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About This Manual

This manual provides information about analysis and mathematical
conceptsin LabVIEW.

Conventions

The following conventions appear in this manual:

» The» symbol leads you through nested menu items and dial og box options
to afinal action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

@ Thisicon denotes a note, which alerts you to important information.

bold Bold text denotesitems that you must select or click onin the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, acrossreference, or an introduction
to akey concept. Thisfont also denotestext that isaplaceholder for aword
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
Thisfontisalso used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Related Documentation

The following documents contain information that you might find hel pful
asyou read this manual:

e LabVIEW Measurements Manual
» LabVIEW Help, available by selecting Help»Contentsand Index
e LabVIEW User Manual

© National Instruments Corporation ix LabVIEW Analysis Concepts



About This Manual

*  Getting Started with LabVIEW

¢ On the Use of Windows for Harmonic Analysis with the Discrete

Fourier Transform (Proceedings of the |EEE, Volume 66, No. 1,
January 1978)
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Signal Generation

This chapter explains how to produce signals using normalized frequency
and how to build asimulated function generator. Signal generation Visare
available on the Functions»Analyze»Signal Processing»Signal
Generation palette.

Some of the applications for signal generation are;

»  Simulating signalsto test your algorithm when real-world signals are
not available (for example, when you do not have a DAQ device for
obtaining real-world signals, or when access to rea-world signalsis
not possible).

e Generating signalsto apply to a D/A converter.

Normalized Frequency

In the analog world, asignal frequency is measured in Hz or cycles per
second. But the digital system often uses adigital frequency, which isthe
ratio between the anal og frequency and the sampling frequency:

digital frequency = analog frequency / sampling frequency

This digital frequency is known as the normalized frequency. Its units are
cyclegsample.

Some of the Signal Generation VIs use an input frequency control, f, that
is assumed to use normalized frequency units of cycles per sample. This
frequency ranges from 0.0 to 1.0, which corresponds to areal frequency
range of O to the sampling frequency fs. This frequency also wraps around
1.0, so that anormalized frequency of 1.1 isequivalent to 0.1. Asan
example, asignal that is sampled at the Nyquist rate (f4/2) meansthat it is
sampled twice per cycle (that is, two samples/cycle). Thiswill correspond
to a normalized frequency of 1/2 cycles/sample = 0.5 cycles/sample.
Thereciprocal of the normalized frequency, 1/f, gives you the number of
times that the signal is sampled in one cycle.

When you usea V| that requires the normalized frequency asan input, you
must convert your frequency unitsto the normalized units of cycles/sample.

© National Instruments Corporation 1-1 LabVIEW Analysis Concepts
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Signal Generation

LabVIEW Analysis Concepts

You must use these normalized units with the following signa
generation Vls:

e SineWave

e Sguare Wave

*  Sawtooth Wave

e Triangle Wave

e Arbitrary Wave

e Chirp Pattern

If you are used to working in frequency units of cycles, you can convert

cyclesto cycles/sample by dividing cycles by the number of samples
generated.

You need only divide the frequency (in cycles) by the number of samples.
For example, afrequency of 2 cyclesisdivided by 50 samples, resulting in
anormalized frequency of f = 1/25 cycles/sample. This means that it takes
25 (the reciprocal of f) samples to generate one cycle of the sine wave.

However, you may need to use frequency unitsof Hz (cycles's). If you need
to convert from Hz (or cycles/s) to cycles/sample, divide your frequency in
cycles/s by the sampling rate given in samples/s.

cycles/s _ cycles
samples/s  sample

For example, you divide afrequency of 60 Hz by a sampling rate of
1000 Hz to get the normalized frequency of f = 0.06 cycles/sample.
Therefore, it takes almost 17 (1/0.06) samples to generate one cycle of
the sine wave.

The signal generation Vs create many common signals required for
network analysis and simulation. You can also use the signal generation
VIsin conjunction with National Instruments hardware to generate analog
output signals.

