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I. Introduction

Optical spectroscopy has been enormously useful for exploring the energy levels and

excitations of atomic systems at electron-volt energies. For understanding solids, however, one

would like information at milli-eV energies, so different forms of spectroscopy become

important. In this experiment we will study one spectroscopic method known variously as

electron paramagnetic resonance, EPR, or electron spin resonance, ESR. The technique depends

on the fact that certain atomic systems have a permanent magnetic moment. The energy levels of

the magnetic system are influenced by the surrounding atoms and by external magnetic fields.

Transitions among the levels can be detected by monitoring the power absorbed from an

alternating magnetic field, just as ordinary atomic transitions are detected by absorption of light.

Comparing the observed transitions with model calculations then lets us deduce some features of

the environment around the moment.

The experiment has several parts. First, we need to set up the conditions to detect the EPR

and test the effect of various spectrometer parameters. The signals are quite weak so this also

serves to demonstrate the lock-in amplifier as a signal recovery device. Once we can use the

equipment effectively we can compare the spectra of Cr+3 in two different hosts to see what EPR

can tell us about the atomic environment of a known ion. The last exercise will be the study of a

crystal containing unknown impurities to show how EPR could be used as an analytical tool.

The discussion below only scratches the surface of EPR applications. Some of the better texts

available for further study are:

The Physical Principles of EPR, by Pake and Estle. An excellent elementary introduction.

EPR of Transition Ions, by Abragam and Bleaney. The definitive (911 pp) compendium.

Principles of Nuclear Magnetism, by Abragam. Strictly concerned with NMR but much of

the physics is the same and the explanations are elegant.

EPR:Techniques and Applications, by Alger. The grubby details.
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II. Theoretical Considerations

To understand the phenomenon of EPR one needs to consider three main issues: What atomic

systems can exhibit permanent paramagnetism? What are the energy levels of a particular

paramagnetic system in the presence of an external magnetic field? and How do we detect

transitions among the levels? These are obviously interrelated but for convenience we consider

each in turn.

A. Paramagnetic entities

Magnetism arises from the motion of charge on an atomic or sub-atomic (nuclear) scale.

Since charge is inevitably associated with mass, this implies an intimate relation between the

angular momentum and the resultant magnetic moment of an atomic entity. The simplest case

occurs for spherical symmetry (an isolated atom) when the orbital and spin angular momenta are

good quantum numbers. Then the magnetic moment of the atom is given by the ground-state

expectation value of the magnetic moment operator

  

r r r
µ µ= − +( )B egL S (1)

where µB is the Bohr magneton and ge ≈ 2 is called the electronic g-factor. (Several useful

numbers, including these, are tabulated in the Appendix.) A similar expression can be written for

a nucleus with net angular momentum.

Equation 1 implies that isolated atoms or ions will frequently have magnetic moments since

outer-shell electrons will be not all be paired, except in the rare-gas configurations. Most bulk

matter, however, does not exhibit paramagnetism. The magnetism is suppressed because

chemical bonding requires transfer (ionic bonds) or sharing (covalent bonds) of electrons in such

a way that both atoms acquire a rare-gas configuration. Nuclei, of course, do not form chemical

bonds and hence nuclear magnetism is quite common in solids.

There are a number of ways for condensed matter to retain some magnetic moments, the

most important of which involve certain unusual molecules, transition-group atoms, or particular

point defects in solids. Molecular NO and NO2 both have an odd number of electrons and hence

a permanent magnetic moment. Similarly, many large molecules can exist with an odd number of

electrons. Completing this group, the ground state of O2 happens to be a partially-filled shell

with corresponding moment. Transition-group atoms are those which have incomplete 3d, 4d,

5d, 4f or 5f shells. Bonding of these atoms often involves higher-energy p or s electrons, leaving

the unpaired d or f electrons relatively undisturbed. When this occurs the atom or ion retains
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nearly the full atomic moment. Finally, certain defects such as vacancies or foreign atoms in a

crystal may gain or lose an electron relative to the chemically bonded host, thereby producing a

localized moment.

