
LAB 10b PION-PROTON COLLISION

EXPERIMENTAL GOALS

Under the right conditions, a charged particle moving through liquid hydrogen can leave a trail 
of tiny bubbles. During the 1960s and 1970s, physicists used photographs of such bubble tracks 
to study collisions of subatomic particles. (Physicists now use particle detectors that are more easi-
ly interfaced directly to computers.) In this lab, you will study the bubble-chamber photograph of a 
collision between a subatomic particle called a pion and a hydrogen nucleus (proton). Your goal is 
to check whether this particular collision more closely satisfies the newtonian model or the relativ-
istic model of momentum and energy conservation (the latter will be described below).

LABORATORY SKILLS you will be developing

The main educational purpose of this lab is to introduce the relativistic model of momentum and 
energy conservation and its application to particle physics. This will give you some concrete ex-
perience with the ideas before you encounter the more theoretical presentation near the end of unit 
R. This lab will also give you some practice with handling propagation of uncertainties.

SOME PROCEDURAL SUGGESTIONS AND NOTES

You will each be given bubble-chamber photograph labeled “A-5”. The bubble chamber in this 
case was a vat filled with liquid hydrogen placed at the business end of a particle accelerator pro-
ducing a beam of high-energy subatomic particles called pions. These pions create the essentially 
horizontal tracks seen in the photograph. In the center of the photograph you see the consequences 
of an elastic collision between one of these pions and a hydrogen nucleus (which is simply a 
proton): the two angled tracks show the paths of the pion and the proton after the collision.

If you look at the tracks, you can see that they are slightly curved. This is because the bubble 
chamber was placed in a magnetic field. Experimentally, a particle with charge q and mass m mov-
ing with speed v perpendicular to a uniform magnetic field 
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where c is the speed of light. So knowing R, we can in principle determine the particle’s speed. 
The magnetic field also bends positive charges and negative charges in opposite directions: in the 
photograph shown, the magnetic field is oriented so that it bends positive charges into clockwise 
circles and negative charges into counterclockwise circles. So one can also determine the sign of a 
particle’s charge by observing which way its track bends.
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L M Each track in the photograph is so gently curved that it 
would seem to be very difficult to measure its radius of curva-
ture R. However, consider the diagram to the left. Say that we 
only have a portion of a circular track between points L and M 
and we would like to know the distance R to the circle’s center 
O. We can easily measure the chord width w along the straight 
line between L and M, and the height h of the curve above the 
chord’s midpoint N. Applying the pythagorean theorem to the 
right triangle DONM in the diagram, we find that
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Cancelling R2  from both sides of this equation yields:
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where the last approximation applies whenever 2h w<< , which will always be strongly true for 
the tracks we consider. Thus we can easily calculate R by measuring w and h.
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Now, particle physicists typically describe a subatomic particle’s momentum not in units of 
kg·m/s (which would yield an awkwardly small number) but rather stating the value of pc, where c 
is the speed of light. Note that pc has the units of (mass·velocity)·velocity = mass·velocity2, which 
are the same as the units of energy. Similarly, they describe a particle’s mass by stating the value 
of mc2 , which also has units of energy. To make these numbers even more managable, they also 
express all quantities with units of energy in electron volts, where  1 eV ∫ ¥ -1 602 10 19.  J . (We 
the logic behind the name in unit E: for right now, just think of it as conveniently small unit of en-
ergy.) The value of m cp

2 for a pion is 139.6 MeV, while m cp
2  for a proton is 938.3 MeV.

