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Introduction to Measurements & Error Analysis 

The Uncertainty of Measurements 
Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, all 

measurements have some degree of uncertainty that may come from a variety of sources. The process 
of evaluating this uncertainty associated with a measurement result is often called uncertainty 
analysis or error analysis. 

The complete statement of a measured value should include an estimate of the level of 
confidence associated with the value. Properly reporting an experimental result along with its 
uncertainty allows other people to make judgments about the quality of the experiment, and it 
facilitates meaningful comparisons with other similar values or a theoretical prediction. Without an 
uncertainty estimate, it is impossible to answer the basic scientific question: “Does my result agree 
with a theoretical prediction or results from other experiments?” This question is fundamental for 
deciding if a scientific hypothesis is confirmed or refuted. 

When we make a measurement, we generally assume that some exact or true value exists based 
on how we define what is being measured. While we may never know this true value exactly, we 
attempt to find this ideal quantity to the best of our ability with the time and resources available. As 
we make measurements by different methods, or even when making multiple measurements using 
the same method, we may obtain slightly different results. So how do we report our findings for our 
best estimate of this elusive true value?  The most common way to show the range of values that we 
believe includes the true value is: 

   measurement = best estimate ± uncertainty (units) 

Let’s take an example. Suppose you want to find the mass of a gold ring that you would like to 
sell to a friend. You do not want to jeopardize your friendship, so you want to get an accurate mass 
of the ring in order to charge a fair market price. By simply examining the ring in your hand, you 
estimate the mass to be between 10 and 20 grams, but this is not a very precise estimate. After some 
searching, you find an electronic balance that gives a mass reading of 17.43 grams. While this 
measurement is much more precise than the original estimate, how do you know that it is accurate, 
and how confident are you that this measurement represents the true value of the ring’s mass? Since 
the digital display of the balance is limited to 2 decimal places, you could report the mass as m = 
17.43 ± 0.01 g. Suppose you use the same electronic balance and obtain several more readings: 17.46 
g, 17.42 g, 17.44 g, so that the average mass appears to be in the range of 17.44 ± 0.02 g. By now 
you may feel confident that you know the mass of this ring to the nearest hundredth of a gram, but 
how do you know that the true value definitely lies between 17.43 g and 17.45 g? Since you want to 
be honest, you decide to use another balance that gives a reading of 17.22 g. This value is clearly 
below the range of values found on the first balance, and under normal circumstances, you might not 
care, but you want to be fair to your friend. So what do you do now? 
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To help answer these questions, we should first define the terms accuracy and precision: 

Accuracy is the closeness of agreement between a measured value and a true or 
accepted value.  Measurement error is the amount of inaccuracy. 
Precision is a measure of how well a result can be determined (without reference 
to a theoretical or true value). It is the degree of consistency and agreement 
among independent measurements of the same quantity; also the reliability or 
reproducibility of the result. 
The statement of uncertainty associated with a measurement should include 
factors that affect both the accuracy and precision of the measurement. 

Caution: Unfortunately the terms error and uncertainty are often used interchangeably to 
describe both imprecision and inaccuracy. This usage is so common that it is impossible to avoid 
entirely. Whenever you encounter these terms, make sure you understand whether they refer to 
accuracy or precision, or both. 

Notice that in order to determine the accuracy of a particular measurement, we have to know the 
ideal, true value, which we really never do. Sometimes we have a “textbook” measured value, which 
is known precisely, and we assume that this is our “ideal” value, and use it to estimate the accuracy 
of our result. Other times we know a theoretical value, which is calculated from basic principles, and 
this also may be taken as an “ideal” value. But physics is an empirical science, which means that the 
theory must be validated by experiment, and not the other way around. We can escape these 
difficulties and retain a useful definition of accuracy by assuming that, even when we do not know 
the true value, we can rely on the best available accepted value with which to compare our 
experimental value. 

For our example with the gold ring, there is no accepted value with which to compare, and both 
measured values have the same precision, so we have no reason to believe one more than the other. 
The only way to assess the accuracy of the measurement is to compare with a known standard. For 
this situation, it may be possible to calibrate the balances with a standard mass that is accurate within 
a narrow tolerance and is traceable to a primary mass standard at the National Institute of 
Standards and Technology (NIST). Calibrating the balances should eliminate the discrepancy 
between the readings and provide a more accurate mass measurement. 