Here we will be concerned with only two types of magnetic entity. The simplest magnetically

is a large organic molecule known as DPPH (αα '-diphenyl-β-picrylhydrazyl). It has a single

unpaired electron, leading to a very simple energy level structure. We will also study some of the

typical 3d transition elements when present at low concentration in insulating crystals. By

considering only dilute solid solutions of the 3d atoms we avoid atom-atom interactions which

complicate the interpretation of EPR spectra. (In other circumstances the interactions are of

considerable importance, leading for example to the magnetism of metallic iron.)

B. Energy levels

The energy levels of a magnetic moment with no orbital angular momentum (L = 0) are quite

simple. In the presence of a magnetic field the degenerate ground state splits according to the

Zeeman Hamiltonian

  Hz = − ⋅
r r
µ H (2)

into 2S + 1 levels characterized by Sz. At any given field the separation between adjacent levels

is constant at gµBH. For g-values near ge and typical laboratory fields of 10 kG this splitting is

rather small, about 10-4 eV.

Although not free, the unpaired electron in DPPH behaves approximately like this with S =

1/2. Similarly, some atoms with half-filled shells may have L = 0. The Mn2+ ion, which has a

3d5 configuration with L = 0, S = 5/2 is a good example. In an external field the 6S ground state

of Mn2+ splits uniformly as a free spin would.

When an atom is incorporated into a crystal the situation becomes a good deal more

interesting, particularly if L ≠ 0. Generally the atom will lose one or more electrons to become a

charged ion similar (but not necessarily identical) to the host atoms. The ion is also subject to

interactions with the surrounding electrons and nuclei which will perturb its energy levels.

Obviously, calculation of the resulting energy levels in the general case would be a formidable

problem in quantum mechanics even if one knew all the pertinent parameters.

To keep matters reasonably simple, we will explicitly consider only a 3d atom for which the

Russel-Saunders coupling scheme is adequate. The Hamiltonian for the ion is then the sum of

several terms:

  H H H H= + ⋅ + ⋅ + +0 λ
r r r r
L S I S cf zA (3)
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The first term is the usual free-atom Hamiltonian, except for two parts which are written

explicitly. The spin-orbit coupling is the second term, while the   A
r r
I S⋅  term describes the

"hyperfine" coupling of the electronic spin to the nuclear spin   
r
I . We use Hcf to represent the

electrical interaction of the paramagnetic species with the neighboring atoms, including effects

due to bonding. In the simplest approximation the interaction can be thought of as due to point

charges at the surrounding host sites, hence the common name "crystal field". By relating Hcf to

the observed EPR spectrum we hope to learn something about the surroundings of the ion. The

last term is the Zeeman interaction, given by Eq. 2. In principle we should include the nuclear

Zeeman Hamiltonian also, but it is too weak to be of concern here.

Ignoring the Zeeman and hyperfine terms for the moment, we need to solve for the

eigenvalues and eigenvectors (wavefunctions) of Eq. 3. At first sight we might try to treat the

spin-orbit and crystal field as perturbations, but this is inadequate. For 3d ions the spin-orbit

interaction is weak, but the crystal field strength can be comparable to the electron-electron

interaction contained in H0. We must usually, therefore, include Hcf from the beginning and then

treat the spin-orbit, hyperfine and Zeeman terms as perturbations. The calculations are difficult

but can be done when the surroundings are reasonably symmetric. For example, Fig. 1 shows a

typical energy level diagram for Cr3+ when Hcf has octahedral symmetry. (Imagine the ion site at

the origin and then put equal charges at equal distances along the ±x, ±y and ±z directions. The

electrostatic field produced by those charges has octahedral symmetry.) The Hund's-rule ground
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Fig. 1 Energy levels of Cr3+ in an octahedral crystal field, compared to the free-ion levels. The

degeneracy is noted for each level. The overall crystal field splitting is about 3.5 eV in typical

hosts.
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state for the free 3d3 ion has L = 3, S = 3/2, while the first excited state has L = 4, S = 1/2. The

crystal field has partially lifted the degeneracy of the spherically symmetric ion to form a

complicated array of levels. The wavefunctions of these levels are generally mixtures of several

of the free-ion wavefunctions. As you can infer from the caption, transitions among these levels

will be driven by optical frequencies and can account for the visible colors of crystals containing

Cr3+.