According to the newtonian model, this collision should conserve the system’s total vector mo-
mentum and its total kinetic energy. Solving equation 1 for pc = mvc, one gets (after some work)
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In our situation the incoming pions have a negative charge of –e, where e is the charge of a proton, 
so q e= +  for all particles in this experiment. The value of the magnetic field strength B in this ex-
periment is such that q BcR  for the incoming pions is 921 MeV: you can use this to calculate 
q Bc . Then by plugging the particle’s mass and the radius R of its path into the expression above, 

one can find the magnitude of its momentum. One can then determine its kinetic energy K using 
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Note that to use equations 4 and 5, you have to determine which outgoing particle is the proton and 
which is the pion by observing which way the outgoing particle curves.
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Of course, equation 4 only gives you the magnitude of the parti-
cle’s momentum: it is its momentum components that are conserved. 
Now, if the components of 

r r
p m= v are conserved, then the compon-

ents of     m c
r
v  will also conserved. For a given particle, you can cal-

culate m c m cxv v= ( )cosq  and  m cyv =    ±( )sinm cv q  if you measure 
the angle q of the particle’s path just after the collision makes with 
some x axis (which we might conveniently choose to be the original 
pion’s direction of motion just before  the collision). We can measure 
this angle by drawing a line tangent to the particle’s path just as it 
emerges from the collision, as shown to the right (the path curvatures 

are exaggerated), and measuring its angle relative to the x axis using a protractor. (Note that these 
tangent lines will not be at the same angle as the chord lines you draw to compute R.)

In summary, to check conservation of newtonian momentum and energy,

1. Identify which outgoing particle is which by the way it curves.

2. Draw straight-line chords stretching from end to end along each particle’s path using a very 
fine pencil, and measure w and h (try to measure h to ±0.1 mm). Note that the incoming 
pions all have almost exactly the same momentum in this experiment by design, so you can 
measure the curvature of any incoming pion’s path and confidently assume that the path of 
the pion actually involved in the collision has the same curvature.

3. Use w and h (and their uncertainties) to determine R (and its uncertainty).

4. Carefully draw tangent lines to the particle’s paths just before or after the collision and 
measure the angles q1 and q2 for the outgoing particles. (Remember that the uncertainty in 
these angles should include an estimate of how well you can draw those tangent lines.)

5. Use R and the particle’s mass m to calculate   m cv  (and its uncertainty) for each particle.

6. Use these quantities to calculate the newtonian kinetic energy and components of the total 
momentum before and after the collision. Are these conserved within uncertainties?
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Do steps 1 through 4 by yourself, and then compare results with your partners to come up with 
common estimates of curvature radii and angles (and their uncertainties), and then proceed as a 
team with the rest of the analysis.

As we will see in unit R, the theory of relativity predicts that the quantities conserved in such a 
collision are the components of the system’s total 4-momentum. The 4-momentum of an individ-
ual particle is a four-dimensional vector whose components are
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where   
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We call P the magnitude of the particle’s relativistic momentum and E the particle’s relativistic 
energy. Note that a particle has relativistic energy E mc= 2  when it is at rest (does this formula 
ring a bell?). Note also that in all these expressions, the particle’s mass m is a speed-independent 
constant (no matter what you may have heard about mass in relativity).

This formula looks complicated, but it is actually very simple to use in this case. If you com-
pare equation 7 with equation 1, you will see that the magnitude P of a particle’s relativistic mo-
mentum is related in a very simple way to the radius of curvature R of its track:

  
R

m c

q Bc c

P

q Bc
P q BcR=

-
= fi =v

v1 2 2/
(8)

Since we know the value of q Bc  = eBc from before, we can easily calculate P if we know R. 
Then, if the particle’s track makes an angle of q with the +x direction, its 4-momentum is simply
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(where the sign in the next-to-last component depends on whether the particle’s path is above or 
below the x axis). Since you already determined R for each particle when you did the newtonian 
analysis, it is an easy matter to compute these 4-momentum components for each particle. Add up 
the 4-momentum column vectors for all particles before and after the collision and compare to see if 
4-momentum is conserved. (Treat these vectors just like ordinary 3-component column vectors that 
happen to have an additional component.)

Your job is to determine whether the newtonian conservation laws or conservation of 4-mo-
mentum better model the collision shown in the photograph. To do this successfully, you will have 
to pay very careful attention to uncertainties. Work carefully to make the best uncertainty estimates 
you can, and think carefully about how you will handle propagation of uncertainties. It will also 
help if you are very careful when you construct your lines and make your measurements.

(Note that PropUnc expects angles in radians. The program predefines the constant “pi”, so 
you can type something like “cos(theta*pi/180)” if theta is an angle in degrees.)