1-2 www.ni.com



Chapter 1 Signal Generation

Wave and Pattern Vs

Phase Control

Y ou will notice that the names of most of the signal generation VIs have
the word wave or pattern in them. Thereis abasic difference in the
operation of thetwo different types of VIs. It hasto do with whether or not
the VI can keep track of the phase of the signal that it generates each time
itiscaled.

The wave VIs have aphase in control where you can specify theinitial
phase (in degrees) of thefirst sample of the generated waveform. They also
have aphase out indicator that specifies what the phase of the next sample
of the generated waveform isgoing to be. In addition, areset phase control
decides whether or not the phase of the first sample generated when the
wave V1 iscalled isthe phase specified at the phase in control, or whether
it isthe phase available at the phase out control whenthe V1 last executed.
A TRUE value of reset phase setstheinitial phase to phasein, whereasa
FALSE value sets it to the value of phase out when the V1 last executed.

Thewave Visareal reentrant (can keep track of phase internally) and
accept frequency in normalized units (cycles/sample). The only pattern VI
that presently uses normalized unitsisthe Chirp Pattern V1. Setting the
reset phase Boolean to FAL SE allows for continuous sampling simulation.

@ Note WaveVIsarereentrant and accept the frequency input in terms of normalized units.

© National Instruments Corporation 1-3 LabVIEW Analysis Concepts



Digital Signal Processing

This chapter describes the fundamental s of the Fast Fourier Transform
(FFT) and the Discrete Fourier Transform (DFT) and how they are used in
spectral analysis. Refer to the examplesin exanpl es\ anal ysi s\
dspxnpl . I | b for examples of using the digital signal processing Vs,
available on the Functions»Analyze»Signal Processing»Frequency
Domain palette.

The Fast Fourier Transform (FFT)

The samples of asignal obtained from a DAQ device constitute the
time domain representation of the signal. This representation gives

the amplitudes of the signal at the instants of time during which it had
been sampled. However, in many cases you want to know the frequency
content of asignal rather than the amplitudes of the individual samples.
The representation of asignal in terms of itsindividual frequency
components is known as the frequency domain representation of the
signal. The frequency domain representation could give more insight
about the signal and the system from which it was generated.

The algorithm used to transform samples of the datafrom the time domain
into the frequency domain is known as the discrete Fourier transform or
DFT. The DFT establishes the rel ationship between the samples of asignal
in the time domain and their representation in the frequency domain.

The DFT iswidely used in the fields of spectral analysis, applied
mechanics, acoustics, medical imaging, numerical analysis,
instrumentation, and telecommunications.

© National Instruments Corporation 2-1 LabVIEW Analysis Concepts



Chapter 2 Digital Signal Processing
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Figure 2-1. Discrete Fourier Transform

Suppose you have obtained N samples of asignal from a DAQ device. If
you apply the DFT to N samples of this time domain representation of the
signal, theresult isalso of length N samples, but theinformation it contains
is of the frequency domain representation. The relationship between the
N samplesin the time domain and the N samplesin the frequency domain
is explained below.

If the signal is sampled at a sampling rate of g Hz, then the time interval
between the samples (that is, the sampling interval) is At, where

=

At =

—h

%]

The sample signals are denoted by x[i], 0<i<N-1 (thatis, you havea
total of N samples). When the discrete Fourier transform, given by

N-1
xk — Z Xie—jzmk/N (2_1)
i=0

for
k=0,1,2,...,N-1
is applied to these N samples, the resulting output (X[K], 0<s k< N-1)is

the frequency domain representation of x[i]. Notice that both the time
domain x and the frequency domain X have atotal of N samples. Analogous

2-2 www.ni.com



Chapter 2 Digital Signal Processing

to the time spacing of At between the samples of x in the time domain, you
have a frequency spacing of

1
NAt

Zlg™

Af =

between the components of X in the frequency domain. Af isalso known as
the frequency resolution. To increase the frequency resolution (smaller Af)
you must either increase the number of samples N (with f5 constant) or
decrease the sampling frequency fs (with N constant).

In the following example, you will go through the mathematics of
Equation 2-1 to calculate the DFT for aD.C. signal.