At any reasonable temperature only the lowest level in Fig. 1 is populated. Accordingly, we

need only consider the effect of an applied field on the lowest state. If A = 0 (no nuclear moment)

the perturbation calculation requires evaluation of various matrix elements of Hz with the

wavefunctions for the ground state. One finds that the field lifts the four-fold degeneracy,

splitting the state into the four equally spaced levels diagrammed in Fig. 2a. It is amusing to note

that a free moment with L = 0, S = 3/2 would split in the same way, although the g-value may

differ in the present situation. We have used this fact to label the states with a fictitious spin
quantum number ̃Ms, and will pursue the point later.

When the hyperfine interaction is present we must solve a slightly more complicated

problem, since the electronic energy will depend on the orientation of the nucleus as well as the

applied field. The result is shown in Fig 2b for I = 3/2. The distinctive feature here is that, at high

field, each electronic level is split into 2I + 1 levels, corresponding to the 2I + 1 possible values
of Iz. For convenience, we have again labeled the states with the fictitious quantum number M̃s,

as well as Iz. Very crudely, one can think of the z-component of the magnetic field due to the
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Fig. 2 Splitting of the ground-state energy levels of Cr3+ in a magnetic field for: a. Spinless

nucleus, A = 0; b. Nucleus with spin I = 3/2.
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nucleus either aiding or opposing the external field.

So far we have assumed a particular, highly symmetric crystal field. Consider now putting

the same ion into a different host, in which the octahedral symmetry is disturbed by stretching

the charge distribution of the host along some particular axis. (The case we use is a trigonal

distortion, corresponding to stretching along the line x=y=z.) The result is shown for Cr3+ in

Fig. 3, with the customary fictitious spin labels. Including a non-zero hyperfine interaction would

simply split the levels as before, so we have omitted it. Two new features are present here.

Evidently the four-fold degeneracy is partially lifted even in the absence of the field. Not shown

is the fact that the field-dependent splitting will now vary with the angle between the field and

the distortion axis. In effect the distortion has picked out a direction in the crystal and the energy

levels can depend on the angle between that axis and the external field.

C. Detection of transitions

Once we have found the energy levels it is reasonable to ask how we can detect them. Our

experience with atomic systems suggests looking for absorption of electromagnetic radiation due

to transitions between levels. We expect that this absorption will occur when hν = ∆E. Since we

are dealing with magnetic phenomena, we would particularly expect to see energy absorption in

response to the alternating magnetic field of the radiation.

We can formalize this idea by considering a time-dependent Zeeman Hamiltonian

H
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Fig. 3 Splitting of the ground-state energy levels of Cr3+ in a host with distorted octahedral

symmetry. The field-induced splitting assumes H along the distortion axis. The energy levels

will shift if H is applied in other directions.
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  ′ = − ⋅ ′Hz
r r
µ H cos2πνt (4)

assuming a linearly polarized field. The magnitude of   
r

′H  is usually small, so we can treat this as

an additional time-dependent perturbation inducing transitions between the energy levels

previously calculated. Carrying out the calculation one finds that the rate of transitions between

an occupied state M and an unoccupied state M ' is proportional to the matrix element
′ ′M MHz

2  whenever hν is equal to the difference in energy between the states. Since M' will

normally be higher in energy than M a transition from M to M' implies an absorption of energy

from the source of the time-varying field. If the paramagnetic system can subsequently lose the

energy, for example as heat, the process can continue indefinitely.
One other feature emerges from the calculation. The matrix element ′ ′M MHz

2  is non-zero

only for certain pairs of states M,M'. For a simple free spin the selection rule is quite strong: all
non-zero matrix elements have ′Ms = Ms ± 1. Since the level splittings are all equal, this means

that all transitions occur at the same frequency. The ∆Ms rule also applies when a hyperfine

interaction is present to give a level structure as in Fig. 2b. The nuclei are unaffected by the time

varying field, which is far from their resonant frequency, so ∆Iz = 0, leaving 2I + 1 possible

distinct transitions. Departing from the free-spin case, one finds that the selection rules depend

on the details of the ion and the symmetries of the environment. Except when the symmetry is

rather high, the matrix elements must then be evaluated individually.