Precision is often reported quantitatively by using relative or fractional uncertainty: 

 quantity measured
yuncertaint

 ty  UncertainRelative =
 (1) 

For example, m = 75.5 ± 0.5 g has a fractional uncertainty of: 
0.66%  0066.0

5.75
5.0 ==

g
g
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Accuracy is often reported quantitatively by using relative error: 

  valueexpected
 valueexpected -  valuemeasured Error  Relative =

 (2) 

If the expected value for m is 80.0 g, then the relative error is: 

 

Note:  The minus sign indicates that the measured value is less than the expected value. 

When analyzing experimental data, it is important that you understand the difference between 
precision and accuracy. Precision indicates the quality of the measurement, without any guarantee 
that the measurement is “correct.” Accuracy, on the other hand, assumes that there is an ideal value, 
and tells how far your answer is from that ideal, “right” answer. These concepts are directly related 
to random and systematic measurement errors. 

Types of Errors 
Measurement errors may be classified as either random or systematic, depending on how the 

measurement was obtained (an instrument could cause a random error in one situation and a 
systematic error in another). 

Random errors are statistical fluctuations (in either direction) in the measured 
data due to the precision limitations of the measurement device.  Random errors 
can be evaluated through statistical analysis and can be reduced by averaging 
over a large number of observations (see standard error). 
Systematic errors are reproducible inaccuracies that are consistently in the same 
direction.  These errors are difficult to detect and cannot be analyzed 
statistically. If a systematic error is identified when calibrating against a 
standard, applying a correction or correction factor to compensate for the effect 
can reduce the bias. Unlike random errors, systematic errors cannot be detected 
or reduced by increasing the number of observations. 

Our strategy is to reduce as many sources of error as we can, and then to keep track of those 
errors that we can’t eliminate. It is useful to study the types of errors that may occur, so that we may 
recognize them when they arise. 

%6.5056.0
0.80
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Common sources of error in physics laboratory experiments: 
Incomplete definition (may be systematic or random) - One reason that it is impossible to make 
exact measurements is that the measurement is not always clearly defined. For example, if two 
different people measure the length of the same rope, they would probably get different results 
because each person may stretch the rope with a different tension. The best way to minimize 
definition errors is to carefully consider and specify the conditions that could affect the measurement. 
Failure to account for a factor (usually systematic) – The most challenging part of designing an 
experiment is trying to control or account for all possible factors except the one independent variable 
that is being analyzed. For instance, you may inadvertently ignore air resistance when measuring 
free-fall acceleration, or you may fail to account for the effect of the Earth’s magnetic field when 
measuring the field of a small magnet. The best way to account for these sources of error is to 
brainstorm with your peers about all the factors that could possibly affect your result. This 
brainstorm should be done before beginning the experiment so that arrangements can be made to 
account for the confounding factors before taking data. Sometimes a correction can be applied to a 
result after taking data to account for an error that was not detected. 

Environmental factors (systematic or random) - Be aware of errors introduced by your immediate 
working environment. You may need to take account for or protect your experiment from vibrations, 
drafts, changes in temperature, and electronic noise or other effects from nearby apparatus. 

Instrument resolution (random) - All instruments have finite precision that limits the ability to 
resolve small measurement differences. For instance, a meter stick cannot distinguish distances to a 
precision much better than about half of its smallest scale division (0.5 mm in this case). One of the 
best ways to obtain more precise measurements is to use a null difference method instead of 
measuring a quantity directly. Null or balance methods involve using instrumentation to measure the 
difference between two similar quantities, one of which is known very accurately and is adjustable. 
The adjustable reference quantity is varied until the difference is reduced to zero. The two quantities 
are then balanced and the magnitude of the unknown quantity can be found by comparison with the 
reference sample. With this method, problems of source instability are eliminated, and the measuring 
instrument can be very sensitive and does not even need a scale. 

Failure to calibrate or check zero of instrument (systematic) - The calibration of an instrument 
should be checked before taking data whenever possible. If a calibration standard is not available, the 
accuracy of the instrument should be checked by comparing with another instrument that is at least 
as precise, or by consulting the technical data provided by the manufacturer. When making a 
measurement with a micrometer, electronic balance, or an electrical meter, always check the zero 
reading first. Re-zero the instrument if possible, or measure the displacement of the zero reading 
from the true zero and correct any measurements accordingly. It is a good idea to check the zero 
reading throughout the experiment. 