DFT Calculation Example

In the next section, you will see the exact frequencies to which the

N samples of the DFT correspond. For the present discussion, assume that
X[0] correspondsto D.C., or the average value, of the signal. To see the
result of calculating the DFT of awaveform with the use of Equation 2-1,
consider aD.C. signal having a constant amplitude of +1 V. Four samples
of thissignal are taken, as shown in Figure 2-2.

»
|

x[0] x[1] X2 . X3l

< Amplitude

+
Jany

Time o
Ll

0 1 2 3

Figure 2-2. DFT Samples
Each of the samples has avalue +1, giving the time sequence
X[0] =x[1] =x[3] =x[4] =1

Using Equation 2-1 to calculate the DFT of this sequence and making use
of Euler’'sidentity,

exp (-i8) = cos(8 ) —jsin(B)

© National Instruments Corporation 2-3 LabVIEW Analysis Concepts



Chapter 2 Digital Signal Processing

you get:
X[0] = Zx g 12N —y0] + X[1] +X[2] + X[3] =
X[1] = x[0] +x[1] %:osmﬂ—jsin%+x[2](cos(rr)—jsin(n))+
X[3] ET:OSEQD jsmgs;%— (1-j-1+j)=0
X[2] = X[0] +x[1] (cos(mt) —jsin(m)) + X[ ](cos(2n)—Jsm(2n))+
X[3] (cos(3m) —jsn(3m)= (1-1+1-1)=0
X[3] = x[0] +x[1] B:osD2D jsn?;%+x[2](cos(3T[)—jsin(3T[))

X[3] B:osD2D angg%— 1-j-1-))=0

Therefore, except for the DC component, X[ 0], al the other valuesare zero,
which isas expected. However, the cal culated value of X[0] depends onthe
value of N (the number of samples). Because you had N = 4, X[0] = 4. If
N = 10, then you would have calculated X[0] = 10. This dependency of X[ ]
on N aso occurs for the other frequency components. Thus, you usually
divide the DFT output by N, so as to obtain the correct magnitude of the
frequency component.

Magnitude and Phase Information

LabVIEW Analysis Concepts

Y ou have seen that N samples of the input signal result in N samples of
the DFT. That is, the number of samplesin both the time and frequency
representations is the same. From Equation 2-1, you see that regardless
of whether the input signal x[i] isreal or complex, X[K] is always complex
(although the imaginary part may be zero). Thus, because the DFT is
complex, it contains two pieces of information—the amplitude and the
phase. It turnsout that for real signals(X[i] real) such asthose obtained from
the output of one channel of aDAQ device, the DFT is symmetric with the
following properties:

| X[K] | = [ X[N-K] |
and

phase ( X[K] ) = — phase(X[N—K] )

24 www.ni.com



Chapter 2 Digital Signal Processing

The terms used to describe this symmetry are that the magnitude of X[k] is
even symmetric, and phase(X[k]) is odd symmetric. An even symmetric

signal isonethat is symmetric about the y-axis, whereas an odd symmetric
signal issymmetric about the origin. Thisisshown in thefollowing figures.

Even Symmetry Odd Symmetry

Figure 2-3. Signal Symmetry about the y-axis

The net effect of this symmetry isthat there is repetition of information
contained in the N samples of the DFT. Because of this repetition of
information, only half of the samples of the DFT actually need to be
computed or displayed, as the other half can be obtained from this
repetition. If the input signal is complex, the DFT will be nonsymmetric
and you cannot use thistrick.

Frequency Spacing hetween DFT/FFT Samples

If the sampling interval is At seconds, and thefirst (k = 0) datasampleis
at 0 seconds, then the kth (k > 0, k integer) data sampleis at kAt seconds.
Similarly, if the frequency resolution is Af Hz.

f
(Af = NS) then the k' sample of the DFT occurs at a frequency of kAf Hz

(Actually, as you will soon see, thisisvalid for only up to the first half of
the frequency components. The other half represent negative frequency
components.) Depending on whether the number of samples, N, is even or
odd, you can have adifferent interpretation of the frequency corresponding
to the kth sample of the DFT.

For example, suppose Nisevenandlet p = N.TabIeZ—l shows the

frequency to which each format element of the complex output sequence
X corresponds.