The experimental requirements should now be reasonably clear. The specimen containing the

paramagnetic atoms is placed in a uniform magnetic field and a small alternating magnetic field

is applied. We then arrange to detect the absorption of energy when the frequency of the

alternating field is equal to one of the transition frequencies of the system. Quantitatively, the

needed frequencies are usually in the microwave region, 1-10 GHz for applied fields of a few

kilogauss. Since microwave apparatus operates over rather narrow frequency bands it is in fact

more practical to sweep the main field and hold the frequency fixed than it is to vary the

frequency. Fortunately this makes little difference in principle. The resulting EPR spectrum of

energy absorption vs field is shown schematically in Fig. 4 for one of the energy level diagrams

previously discussed.

D. Spin Hamiltonians

A complete calculation of the ionic energy levels in the presence of the crystal field, as used

above, is not always available. This is particularly true when investigating a new ion-host

combination. Such situations can be handled by extending the fictitious spin idea introduced

above and creating a "spin Hamiltonian" to describe the observed splittings of the ion. The

purpose of this construction is to supply a concise summary of experimental EPR results which
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can later be compared with other data and with a proper quantum mechanical calculation.

In constructing the spin Hamiltonian we pick a value of S consistent with the known or

suspected degeneracy of the ground state. The required value of S is, of course, not necessarily

the same as that of any free ion state since interactions with the host will usually reduce the

degeneracy of the ion. The Hamiltonian itself consists of all possible terms consistent with the

symmetry of the surroundings and the magnitude of the spin. Any necessary parameters are left

as unknowns. The result is usually fairly simple compared to a proper atomic Hamiltonian. The

energy level calculation is carried through and the values of the unknown parameters are

determined by comparison with the observed EPR spectra. If the calculated energy levels cannot

fit the observations, the site or impurity must not have the assumed characteristics and another

attempt is in order.

Some examples may clarify this process. The simple level diagram in Fig. 2a is described by

the spin Hamiltonian

  H = ⋅g SBµ ˜
r
H (5)

with the single unknown parameter g. The level is actually four-fold degenerate, requiring
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Fig. 4 The same levels as in Fig. 3, showing the three EPR transitions allowed by free-spin

selection rules. The lower figure is a sketch of the expected EPR absorption spectrum as a

function of field.
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S̃  = 3/2, but S̃  = 1/2 would describe the spectrum just as well since we see only one transition,

which occurs when hν = gµBH. In fact we use this relation as the experimental definition of g.

The presence of the hyperfine interaction, as in Fig. 2b, simply requires the addition of a

hyperfine coupling term

  H = ⋅ + ⋅g S A SBµ ˜ ˜
r r
H I (6)

Again, either ̃S  = 3/2 or S̃  = 1/2 would suffice. If the free-spin selection rules are obeyed, there

will be transitions when hν equals gµBH + (3/2)A, gµBH + (1/2)A, gµBH - (1/2)A, and gµBH -

(3/2)A. Note that these will be spaced at intervals of A/gµB in applied field. In fact, if we did not

already know the nuclear spin I we could determine it by counting the 2I + 1 equally-spaced

hyperfine components.

The level diagram in Fig. 3 requires a term which will be anisotropic in field and which will

split the levels even when H = 0. A form with S̃  = 3/2 and the necessary ingredients is

H = + + +( )[ ]⊥DS g S H g S H S Hz B z z x x y y
˜ ˜ ˜ ˜

||
2 µ (7)

The DS̃z
2  term accounts for the zero-field splitting, while the apparent g-values will vary

depending on the components of   
r
H  with respect to the distortion axis. (To be completely honest,

we should also admit that both terms will contribute to the observed anisotropy when gµBH ≤ D,

as occurs in our samples.) Because we see more than one transition, we definitely need S̃  = 3/2

this time. Finally, note that with the addition of a hyperfine term all three cases could be written

in the form of Eq. 7.
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III. Methods and Measurements

A good deal of unfamiliar apparatus is needed to carry out this experiment. A microwave

generator and resonant cavity provide a time-varying magnetic field. A lock-in amplifier is used

to detect the minute reduction in microwave power produced by the EPR absorption. Finally, we

use nuclear magnetic resonance, NMR, of protons to precisely calibrate the steady magnetic

field. Because of this complexity you should first go through a careful set-up and check

procedure using the strong and simple signal from a large sample of DPPH. Once convinced that

the spectrometer is working, you can measure the EPR of Cr3+ in two different crystal

environments. If time allows, you might then find it amusing to try a sample of "pure" MgO to

see if you can discern what paramagnetic impurities it contains.