Physical variations (random) - It is always wise to obtain multiple measurements over the entire 
range being investigated. Doing so often reveals variations that might otherwise go undetected.  
These variations may call for closer examination, or they may be combined to find an average value. 

Parallax (systematic or random) - This error can occur whenever there is some distance between the 
measuring scale and the indicator used to obtain a measurement.  If the observer’s eye is not squarely 
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aligned with the pointer and scale, the reading may be too high or low (some analog meters have 
mirrors to help with this alignment). 

Instrument drift (systematic) - Most electronic instruments have readings that drift over time.  The 
amount of drift is generally not a concern, but occasionally this source of error can be significant and 
should be considered. 

Lag time and hysteresis (systematic) - Some measuring devices require time to reach equilibrium, 
and taking a measurement before the instrument is stable will result in a measurement that is 
generally too low. The most common example is taking temperature readings with a thermometer 
that has not reached thermal equilibrium with its environment.  A similar effect is hysteresis where 
the instrument readings lag behind and appear to have a “memory” effect, as data are taken 
sequentially moving up or down through a range of values. Hysteresis is most commonly associated 
with materials that become magnetized when a changing magnetic field is applied. 
Personal errors come from carelessness, poor technique, or bias on the part of the experimenter. 
The experimenter may measure incorrectly, or may use poor technique in taking a measurement, or 
may introduce a bias into measurements by expecting (and inadvertently forcing) the results to agree 
with the expected outcome. 

Gross personal errors, sometimes called mistakes or blunders, should be avoided 
and corrected if discovered. As a rule, gross personal errors are excluded from 
the error analysis discussion because it is generally assumed that the 
experimental result was obtained by following correct procedures. The term 
human error should also be avoided in error analysis discussions because it is 
too general to be useful. 

Estimating Experimental Uncertainty for a Single Measurement 
Any measurement you make will have some uncertainty associated with it, no matter how precise 

your measuring tool. How do you actually determine the uncertainty, and once you know it, how do 
you report it? 

The uncertainty of a single measurement is limited by the precision and 
accuracy of the measuring instrument, along with any other factors that might 
affect the ability of the experimenter to make the measurement. 

For example, if you are trying to use a meter stick to measure the diameter of a tennis ball, the 
uncertainty might be ± 5 mm, but if you used a Vernier caliper, the uncertainty could be reduced to 
maybe ± 2 mm. The limiting factor with the meter stick is parallax, while the second case is limited 
by ambiguity in the definition of the tennis ball’s diameter (it’s fuzzy!). In both of these cases, the 
uncertainty is greater than the smallest divisions marked on the measuring tool (likely 1 mm and 0.1 
mm respectively). Unfortunately, there is no general rule for determining the uncertainty in all 
measurements. The experimenter is the one who can best evaluate and quantify the uncertainty of a 
measurement based on all the possible factors that affect the result. Therefore, the person making the 
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measurement has the obligation to make the best judgment possible and report the uncertainty in a 
way that clearly explains what the uncertainty represents: 

Measurement = (measured value ± standard uncertainty) unit of measurement 

where the ± standard uncertainty indicates approximately a 68% confidence interval (see sections 
on Standard Deviation and Reporting Uncertainties). 

Example:  Diameter of tennis ball = 6.7 ± 0.2 cm 

Estimating Uncertainty in Repeated Measurements 
Suppose you time the period of oscillation of a pendulum using a digital instrument (that you 

assume is measuring accurately) and find:  T = 0.44 seconds. This single measurement of the period 
suggests a precision of ±0.005 s, but this instrument precision may not give a complete sense of the 
uncertainty. If you repeat the measurement several times and examine the variation among the 
measured values, you can get a better idea of the uncertainty in the period. For example, here are the 
results of 5 measurements, in seconds:  0.46,  0.44,  0.45,  0.44,  0.41. 

The best estimate of the period is the average, or mean, of these N independent measurements: 

Whenever possible, repeat a measurement several times and average the results. 
This average is the best estimate of the “true” value. The more repetitions you 
make of a measurement, the better this estimate will be. 

