

2q
qi

σ i
2

 

 
  

 

 
  + q2 1

σi
2

 

 
  

 

 
  

i
∑

i
∑ , (13)

we use the vanishing derivative

∂χ 2

∂q
= − 2

qi

σi
2

 

 
  

 

 
  +2q

1
σ i

2

 

 
  

 

 
  = 0

i
∑

i
∑ (14)

to solve for the best value

qo =
Σi qi / σi

2( )
Σi 1/ σi

2( ) ≡ q , (15)

which we find to be the weighted average,

q ≡ Σiqiwi

Σiwi
(16)

where the weighting, wi ∝1/ σi
2  , is inversely

proportional to the square of the uncertainty.

In terms of q  , we can rewrite eq. (13) in the
form of eq. (12) as

χ 2 = qi
2

σi
2

 

 
  

 

 
  

i
∑ +(q2 − 2qq )

1

σi
2

 

 
  

 

 
  

i
∑

= (q − q )2 1
σi

2

 

 
  

 

 
  

i
∑ − q 2

1
σi

2

 

 
  

 

 
  +

qi
2

σi
2

 

 
  

 

 
  

i
∑

i
∑

= q − qo

σ q

 

 
  

 

 
  

2

+ χmin
2

   (17)

so that we can easily identify qo = q  and its
uncertainty σ q  in

1
σ q

2 = 1
σi

2

 

 
  

 

 
  ,

i
∑ (18)

and relate the minimized mean square

deviation δ 2 ≡ (q − q )2  to

χmin
2 = qi

2

σi
2

 

 
  

 

 
  − q 2

1

σi
2

 

 
  

 

 
  

i
∑

i
∑

= (q2 − q 2)
1

σi
2

 

 
  

 

 
  

i
∑

= (q − q )2 1
σi

2

 

 
  

 

 
  = δ 2 1

σi
2

 

 
  

 

 
  

i
∑

i
∑ .

(19)

For equal uncertainties, σi = σ,  eq. (18)
becomes

1
σ q

2 = 1
σ 2

 
  

 
  =

n
σ 2

i=1

n

∑ (equal uncertainties)

(20)

or σq = σ n  as in UNC eq. (16); eq. (19)
becomes

χ 2 = δ 2 n
σ 2  (equal uncertainties) (21)

and we see the consistency between the

expected values χ 2 ≅ n  and σ 2 ≅ δ 2 .

C.    GENERAL FORMULAS FOR
STRAIGHT LINE FITS

If we wish to fit a straight line y(x) = mx+b
to n data points

Y(X1) = Y1 ± σ1 , Y(X2 ) = Y2 ± σ2 ,...,

Y(Xn) = Yn ± σ n ,
 (22)

we must choose m and b to minimize
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χ 2 = Yi − mXi − b
σ i

 

 
  

 

 
  

2

= δ 2

i=1

n

∑ 1
σi

2

 

 
  

 

 
  

i
∑ .   (23)

This is most easily done in terms of
weighted averages, by minimizing

δ 2 = (Y − mX − b)2 =

b2 + 2mbX − 2bY + m2 X 2 − 2mXY + Y2 .
 (24)

Here we find the vanishing derivative (for
constant m)

∂δ 2

∂b
= 2b + 2mX − 2Y = 0 (25a)

will give the “best” b (for any constant m) so
that   the line will pass through the average
   data point (  X,Y   ) as

Y = mX + b. (25b)

This result alone is a very helpful guide in
drawing a line through graphs of data points,
since it is relatively easy to calculate and
plot the average data point.  We then only
need to adjust the slope (m) of the line
through the average data point until we
obtain the best fit line.

If we use this as a guide to rewrite eq. (24)
in terms of b + mX − Y , we get

δ 2 = (b + mX − Y )2 + m2 (X2 − X
2
)

− 2m(XY − XY ) +Y 2 − Y
2

(26a)

= (b + mX − Y )2 + (m − mo )2( X2 − X
2
)

+ Y 2 −Y
2 − mo

2 (X2 − X
2
).

(26b)

Now we can see that

mo = XY − XY

X 2 − X 2 (27)

is the best-fit slope1 and

                                                
1 The denominator

bo = Y − mo X (29)

is the best-fit intercept.

For uncertainties σ m  and σ b in mo and bo ,

we multiply eq. (26b) by i 1/ σi
2( )∑  to get

χ 2 = b + mX − Y
σb

 

 
  

 

 
  

2

+ m − mo

σ m

 

 
  

 

 
  

2

+ χo
2 .   (30)

Now the intercept uncertainty σ b  is seen to
be given by

1
σ b

2 = 1
σi

2

 

 
  

 

 
  

i
∑ (31)

and the slope uncertainty σ m  is seen to be
given by

1
σ m

2 = (X 2 − X
2
)

1
σ i

2

 

 
  

 

 
  =

σ x
2

σb
2

i
∑ or σm = σ b

σ x
,

(32)

where σ x  is the RMS variation of the Xi

points, as given in eq. (28) (refer to footnote
1.)