The next several sections describe how to tune each major item of equipment. Additional

information will be found in the manufacturers' instruction manuals available in the lab. We

conclude with the measurement of transition ions in insulating hosts.

A. Microwave system

The required alternating field H' is produced by a solid state oscillator operating near 8.9

GHz. The oscillator is coupled to a resonant cavity containing the sample. When the oscillator

frequency matches the cavity frequency the amplitude of H' is increased relative to the oscillator

amplitude by the Q-factor of the cavity. Since Q ≈ 3000 this substantially enhances the field

intensity and hence the absorption by the sample.

Some of the power entering the cavity is allowed to leak out the opposite side. The amount of

leakage is determined by the input power and by sample absorption. The output power falls on a

diode which converts it to a near-DC. This voltage, proportional to the transmission through the

cavity, constitutes our signal. It is amplified for display on the instrument's meter and is also

available at the front panel output jack.

Set up the MicroNow model 810B spectrometer as shown in Fig. 5. Gently place the DPPH

sample tube into the cavity through the opening in the gold-colored collet. You are now ready to

adjust the spectrometer.

1. Set the meter switch to read XTAL CURRENT, which is the current from the detector

diode. (Diodes used to be called "crystals", abbreviated "xtal".) The reading is proportional to the

power transmission through the cavity.

2. Use the TUNING VOLTAGE control to maximize the diode current reading. This changes

the frequency of the microwave oscillator by changing its operating current until the frequency

matches the resonant frequency of the cavity. The amplitude of H' and the transmission through
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the cavity are both maximum at the cavity resonance frequency.

3. There is a sliding metal plate behind the diode detector. The plate reflects the incoming

microwaves to create a standing wave with an E-field maximum at the diode. Using the large

knob on the detector mount, position the plate for maximum diode current. The adjustment is not

critical and can be left undisturbed for the remainder of the experiment.

4. Measure the operating frequency with the wavemeter. This is an accurately calibrated

adjustable resonant cavity weakly coupled to the output waveguide. At its resonant frequency it

absorbs a fraction of the transmitted power, causing a dip in the diode current. Carefully tune the

wavemeter near 8.9 GHz until you see the current dip sharply. By precisely setting the

wavemeter for minimum current you can measure the oscillator frequency to four significant

figures. When not measuring frequency, detune the wavemeter so it does not interfere with the

EPR signals.

B. Magnet system

The main external field is produced by a large electromagnet. The power supply controller

allows the field to be ramped slowly up or down, and also provides an output for a chart

recorder. The controller has knobs to set the center point and width of the swept field range.

Another control varies the sweep time from minimum to maximum field in several steps from

about 15 s to 10 min. Two sets of push buttons are provided to start and stop the sweep and to set

the field at the minimum, center or maximum of the specified range.

1. Turn on the cooling water at the sink. An interlock prevents operation of the magnet if the

flow is too small. If the magnet coils get distinctly warm, increase the flow.

2. Turn on the sweep controller and the Hewlett-Packard power supply.

3. Set the controls for a range from 22.5 to 24 A, as read on the power supply meter. Use a

30 s sweep time. These settings should give a reasonable starting point for the DPPH signal.

To magnet
supply

Power 
Amp

In    Out

Oscillator
Controls and
Metering

Pre-
Amp
Out    In

Osc.   Atten.   Cavity   Detec.
Ref           Sig

   Lock-in
            Out

Micro-Now
810B

 Recorder
Y            X

Magnet Sweep
     Control

Fig. 5 Connection diagram for EPR apparatus.
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C. Lock-in amplifier

As applied to EPR, the use of the lock-in is illustrated in Fig. 6. We apply a strong slowly-

increasing field and a weak alternating field so that the instantaneous field seen by the spins is

their algebraic sum. This causes the microwave power absorbed by the spins to vary at the

frequency of the alternating field. The amplitude of the variation is proportional to the field

derivative of the absorption at that total field strength. The varying power absorption is detected

by a microwave diode which produces an AC signal at the frequency of the alternating field. The

diode signal is used as the input to a lock-in amplifier.