Consider, as another example, the measurement of the width of a piece of paper using a meter 
stick. Being careful to keep the meter stick parallel to the edge of the paper (to avoid a systematic 
error which would cause the measured value to be consistently higher than the correct value), the 
width of the paper is measured at a number of points on the sheet, and the values obtained are 
entered in a data table. Note that the last digit is only a rough estimate, since it is difficult to read a 
meter stick to the nearest tenth of a millimeter (0.01 cm). 

Observation Width (cm)

#1 31.33 

#2 31.15 

#3 31.26 

#4 31.02 

#5 31.20 

 

 

 
Average = sum of observed widths

no. of observations  = 155.96 cm
5

 = 31.19 cm

N
xxx N+++= ...  (mean) Average 21
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This average is the best available estimate of the width of the piece of paper, but it is certainly 
not exact. We would have to average an infinite number of measurements to approach the true mean 
value, and even then, we are not guaranteed that the mean value is accurate because there is still 
some systematic error from the measuring tool, which can never be calibrated perfectly.  So how do 
we express the uncertainty in our average value? 

One way to express the variation among the measurements is to use the average deviation.  This 
statistic tells us on average (with 50% confidence) how much the individual measurements vary from 
the mean. 

However, the standard deviation is the most common way to characterize the spread of a data 
set.  The standard deviation is always slightly greater than the average deviation, and is used 
because of its association with the normal distribution that is frequently encountered in statistical 
analyses. 

Standard Deviation 
To calculate the standard deviation for a sample of 5 (or more generally N) measurements: 

1. Sum all the measurements and divide by 5 to get the average, or mean. 
2. Now, subtract this average from each of the 5 measurements to obtain 5 “deviations”. 
3. Square each of these 5 deviations and add them all up. 
4. Divide this result by (N-1) and take the square root. 
 

We can write out the formula for the standard deviation as follows. Let the N measurements be 
called x1, x2, ..., xN. Let the average of the N values be called x . Then each deviation is given by 

xxx ii −=δ , for i = 1, 2, ..., N. The standard deviation is: 

( )
( ) ( )11

... 222
2

2
1

−
=

−
+++

= ∑
N

x
N

xxx
s iN δδδδ

 

In our previous example, the average width x  is 31.19 cm. The deviations are: 

Observation Width (cm) Deviation (cm) 

#1 31.33 +0.14 = 31.33 - 31.19 

#2 31.15 -0.04 = 31.15 - 31.19 

#3 31.26 +0.07 = 31.26 - 31.19 

#4 31.02 -0.17 = 31.02 - 31.19 

#5 31.20 +0.01 = 31.20 - 31.19 

 

The average deviation is: d  = 0.086 cm 

N
xxxxxxd N ||...||||   Deviation, Average 21 −++−+−=
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The standard deviation is: 

 

The significance of the standard deviation is this: if you now make one more measurement using 
the same meter stick, you can reasonably expect (with about 68% confidence) that the new 
measurement will be within 0.12 cm of the estimated average of 31.19 cm. In fact, it is reasonable to 
use the standard deviation as the uncertainty associated with this single new measurement.  
However, the uncertainty of the average value is the standard deviation of the mean, which is always 
less than the standard deviation. 

Consider an example where 100 measurements of a quantity were made. The average or mean 
value was 10.5 and the standard deviation was s = 1.83. The figure below is a histogram of the 100 
measurements, which shows how often a certain range of values was measured. For example, in 20 
of the measurements, the value was in the range 9.5 to 10.5, and most of the readings were close to 
the mean value of 10.5. The standard deviation s for this set of measurements is roughly how far 
from the average value most of the readings fell. For a large enough sample, approximately 68% of 
the readings will be within one standard deviation of the mean value, 95% of the readings will be in 
the interval x  ± 2s, and nearly all (99.7%) of readings will lie within 3 standard deviations from the 
mean. The smooth curve superimposed on the histogram is the gaussian or normal distribution 
predicted by theory for measurements involving random errors. As more and more measurements are 
made, the histogram will more closely follow the bell-shaped gaussian curve, but the standard 
deviation of the distribution will remain approximately the same. 

 

s

 
     →±←  1 sx  

     →±←       2       sx  
     →±←            3            sx  

cm 12.0
15

)01.0()07.0()04.0()14.0( 2222

=
−

+++=s
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Standard Deviation of the Mean (Standard Error) 
When we report the average value of N measurements, the uncertainty we should associate with 

this average value is the standard deviation of the mean, often called the standard error (SE). 