Note that the pth element, X[p], corresponds to the Nyquist frequency.
The negative entries in the second column beyond the Nyquist frequency
represent negative frequencies.

© National Instruments Corporation 2-5 LabVIEW Analysis Concepts



Chapter 2 Digital Signal Processing

For example, if N =8, p = N/2 = 4, then Af isshown in Table 2-1 for X[p]

for N=8.
Table 2-1. X[p] for N=8
X[p] Af
X[0] DC
X[1] Af
X[2] 20 f
X[3] 3Af
X[4] AAf (Nyquist frequency)
X[5] —3Af
X[6] —2Af
X[7] —Af

Here, X[1] and X[ 7] will have the same magnitude, X[2] and X[6] will have
the same magnitude, and X[ 3] and X[5] will have the same magnitude.
The difference is that whereas X[ 1], X[2], and X[ 3] correspond to positive
frequency components, X[5], X[6], and X[7] correspond to negative
frequency components. Note that X[4] is at the Nyquist frequency.

Figure 2-4 represents this complex sequence for N = 8.

Furiar Tearaiom [magrituds)
i0-

1=
2=
10

=y i
|
A A A A A A
Positive Negative
Frequencies Frequencies
DC Nyquist
Component
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Figure 2-4. Complex Sequence for N=8
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Such arepresentation, where you see both the positive and negative
frequencies, is known as the two-sided transform.

Note that when N is odd, there is no component at the Nyquist frequency.

For example, if N=7, p=(N-1)/2 = (7-1)/2 = 3, then Af isshown in
Table 2-2 for X[p] for N=7.

Table 2-2. X[p]for N=7

X[p] Af

X[0] DC

X[1] Af

X[2] 2A\f

X[3] 3Af

X[4] —3f

X[5] —21f

X[6] —Af

Now X[1] and X[6] have the same magnitude, X[2] and X[5] have the same
magnitude, and X[ 3] and X[4] have the same magnitude. However, whereas
X[1], X[2], and X[3] correspond to positive frequencies, X[4], X[5], and
X[6] correspond to negative frequencies. Because N is odd, thereis no
component at the Nyquist frequency.
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Figure 2-5 illustrates Table 2-2 for N = 7.

Furoioti Tiand i Jrasgraude)
an

in-
20-
1.0

nn-;
0

DC Positive Negative
Frequencies Frequencies

Figure 2-5. X[p] for N=7

Thisis also atwo-sided transform, because you have both the positive and
negative frequencies.

Fast Fourier Transforms

LabVIEW Analysis Concepts

Direct implementation of the DFT on N data samples requires
approximately N2 complex operations and is a time-consuming process.
However, when the size of the sequence is a power of 2,

N=2"form=1, 2, 3,...

you can implement the computation of the DFT with approximately

N log,(N) operations. This makes the calculation of the DFT much faster,
and DSP literature refers to these algorithms as fast Fourier transforms
(FFTs). The FFT is nothing but afast algorithm for calculating the DFT
when the number of samples (N) is a power of 2.

The advantages of the FFT include speed and memory efficiency, because
the VI can compute the FFT in place, that is, no additional memory buffers
are needed to compute the output. The size of the input sequence, however,
must be a power of 2. The DFT can efficiently process any size sequence,
but the DFT isslower than the FFT and uses more memory, because it must
alocate additional buffers for storing intermediate results during
processing.
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Zero Padding

A technique employed to make the input sequence size equal to a power of
2 isto add zeros to the end of the sequence so that the total number of
samplesis equal to the next higher power of 2. For example, if you have
10 samples of asignal, you can add six zeros to make the total number of
samples equal to 16 (= 2*—a power of 2), as shown in Figure 2-6.

Original signal
1.0-
05-
0.0-
-0.5-

-1.0-1
0

1 2

Zero padded zignal
1.0-
05-
0.0-
05—
1.0 [
a 10

Figure 2-6. Zero Padding

The addition of zerosto the end of the time domain waveform does

not affect the spectrum of the signal. In addition to making the total number
of samples a power of two so that faster computation is made possible

by using the FFT, zero padding also helpsin increasing the frequency
resolution (recall that Af = f/N) by increasing the number of samples, N.