Within the lock-in there is a tuned amplifier which preferentially amplifies signals at the

modulation frequency. This is followed by a phase sensitive detector which multiplies the

incoming signal by a reference square wave with the same frequency as the signal. The time-

average value of the phase sensitive detector output is proportional to the amplitude of the input

signal times the cosine of the relative phase between the reference and input voltages. An RC

circuit with adjustable time constant is included to do the averaging before the output is sent to a

recorder. Since the amplitude of the AC signal at the input is proportional to the derivative of the

absorption, the XY recorder effectively plots that derivative vs field.

Adjustment of the lock-in is simple if you proceed systematically. Connect the lock-in to the

H

Abs.

V

V

sig

out

t

t

t

t

Fig. 6 Schematic plots of various quantities vs time: External magnetic field, averaged

microwave power absorption, output of tuned amplifier and averaged output of PSD.
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spectrometer electronics as in Fig. 5. An oscillator internal to the lock-in is used as input to a

power amplifier which drives a coil inside the cavity. The field from this coil is parallel to the

main field, as required. The same oscillator supplies the reference signal for the phase sensitive

detector in the lock-in. The signal from the diode preamp is connected to the input of the lock-in

and eventually becomes the signal input to the phase sensitive detector.

1. Connect the MONITOR output of the lock-in to one channel of the scope (AC coupled

input) and the reference signal (with a tee) to the other channel. Trigger on the reference signal.

Set the lock-in controls as follows:

SENSITIVITY: .5 mV

REFERENCE MODE: INT(ernal)

TIME CONSTANT: 0.1 s

2. Set the METER/MONITOR switch to SIG(nal). This connects the monitor output and

meter to the tuned amplifier in the lock-in. Adjust the magnet current to either side of the DPPH

peak absorption. The proper field is easily set by watching the scope and slowly sweeping the

field to a point where there is a substantial MONITOR signal. The lock-in meter will also show a

deflection which should be maximized to provide a strong signal for adjusting the phase.

3. Set the METER/MONITOR switch to OUT X1 and decrease the SENSITIVITY to get an

on-scale reading. You are now looking at the averaged output of the phase sensitive detector.

Adjust the PHASE controls to maximize the meter reading, thereby setting the relative phase

between signal and reference voltages to zero. This procedure compensates for the various phase

shifts between the modulation and the response of the spin system.

D. Initial measurements

At this point the spectrometer system should be properly set to observe the DPPH resonance.

If other adjustments seem necessary, consult the instructor before proceeding. Otherwise, sweep

the field through the DPPH resonance and plot the lock-in output on the chart recorder. You

should obtain a clear derivative signal on the chart. Change the magnet sweep center and range

so that the signal nicely fills the middle third of the x-axis.

Using the DPPH signal, explore the effect of the following changes and describe the results

in your report. (Be sure to reset to standard conditions after each observation.)

1. Sweeping through the resonance with increasing or decreasing field.

2. Increasing the TIME CONSTANT to 1 and 3 s.

3. A small change in lock-in PHASE setting.

4. A small change in microwave frequency, obtained by adjusting the TUNING VOLTAGE

for ≈10% reduction in diode current when off the DPPH resonance.

It should be evident that for precise measurements of amplitude or resonant field we need to be
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careful that all components are properly adjusted.

The next exercise is to precisely measure field and frequency for the DPPH resonance to

determine the g-value. Although not of great interest, it provides a good check of the procedures

to be used later. The microwave frequency measurement was described above. The microwave

oscillator is usually stable but you should check the frequency again anyway. Do not forget to

detune the frequency meter when finished. The magnetic field is measured with an NMR

gaussmeter. Set it up following the instructions in the operator's manual available in the lab. If

you have trouble finding the proton resonance, get help. It is a touchy instrument and you will

see nothing until all the settings are rather close to optimum.