 N
s=    (SE),Error  Standardor  Mean,  theofDeviation  Standard xσ

 (3) 

The standard error is smaller than the standard deviation by a factor of N1 . This reflects the 
fact that we expect the uncertainty of the average value to get smaller when we use a larger number 
of measurements, N. In the previous example, we find the standard error is 0.05 cm, where we have 
divided the standard deviation of 0.12 by √5.  The final result should then be reported as: 

Average paper width = 31.19 ± 0.05 cm 

Anomalous Data 
The first step you should take in analyzing data (and even while taking data) is to examine the 

data set as a whole to look for patterns and outliers. Anomalous data points that lie outside the 
general trend of the data may suggest an interesting phenomenon that could lead to a new discovery, 
or they may simply be the result of a mistake or random fluctuations. In any case, an outlier requires 
closer examination to determine the cause of the unexpected result. Extreme data should never be 
“thrown out” without clear justification and explanation, because you may be discarding the most 
significant part of the investigation! However, if you can clearly justify omitting an inconsistent data 
point, then you should exclude the outlier from your analysis so that the average value is not skewed 
from the “true” mean. 

Fractional Uncertainty Revisited 
When a reported value is determined by taking the average of a set of independent readings, the 

fractional uncertainty is given by the ratio of the uncertainty divided by the average value. For this 
example, 

 Fractional uncertainty =  uncertainty
average  =  0.05 cm

31.19 cm 
 = 0.0016  ≈  0.002

 
Note that the fractional uncertainty is dimensionless (the uncertainty in cm was divided by the 

average in cm). An experimental physicist might make the statement that this measurement “is good 
to about 1 part in 500” or “precise to about 0.2%”. 

The fractional uncertainty is also important because it is used in propagating uncertainty in 
calculations using the result of a measurement, as discussed in the next section. 
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Propagation of Uncertainty 
Suppose we want to determine a quantity f, which depends on x and maybe several other 

variables y, z,etc. We want to know the error in f if we measure x, y, ... with errors σx, σy, … 

 
Examples: f = xy  (Area of a rectangle) 

  f = p cosθ (x-component of momentum) 
  f = x / t  (velocity) 
 
For a single-variable function f (x), the deviation in f can be related to the deviation in x using 

calculus: 

x
dx
dff δδ 





=

 
Thus, taking the square and the average: 

2
2

2 x
dx
dff δδ 





=

 

and using the definition of σ, we get: 

xf dx
df σσ =

 
Examples: 

a) f = √x 

xdx
df

2
1=  

x
x

f
2
σ

σ = ,  or  
xf
xf

2
σσ

=  

b) f = cosθ 

θ
θ

sin−=
d
df  

θσθσ sin=f ,  or  θσθ
σ

tan=
f

f  

Note:  in this situation, σθ must be in radians. 
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In the case where f depends on two or more variables, the derivation above can be repeated with 
minor modification. For two variables, f(x, y), we have: 

y
y
fx

x
ff δδδ 








∂
∂

+







∂
∂

=  

The partial derivative 
x
f

∂
∂  means differentiating f with respect to x holding the other variables fixed. 

Taking the square and the average, we get the law of propagation of uncertainty: 

 
yx

y
f

x
fy

y
fx

x
ff δδδδδ 








∂
∂









∂
∂+








∂
∂+








∂
∂= 2)()()( 2

2
2

2
2

 (4) 

If the measurements of x and y are uncorrelated, then 0=yxδδ , and using the definition of σ, we get: 

2
2

2
2

yxf y
f

x
f σσσ 








∂
∂+








∂
∂=

 

Examples: 
a) f = x + y 

1    ,1 =
∂
∂=

∂
∂

y
f

x
f  

22
yxf σσσ +=∴  

When adding (or subtracting), the absolute uncertainty of the sum (or 
difference) is the rss of the individual absolute uncertainties.  Adding or 
subtracting a constant does not change the absolute uncertainty of the value. 

b) f = xy 

x
y
fy

x
f =

∂
∂=

∂
∂     ,  

2222
yxf xy σσσ +=∴  

Dividing the above equation by f = xy, we get: 
22









+







=
yxf

yxf σσσ
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c) f = x / y 

2    ,1
y
x

y
f

yx
f −=

∂
∂=

∂
∂  

2
2

2
2

2
1

yxf y
x

y
σσσ 








+








=∴  

Dividing the above equation by f = x / y, we get: 
22









+







=
yxf

yxf σσσ
 

When multiplying (or dividing), the relative uncertainty of the product 
(quotient) is the rss of the individual relative uncertainties.  Multiplying or 
dividing by a constant does not change the relative uncertainty of the value. 