FFT Vis

The Functions»Analyze»Signal Processing»Frequency Domain palette
contains two VIsthat compute the FFT of asignal. They arethe Real FFT
V1 and Complex FFT VI.

The difference between the two Vlisisthat the Real FFT VI computes the
FFT of areal-valued signal, whereas the Complex FFT VI computes the
FFT of acomplex-valued signal. However, keep in mind that the outputs of
both Vs are complex.

Most real-world signals are real valued, and hence you can use the
Real FFT VI for most applications. Of course, you could also use the
Complex FFT VI by setting the imaginary part of the signal to zero.
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An example of an application where you could use the Complex FFT V1 is
when the signal consists of both areal and imaginary component. Such a
type of signal occurs frequently in the field of telecommunications, where
you modulate a waveform by a complex exponential. The process of
modulation by acomplex exponential resultsin acomplex signal, as shown
in Figure 2-7.

Modulation by

X(t) =% exp(—jwt)

— y(t) = x(t)cos(wt) — jx(t)sin(wt)

Figure 2-7. Modulation by a Complex Exponential

The Power Spectrum

Y ou have seen that the DFT (or FFT) of areal signal isacomplex number,
having areal and an imaginary part. The power in each frequency
component represented by the DFT/FFT can be obtained by squaring the
magnitude of that frequency component. Thus, the power in the ki
frequency component (the k" element of the DFT/FFT) is given by |X[K] 2.
The plot showing the power in each of the frequency componentsisknown
asthe power spectrum. Becausethe DFT/FFT of areal signal issymmetric,
the power at a positive frequency of kAf isthe same as the power at the
corresponding negative frequency of —kAf (DC and Nyquist components
not included). The total power inthe DC

2
, respectively.

and Nyquist components are | X[ Q] I and ‘X[g}

Loss of Phase Information

LabVIEW Analysis Concepts

Because the power is obtained by squaring the magnitude of the DFT/FFT,
the power spectrum is alwaysreal. The disadvantage of thisis that the
phase information islost. If you want phase information, you must use the
DFT/FFT, which gives you a complex output.

You can use the power spectrum in applicationswhere phaseinformationis
not necessary (for example, to calculate the harmonic power in asignal).
You can apply asinusoidal input to a nonlinear system and see the power
in the harmonics at the system output.
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Frequency Spacing between Samples

Y ou can use the Power Spectrum V1, available on the Functions»
Analyze»Signal Processing»Frequency Domain palette, to calcul ate the
power spectrum of the time domain data samples. Just like the DFT/FFT,
the number of samples from the Power Spectrum V1 output is the same as
the number of data samples applied at the input. Also, the frequency
spacing between the output samplesis Af = f/N.

Summary

The time domain representation (sample values) of asignal can be
converted into the frequency domain representation by means of an
agorithm known as the discrete Fourier transform (DFT). To have fast
calculation of the DFT, an agorithm known as the fast Fourier transform
(FFT) isused. You can use this algorithm when the number of signal
samplesis a power of two.

The output of the conventional DFT/FFT is two-sided because it contains
information about both the positive and the negative frequencies. This
output can be converted into a one-sided DFT/FFT by using only half the
DFT/FFT output points. The frequency spacing between the samples of the
DFT/FFT isAf = f4N.

The power spectrum can be calculated from the DFT/FFT by squaring the
magnitude of the individual frequency components. The Power Spectrum
V1 in the advanced analysis library does this automatically for you. The
units of the output of the Power Spectrum VI arein V, 2. However, the
power spectrum does not provide any phase information.

The DFT, FFT, and power spectrum are useful for measuring the frequency
content of stationary or transient signals. The FFT provides the average
frequency content of the signal over the entire time that the signal was
acquired.
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This chapter explains how using windows prevents spectral leakage and
improves the analysis of acquired signals. Refer to the examplein
exanpl es\ anal ysi s\ wi ndxnpl . I | b for an example of how to use
the analysis window Vs, available on the Functions»Analyze»Signal
Processing»Windows pal ette.