Having found the NMR signal, calibrate the recorder chart by noting the NMR frequencies at

the minimum, center and maximum of the sweep range. Mark these points on the chart. The

sweep control lets you set these fields quite reproducibly, a claim you should check. Now sweep

through the DPPH resonance in both directions using a speed and TIME CONSTANT setting

you have found satisfactory. Be sure to sweep a wide enough range to see the baseline but not so

wide that the resonance location is ill-defined.

The analysis is essentially trivial. Maximum absorption corresponds to the zero-crossing of

the derivative signal. Find the average position of the zero-crossing for the up and down sweeps

and then interpolate between the calibration points to find the corresponding field. The g-value is

defined by Eq. 5 with ̃S = 1/2. Within your estimated errors, the result should agree with the

accepted value of 2.0036.

E. Cr3+ in MgO

Magnesium oxide, MgO, is a fairly simple cubic crystal. The atoms occupy the vertices of an

array of joined cubes, with Mg and O atoms alternating in all directions. Small amounts of Cr

added to the growth medium can become incorporated into the lattice, giving the normally

colorless crystal a greenish hue. (See Fig. 1 for the energy levels.) If Cr goes in substitutionally

for Mg, as one might expect in an ionically bonded crystal, the surrounding O2- ions will

produce a crystal field of octahedral symmetry.

Evidently we could check this assumption by doing an EPR experiment, since we know that

the form of the spectrum should follow from the energy-level diagram of Fig. 2a. Actually, there

is a modest complication. Chromium has several isotopes: 50Cr, I=0, 2.4% abundance; 52Cr, I=0,

83.8%; 53Cr, I=3/2, 9.6%; and 54Cr, I=0, 2.4%. All the I=0 isotopes will contribute to a simple

single-line spectrum. The 53Cr atoms will produce a four-line spectrum according to Fig. 2b. If

we can detect the four-line pattern, we can verify that we are actually observing Cr by checking

the spin and abundance. The complication has become an advantage.

When starting measurements on a new sample it is probably most useful to survey the
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territory and then work down to the features of interest. The following approach is typical.

1. Install the MgO:Cr3+ crystal. Adjust the microwave tuning voltage to maximize the diode

current. This is necessary because the crystal, like any dielectric, shifts the cavity resonance

frequency.

2. Set the lock-in SENSITIVITY to 1 mV and TIME CONSTANT to 0.1 s. This gives a

fairly high gain which should make most signals visible without an excessively noisy baseline.

3. Set the magnet controls to sweep all or most of the available field range (0 → 28 A as read

on the power supply) in 1 or 2 minutes. This is too fast to obtain an undistorted spectrum but it

lets us quickly find out what is happening.

4. Now sweep through the spectrum and note the positions of any signals. If the baseline is

strongly sloped, maximize the microwave transmission by adjusting the microwave tuning

voltage more carefully. The desired Cr3+ signal should be the strongest one present, and you may

need to decrease the gain if its signal is too strong for convenience. Rotate the crystal a bit,

maximize the diode current and sweep again in the same direction. Doing three or four

orientations this way should tell you whether or not you must contend with an anisotropic

spectrum.

On the basis of these measurements you have roughly characterized the problem. If indeed

Cr3+ is in an environment with the assumed symmetry you should have a strong isotropic

resonance near g=2 from the I=0 isotopes. You have probably also seen resonances from other

ions which you can ignore for now. To quantify the results, proceed as follows.

1. Adjust the sweep range and lock-in gains to get a clear plot of the very strong I=0

component. The resonance should occupy about the middle quarter of the chart for best accuracy.

Sweep the field in both directions, calibrate with NMR, and measure the microwave frequency

so you can determine g for the central peak.

2. Increase the gain until you can clearly see the hyperfine lines. You are looking for four

equally-spaced features relatively close to the main line. It is convenient to leave the sweep the

same to avoid recalibration. Analyze the results to obtain the A parameter in Eq. 6, being careful

to note that two hyperfine lines are nearly buried under the I=0 line. The accepted value is

A = 1.98 x 10-7eV.