Note that the relative uncertainty in f, as shown in (b) and (c) above, has the same form for 
multiplication and division:  the relative uncertainty in a product or quotient is the square root of the 
sum of the squares of the relative uncertainty of each individual term, as long as the terms are not 
correlated. 

Example:  Find uncertainty in v, where s 0.11.2     ,m/s 1.08.9  with   2 ±=±== taatv  

( ) ( ) 3.1%or     031.0029.0010.0
4.3
1.0

8.9
1.0 22

2222

=+=





+






=







+






=
tav

tav σσσ
 

Notice that since the relative uncertainty in t (2.9%) is significantly greater than the relative 
uncertainty for a  (1.0%), the relative uncertainty in v is essentially the same as for t  (about 3%). 

Graphically, this is like the Pythagorean theorem: 
The total uncertainty is the length of the hypotenuse of a right triangle 

with legs the length of each uncertainty component. 

Timesaving approximation: “A chain is only as strong as its weakest link.” 

If one of the uncertainty terms is more than 3 times greater than the other terms, 
the root-squares formula can be skipped, and the combined uncertainty is 
simply the largest uncertainty. This shortcut can save a lot of time without losing 
any accuracy in the estimate of the overall uncertainty. 

1.0% 
3.1% 

2.9% 



Introduction to Measurements & Error Analysis 

Department of Physics and Astronomy 13 

The Upper-Lower Bound Method of Uncertainty Propagation 
An alternative, and sometimes simpler procedure, to the tedious propagation of uncertainty law 

is the upper-lower bound method of uncertainty propagation. This alternative method does not 
yield a standard uncertainty estimate (with a 68% confidence interval), but it does give a reasonable 
estimate of the uncertainty for practically any situation. The basic idea of this method is to use the 
uncertainty ranges of each variable to calculate the maximum and minimum values of the function. 
You can also think of this procedure as examining the best and worst case scenarios. For example, if 
you took an angle measurement: θ = 25° ± 1° and you needed to find f = cosθ, then: 

  fmax = cos(26°) =  0.8988 

fmin = cos(24°) =  0.9135 

∴  f ≈ 0.906 ± 0.007 

Note that even though θ was only measured to 2 significant figures, f is known to 3 figures. By using 
the propagation of uncertainty law:  σf = |sinθ|σθ = (0.423)(π/180) = 0.0023 

The uncertainty estimate from the upper-lower bound method is generally 
larger than the standard uncertainty estimate found from the propagation of 
uncertainty law. 

The upper-lower bound method is especially useful when the functional relationship is not clear 
or is incomplete. One practical application is forecasting the expected range in an expense budget. In 
this case, some expenses may be fixed, while others may be uncertain, and the range of these 
uncertain terms could be used to predict the upper and lower bounds on the total expense. 

Significant Figures    
The number of significant figures in a value can be defined as all the digits between and 

including the first non-zero digit from the left, through the last digit. For instance, 0.44 has two 
significant figures, and the number 66.770 has 5 significant figures. Zeroes are significant except 
when used to locate the decimal point, as in the number 0.00030, which has 2 significant figures. 
Zeroes may or may not be significant for numbers like 1200, where it is not clear whether two, three, 
or four significant figures are indicated. To avoid this ambiguity, such numbers should be expressed 
in scientific notation to (e.g. 1.2 x 103 clearly indicates two significant figures). 

When using a calculator, the display will often show many digits, only some of which are 
meaningful (significant in a different sense). For example, if you want to estimate the area of a 
circular playing field, you might pace off the radius to be 9 meters and use the formula area = πr2. 
When you compute this area, the calculator might report a value of 254.4690049 m2. It would be 
extremely misleading to report this number as the area of the field, because it would suggest that you 
know the area to an absurd degree of precision - to within a fraction of a square millimeter! Since the 
radius is only known to one significant figure, the final answer should also contain only one 
significant figure. A more truthful answer would be to report the area as 300 m2; however, this 
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format is somewhat misleading, since it could be interpreted to have three significant figures because 
of the zeroes. The better way to report the number would be to use scientific notation: 3 × 102 m2. 