Introduction to Smoothing Windows

In practical signal-sampling applications, you can obtain only afinite
record of the signal, even when you carefully observe the sampling theorem
and sampling conditions. Unfortunately for the discrete-time system, the
finite sampling record resultsin atruncated waveform that has different
spectral characteristics from the origina continuous-time signal. These
discontinuities produce |eakage of spectral information, resulting in a
discrete-time spectrum that is a smeared version of the original
continuous-time spectrum.

A simple way to improve the spectral characteristics of a sampled signal
isto apply smoothing windows. When performing Fourier or spectral
analysis on finite-length data, you can use windows to minimize the
transition edges of your truncated waveforms, thus reducing spectral
leakage. When used in this manner, smoothing windows act like
predefined, narrowband, lowpass filters.
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About Spectral Leakage and Smoothing Windows

When you use the DFT/FFT to find the frequency content of asignal, itis
inherently assumed that the data that you haveisasingle period of a
periodically repeating waveform, as shown in Figure 3-1. Thefirst period
shown is the one sampled. The waveform corresponding to this period is
then repeated in time to produce the periodic waveform.

A
One Period

Discontinuity

Y NNy

p Time

LabVIEW Analysis Concepts

Figure 3-1. Periodic Waveform Created from Sampled Period

Because of the assumption of periodicity of the waveform, discontinuities
between successive periods will occur. This happens when you sample a
noninteger number of cycles. Theseartificial discontinuitiesturn up asvery
high frequencies in the spectrum of the signal, frequencies that were not
present inthe original signal. These frequencies could be much higher than
the Nyquist frequency, and as you have seen before, will be aliased
somewhere between 0 and /2. The spectrum you get by using the
DFT/FFT therefore will not be the actual spectrum of the original signal,
but will be a smeared version. It appears as if the energy at one frequency
has|eaked out into all the other frequencies. This phenomenon isknown as
spectral leakage.

Figure 3-2 shows asinewave and its corresponding Fourier transform. The
sampled time domain waveform is shown in Graph 1. Because the Fourier
transform assumes periodicity, you repeat this waveform in time, and the

periodic time waveform of the sine wave of Graph 1 is shown in Graph 2.
The corresponding spectral representation is shown in Graph 3. Because

thetimerecord in Graph 2 is periodic, with no discontinuities, its spectrum
isasingleline showing the frequency of the sine wave. The reason that the
waveform in Graph 2 does not have any discontinuitiesis because you have
sampled an integer number of cycles (inthiscase, 1) of the time waveform.
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Spectral Leakage

Graph 1. Time Domain Graph 2. Time Domain with FFT &Assumption|
B Cyeles|
1.0
05 15
Dne block of data [1.024 paints]| The FFT algorithm assumss the: same block of data o \/)2.0
iz repeated over and over throughout time.

Armplitude Graph 3. Frequency Domain|

Window S election
Harnming Window
Mo window

The discontinuity in the signal shown in Graph 2, at the tranzition betveen the bwo time
records, is a result of acquiring only & finite time record.  The time record discontinuity
causes smearing around the main lobe, or zpike. in the frequency domain plot, Graph 3.

i

Figure 3-2. Sine Wave and Corresponding Fourier Transform

In Figure 3-3, you see the spectral representation when you sample a
noninteger number of cycles of the time waveform (namely 1.25).
Graph 1 now consists of 1.25 cycles of the sine wave. When you repeat
this periodically, the resulting waveform, as shown in Graph 2, consists
of discontinuities. The corresponding spectrum is shown in Graph 3.
Notice how the energy is now spread over a wide range of frequencies.
This smearing of the energy is spectral leakage. The energy has |eaked
out of one of the FFT lines and smeared itself into all the other lines.
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Graph 2. Time Domain with FFT Assumption|

Ore block of data (1,024 points)| The FFT algarithm assumes the same block of data

4 410F +0-
4 98EE -6~
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Graph 3. Frequency Domain|
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The digcontinuity in the zignal shown in Graph 2, at the transition betweet the baa timne
recards, is a result of acquining only a finite ime recard, The time record discontinuity
cauzes smeaning around the main lobe, or zpike, in the frequency domain plat, Graph 3.