3. Measure the relative amplitude of the hyperfine lines and the main line. Use the

amplitudes to estimate the ratio of 53Cr to the I=0 isotopes. Be sure to account for the fact that

the 53Cr absorption is distributed across four lines while all I=0 absorption is in one line. Does

your estimate agree with the natural abundance?

4. Overall, are your spectra consistent with the presence of Cr3+ and the energy level scheme

of Fig. 2?
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F. Cr3+ in Al2O3

The Cr3+ ion can also be incorporated into aluminum oxide, Al2O3. Presuming that the Cr3+

substitutes for some of the Al3+, the environment will again have approximately octahedral

symmetry. Precise x-ray measurements, however, indicate that the symmetry is not perfect.

Accordingly we expect the energy levels of Fig. 3 and Eq. 7 to describe this system. A full

analysis to determine the parameters in Eq. 7 requires comparing a detailed calculation of

expected line positions as a function of angle with spectra taken at many angles. Rather than

carry out this program we will just demonstrate some of the qualitative features.

Place the Al2O3:Cr3+ sample in the cavity and retune for maximum diode current. Note,

incidentally, that the crystal is ruby red (pure Al2O3 is colorless), indicating that the optical

levels of Fig. 1 must have shifted relative to MgO. Carry out the survey procedure described in

the previous section to obtain a rough idea of the spectrum, keeping in mind that only the

strongest lines are likely to be due to Cr.

Obtain spectra to show that absorption occurs at different fields for different sample

orientations. Show that it would be possible to track individual transitions by following one or

two lines as they shift in field over a few small-angle rotation steps. Discuss your main results in

the context of Eq. 7.

G. EPR of "pure" MgO

The last sample is nominally pure MgO. Even though it is colorless the survey procedure will

indicate strong EPR signals. Obtain good spectra for the stronger lines in this sample at one or

two orientations. It is probably most useful to look first at a field range that contains all the peaks

and then to magnify the amplitude and field region around one of the prominent peaks.

The objective of our qualitative analysis is a plausible identification of the residual impurities

responsible for the spectrum. In a research situation the identities would be confirmed by

comparing spectra from the unknown sample with spectra from deliberately doped specimens.

The argument proceeds from the chemical fact that it is difficult to completely separate the

3d elements, with an [Ar]3dn4s2 configuration, from Mg, a [Ne]3s2 configuration. The

impurities are likely, therefore, to be one or more 3d elements. The charge state, and hence

possible crystal field splittings, are quite unknown but the nuclear parameters are fixed. Also,

since the crystal is colorless the concentration must be much smaller than in the other crystals

you have used. Together, these facts suggest that we can use the strength of the EPR signals

along with the known nuclear spins and abundances to pick out some likely candidates. Use the

table in the Appendix to choose those isotopes that could be the source of your spectra and

identify the features in the spectrum that you would associate with each class of candidates. If

other features would be useful in later comparisons with standard samples, point them out as
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well.

Once you have tentative identifications for the contaminants in this sample, you could take

another spectrum of the MgO:Cr3+ sample with higher gain to see if some of the same lines can

be identified in that specimen. Again, the pattern of the nuclear hyperfine structure is likely to

give the best clue.
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IV. Appendix

Some Useful Numbers

h = 4.135701 x 10-15 eV-s

µB = 5.7883785 x 10-9eV/G

ge = 2.0023

resonant frequencies - protons: 4.25770 MHz/kG

electrons: 2.80244 GHz/kG

magnet calibration: 0.136 kG/A

Properties of 3d Isotopes

Isotope Spin Abundance
45Sc 7/2 100.%
46Ti,48Ti,50Ti  0  87.2
47Ti 5/2 7.3
49Ti 7/2 5.5
51V 7/2 100.
50Cr,52Cr,54Cr  0  90.5
53Cr 3/2 9.6
55Mn 5/2 100.
54Fe,56Fe,58Fe  0  97.8
57Fe 1/2 2.2
59Co 7/2 100.
58Ni,60Ni,62Ni,64Ni  0  98.9
61Ni 3/2 1.2
63Cu 3/2  69.1
65Cu 3/2  30.9