From this example, we can see that the number of significant figures reported for a value implies 
a certain degree of precision. In fact, the number of significant figures suggests a rough estimate of 
the relative uncertainty: 

The number of significant figures implies an approximate relative uncertainty 
1 significant figure suggests a relative uncertainty of about 10% to 100% 
2 significant figures suggest a relative uncertainty of about 1% to 10% 
3 significant figures suggest a relative uncertainty of about 0.1% to 1% 

To understand this connection more clearly, consider a value with 2 significant figures, like 99, 
which suggests an uncertainty of ±1, or a relative uncertainty of ±1%. (Actually some people might 
argue that the implied uncertainty in 99 is ±0.5 since the range of values that would round to 99 are 
98.5 to 99.4. But since the uncertainty here is only a rough estimate, there is not much point arguing 
about the factor of two.) The smallest 2-significant figure number, 10, also suggests an uncertainty of 
±1, which in this case is a relative uncertainty of ±10%. The ranges for other numbers of significant 
figures can be reasoned in a similar manner. 

Use of Significant Figures for Simple Propagation of Uncertainty 
By following a few simple rules, significant figures can be used to find the appropriate precision 

for a calculated result for the four most basic math functions, all without the use of complicated 
formulas for propagating uncertainties. 

For multiplication and division, the number of significant figures that are 
reliably known in a product or quotient is the same as the smallest number of 
significant figures in any of the original numbers. 

Example:  6.6    (2 significant figures) 
   x 7328.7    (5 significant figures) 

     48369.42 = 48 x 103   (2 significant figures) 
 

For addition and subtraction, the result should be rounded off to the last 
decimal place reported for the least precise number. 

Examples: 223.64  5560.5 
  +54   +    0.008 
             278  5560.5 
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If a calculated number is to be used in further calculations, it is good practice to keep one extra 
digit to reduce rounding errors that may accumulate. Then the final answer should be rounded 
according to the above guidelines. 

Uncertainty and Significant Figures 
For the same reason that it is dishonest to report a result with more significant figures than are 

reliably known, the uncertainty value should also not be reported with excessive precision.  

For example, if we measure the density of copper, it would be unreasonable to report a result 
like: 

measured density = 8.93 ± 0.4753 g/cm3 WRONG! 

The uncertainty in the measurement cannot be known to that precision. In most experimental 
work, the confidence in the uncertainty estimate is not much better than about ±50% because of all 
the various sources of error, none of which can be known exactly. Therefore, to be consistent with 
this large uncertainty in the uncertainty (!) the uncertainty value should be stated to only one 
significant figure (or perhaps 2 sig. figs. if the first digit is a 1). 

Experimental uncertainties should be rounded to one, or at most two, significant 
figures. 

To help give a sense of the amount of confidence that can be placed in the standard deviation, the 
following table indicates the relative uncertainty associated with the standard deviation for various 
sample sizes.  Note that in order for an uncertainty value to be reported to 3 significant figures, more 
than 10,000 readings would be required to justify this degree of precision! 

 

N 

Relative 

Uncert.* 

Sig.Figs. 

Valid 

Implied 

Uncertainty 

2 71% 1 ± 10% to 
3 50% 1 ± 10% to 
4 41% 1 ± 10% to 
5 35% 1 ± 10% to 
10 24% 1 ± 10% to 
20 16% 1 ± 10% to 
30 13% 1 ± 10% to 
50 10% 2 ± 1% to 
10 7% 2 ± 1% to 
10 0.7% 3 ± 0.1% to 

 

*The relative uncertainty is given by the approximate formula: 

 

When an explicit uncertainty estimate is made, the uncertainty term indicates how many 
significant figures should be reported in the measured value (not the other way around!). For 
example, the uncertainty in the density measurement above is about 0.5 g/cm3, so this tells us that the 
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−
=
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digit in the tenths place is uncertain, and should be the last one reported. The other digits in the 
hundredths place and beyond are insignificant, and should not be reported: 

measured density = 8.9 ± 0.5 g/cm3 RIGHT! 