]
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Figure 3-3. Spectral Representation When Sampling a Nonintegral Number
of Samples

L eakage exists because of the finite time record of the input signal.

To overcome |eakage, one solution is to take an infinite time record,

from —infinity to +infinity. Then the FFT would calculate one singleline at
the correct frequency. Waiting for infinite timeis, however, not possiblein
practice. So, because you are limited to having afinite time record, another
technique, known as windowing, is used to reduce the spectral leakage.

The amount of spectral leakage depends on the amplitude of the
discontinuity. The larger the discontinuity, the more the leakage, and
viceversa. You can use windowing to reduce the amplitude of the
discontinuities at the boundaries of each period. It consists of multiplying
thetimerecord by afinitelength window whose amplitude varies smoothly
and gradually towards zero at the edges. Thisisshownin Figure 3-4, where
the original timesignal iswindowed using aHamming window. Notice that
the time waveform of the windowed signal gradually tapersto zero at the
ends. Therefore, when performing Fourier or spectral analysis on
finite-length data, you can use windows to minimize the transition edges of
your sampled waveform. A smoothing window function applied to the data
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before it is transformed into the frequency domain minimizes spectral
leakage.

Notethat if thetime record containsan integral number of cycles, asshown
in Figure 3-2, then the assumption of periodicity does not result in any
discontinuities, and thus there is no spectral leakage. The problem arises
only when you have a nonintegral nhumber of cycles.

Original signal

1.0-
0.5-
0.0-¢
-0.5-

-1.0- 1 1 1 1
] 20 40 B0 80 100 120 740

Figure 3-4. Time Signal Windowed Using a Hamming Window
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Windowing Applications

There are several reasons to use windowing. Some of these are;
¢ To define the duration of the observation.
« Reduction of spectra leakage.

e Separation of asmall amplitude signal from alarger amplitude signal
with frequencies very close to each other.

Characteristics of Different Types of Window Functions

Applying awindow to (windowing) asignal inthetimedomainis
equivalent to multiplying the signal by the window function. Because
multiplication in the time domain is equivalent to convolution in the
frequency domain, the spectrum of the windowed signal is a convolution
of the spectrum of the original signal with the spectrum of the window.
Thus, windowing changes the shape of the signal in the time domain,
aswell as affecting the spectrum that you see.

Many different types of windows are available on the Functions»Analyze»
Signal Processing»Windows palette. Depending on your application, one
may be more useful than the others. Some of these windows are:

Rectangular (None)

The rectangular window has avalue of one over itstime interval.
Mathematically, it can be written as:

w(n) =1.0

for

where N is the length of the window. Applying a rectangular window
is equivalent to not using any window. This is because the rectangular
function just truncates the signal to within afinite time interval.

The rectangular window has the highest amount of spectral leakage.
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The rectangular window for N = 32 is shown in Figure 3-5.

Fiectangular Window|
1.1-

1.0-

0.9-)
0

E 10 15 20 25 W 35

Figure 3-5. Rectangular Window

The rectangular window is useful for analyzing transients that have a
duration shorter than that of the window. It isalso used in order tracking,
where the effective sampling rateis proportional to the speed of the shaftin
rotating machines. In thisapplication, it detectsthe main mode of vibration
of the machine and its harmonics.

Hanning

This window has a shape similar to that of half a cycle of acosine wave.
Its defining equation is

w(n) = 0.5—0.50032%]

for
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A Hanning window with N = 32 is shown in Figure 3-6.

Hanning ‘indow

1.0-

0.5-

0.0-)
0

5

0 15 20 25 W 35

Figure 3-6. Hanning Window

The Hanning window isuseful for analyzing transientslonger than thetime
duration of the window, and also for general purpose applications.

Hamming

Thiswindow isamodified version of the Hanning window. Itsshapeisalso
similar to that of a cosine wave. It can be defined as

w(n) = 0.54—0.460032%]

for

A Hamming window with N = 32 is shown in Figure 3-7.