     NON- LINEAR FITS    

There are two different generalizations that
might be called non-linear.  The first simply
replaces the straight line (2) with a
parabola or higher order polynomial, such
as

y(x) = a + bx + cx2 + dx3, (33)

or a non-linear function like

                                                                        

X2 − X 2 = X2 −2 XX + X 2 = (X − X 2 ≡σx
2 (28)

is a sum of positive squares, (Xi − X )2
, and thus is

never zero (unless all the data were at the same value
of Xi = X );σx  is the RMS variation of the Xi
values.
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y(x)= a cos(x) +b sin(x). (34)

However, this is still linear in the
parameters a, b, c, d to be determined, so
the sum of squared deviations, like (5), (13)
or (23), can still be reduced to quadratic
functions of those parameters, and the
minimization equations, like (6) or (25b),
are still linear in those parameters.  The
only difficulty is the straightforward but
tedious algebra involved in solving those p
minimization equations for the p
parameters.  There is no difference in
principle from what we have done for p = 2,
so this is usually called a p-parameter linear
fit.

A distinctively non-linear fit involves
functions y(x) that are non-linear functions
of the parameters to be determined, such as

y(x)= a sin (bx) (35)

which is non-linear in the parameter b and
is not really linear for parameter a since
that parameter multiplies a function of b.
The behavior of χ 2  as a function of such
non-linear parameters can be quite
complicated, possibly with more than one
minimum.  However, near any one of these
minima, say (ao ,bo) we can use a differential
approximation (see the Supplement by that
name) to linearize the function.  For our
example (35), we would expect

y(x) ≅ ac sin(bcx )+ (a − ac )sin(bcx )

+(b − bc )a cos(bx)
(36)

to be a good approximation for a and b
close to ao  and bo  if ac  and bc  are constant
values close to the undetermined minimum
ao ,bo .  Now y(x) is an approximately linear
function of the parameters a and b, and χ 2

(a,b) is approximately quadratic, so we can
use standard methods to find values of a and
b to minimize this χ 2; these values may be
expected to be good approximations to ao

and  bo .  Instead of adding more terms to

(36), we may improve the approximation by
selecting new values of ac  and bc  closer to
ao  and bo , usually selecting them equal to
the previous approximate values found for
ao  and bo .  Such a sequence of successive
approximations usually converges quite
rapidly (once we are fairly close to a
minimum) but each step can be a bit tedious.

     QUESTIONS / EXERCISES    

1.  Show that (5c) and (5d) are algebraically
identical.

2.  Using calculations like those in (28),
show that (27) can be written as

mo = (Y − Y )( X − X )

(X − X )2
. (37)

Note that this result shows that a positive
slope mo  is associated with positive
correlation:  above-average values of Y
occurring for above-average values of X,
and below-average values also occurring
together.

3.  For the data points (3), calculate the
average values in (27) and (29), and
show that they yield the same mo  and bo
as (8) and (9).

4.  Find the best straight line through the
four equally weighted data points

Y(1)= −1, Y (2) = 1,

Y(3) = 2, Y(4) = 4,
(38)

first graphically, then using the results of
this supplement,

5.  Use the data points in (3), but halve the
uncertainty in the second to y(2)=3± 0.1.
(It should then be weighted four times as
heavily as either the first or third point.)

(a) Find the new values of mo  and bo .
(You will find that mo  is the same.  Can
you see why?)

(b)  Find the new deviations δ1,δ2 ,δ3

and show that δ RMS  has been unchanged
even though δ1  and δ3  are larger  than
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before and are larger than δ RMS .  Note
that this is still consistent with expect-
ations, since we effectively have 6 points
(1,3, and four of 2) and 68% (4/6) of
them have a deviation (δ2 ) smaller than
δ RMS .

6.  At one second intervals a cart’s position
is measured along a meter stick (in cm).
The results were 0.1, 5.3, 10.9, 15.8,
21.5, and 25.9 centimeters (see UNC-
Question 16).

(a) Using the method of Least Squares
calculate the “best” velocity (i.e., the
slope of the “best” line through the
data).  You may want to compare  your
result with those obtained in  UNC-
Question 16.

(b) Calculate the root-mean-square
deviation.  If the uncertainty in each
position was ± 0.3 cm would you say the
line fits the data reasonably well? Why?

(c) If the uncertainty in each position
was ± 0.1 cm what could this possibly
mean?