An experimental value should be rounded to an appropriate number of 
significant figures consistent with its uncertainty.  This generally means that the 
last significant figure in any reported measurement should be in the same 
decimal place as the uncertainty. 

In most instances, this practice of rounding an experimental result to be consistent with the 
uncertainty estimate gives the same number of significant figures as the rules discussed earlier for 
simple propagation of uncertainties for adding, subtracting, multiplying, and dividing. 

Caution:  When conducting an experiment, it is important to keep in mind that precision is 
expensive (both in terms of time and material resources). Do not waste your time trying to obtain a 
precise result when only a rough estimate is required. The cost increases exponentially with the 
amount of precision required, so the potential benefit of this precision must be weighed against the 
extra cost. 

Combining and Reporting Uncertainties 
In 1993, the International Standards Organization (ISO) published the first official worldwide 

Guide to the Expression of Uncertainty in Measurement. Before this time, uncertainty estimates were 
evaluated and reported according to different conventions depending on the context of the 
measurement or the scientific discipline. Here are a few key points from this 100-page guide, which 
can be found in modified form on the NIST website (see References). 

When reporting a measurement, the measured value should be reported along with an estimate of 
the total combined standard uncertainty of the value. The total uncertainty is found by combining 
the uncertainty components based on the two types of uncertainty analysis: 

Type A evaluation of standard uncertainty – method of evaluation of uncertainty by the 
statistical analysis of a series of observations. This method primarily includes random errors.  

Type B evaluation of standard uncertainty – method of evaluation of uncertainty by means 
other than the statistical analysis of series of observations. This method includes systematic errors 
and any other uncertainty factors that the experimenter believes are important. 

The individual uncertainty components should be combined using the law of propagation of 
uncertainties, commonly called the “root-sum-of-squares” or “RSS” method. When this is done, the 
combined standard uncertainty should be equivalent to the standard deviation of the result, making 
this uncertainty value correspond with a 68% confidence interval. If a wider confidence interval is 
desired, the uncertainty can be multiplied by a coverage factor (usually k = 2 or 3) to provide an 
uncertainty range that is believed to include the true value with a confidence of 95% or 99.7% 
respectively.  If a coverage factor is used, there should be a clear explanation of its meaning so there 
is no confusion for readers interpreting the significance of the uncertainty value. 

You should be aware that the ± uncertainty notation might be used to indicate different 
confidence intervals, depending on the scientific discipline or context. For example, a public opinion 
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poll may report that the results have a margin of error of ±3%, which means that readers can be 
95% confident (not 68% confident) that the reported results are accurate within 3 percentage points. 
In physics, the same average result would be reported with an uncertainty of ±1.5% to indicate the 
68% confidence interval. 

Conclusion: “When do measurements agree with each other?” 
We now have the resources to answer the fundamental scientific question that was asked at the 

beginning of this error analysis discussion: “Does my result agree with a theoretical prediction or 
results from other experiments?” 

Generally speaking, a measured result agrees with a theoretical prediction if the prediction lies 
within the range of experimental uncertainty. Similarly, if two measured values have standard 
uncertainty ranges that overlap, then the measurements are said to be consistent (they agree). If the 
uncertainty ranges do not overlap, then the measurements are said to be discrepant (they do not 
agree). However, you should recognize that these overlap criteria can give two opposite answers 
depending on the evaluation and confidence level of the uncertainty. It would be unethical to 
arbitrarily inflate the uncertainty range just to make a measurement agree with an expected value.  A 
better procedure would be to discuss the size of the difference between the measured and expected 
values within the context of the uncertainty, and try to discover the source of the discrepancy if the 
difference is truly significant.  To examine your own data, try out the Measurement Comparison 
tool available on the lab website:  http://www.physics.unc.edu/labs 

 
A = 1.2 ± 0.4 
B = 1.8 ± 0.4 

These measurements agree within their 
uncertainties, despite the fact that the percent 
difference between their central values is 40%. 

 

These measurements do not agree since their 
uncertainties do not overlap.  Further investigation 
would be needed to determine the cause for the 
discrepancy. Perhaps the uncertainties were 
underestimated, there was a systematic error that 
was not detected, or the difference may be real! 

Measurements and their uncertainties
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http://www.physics.unc.edu/labs
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