Harnmitig 'WAindow
1.0-
nas-
0E-
04-
0z2-

0.0-!
0

5 10 15 20 25 30 35

Figure 3-7. Hamming Window
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Smoothing Windows

You see that the Hanning and Hamming windows are somewhat similar.
However, note that in the time domain, the Hamming window does not get
as close to zero near the edges as does the Hanning window.

Kaiser-Bessel

Thiswindow is a“flexible”

window whose shape the user can modify by

adjusting the parameter beta. Thus, depending on your application, you can
change the shape of the window to control the amount of spectral |eakage.
The Kaiser-Bessel window for different values of beta are shown in

Figure 3-8.

© National Instruments Corporation

F.aizer-Bezsel Window [beta = 0.1]
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F.aizer-B ezzel \Window [beta =1]
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K.aizer-Bezsel Window [beta = 5]
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0.0-)
0
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Figure 3-8. Kaiser-Bessel Window
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Triangle

Flat Top

LabVIEW Analysis Concepts

Note that for small values of beta, the shapeis closeto that of arectangular
window. Actualy, for beta=0 .0, you do get arectangular window. Asyou
increase beta, the window tapers off more to the sides.

Thiswindow is good for detecting two signals of almost the same
frequency, but significantly different amplitudes.

The shape of thiswindow isthat of atriangle. It is given by

_ 2n—N
w(n) = 1-
(n) ] N\

for
n=0,1,2,..,n-1

A triangle window for N = 32 is shown in Figure 3-9.

Triangle ‘Window

1.0-

05-

0.0-)
0

]

0 15 20 25 W 3

Figure 3-9. Triangle Window

Thiswindow has the best amplitude accuracy of all the window functions.
The increased amplitude accuracy (+ 0.02 dB for signals exactly between
integral cycles) is at the expense of frequency selectivity. The Flattop
window is most useful in accurately measuring the amplitude of single
frequency components with little nearby spectral energy in the signal.
The Flattop window can be defined as

_ 21 41
w(n) = ap— %ilCOSW + 8,C08—

3-10 www.ni.com



Chapter 3 Smoothing Windows

where

8y = 0.2810638602
a, = 0.5208971735
a, = 0.1980389663

A flattop window is shown in Figure 3-10.

Flattop Window

1.0+~
0.8+
0.6+
0.4-
0.2-
0.0+

_D'E_I I I I 1 0 1 1
0 5 10 15 20 25 30 35

Figure 3-10. Flattop Window

Exponential

The shape of thiswindow isthat of a decaying exponential. It can be
mathematically expressed as:

min(fn onn

win] = eN-17 = fN-D

for

where f isthe final value. Theinitial value of the window isone, and it
gradually decays towards zero. The final value of the exponentia can be
adjusted to between 0 and 1. The exponential window for N = 32, with the
final value specified as 0.1, is shown in Figure 3-11.
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E xponential ‘Window|
1.0-
0.8-
0.6-
0.4-
0.2-

0.0-)
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Figure 3-11. Exponential Window

Thiswindow is useful in analyzing transients (signals that exist only for a
short time duration) whose duration islonger than thelength of the window.
Thiswindow can be applied to signalsthat decay exponentially, such asthe
response of structures with light damping that are excited by an impact (for
example, a hamme).

Windows for Spectral Analysis Versus Windows
for Coefficient Design

LabVIEW Analysis Concepts

Thewindow VIsin LabVIEW are designed for spectral analysis
applications. In these applications, theinput signal iswindowed by passing
it through one of the window Vls. The windowed signal isthen passed to a
DFT-based VI for frequency-domain display and analysis.

The window functions designed for spectral analysis must be DFT-even,
aterm defined by Fredric J. Harrisin his paper On the Use of Windows
for Harmonic Analysiswith the Discrete Fourier Transform (Proceedings
of the IEEE, Volume 66, No. 1, January 1978). A window functionis
DFT-even if its dot product (inner product) with integral cycles of sine
sequencesisidentically zero. Another way to think of aDFT-even sequence
isthat its DFT has no imaginary component.

Figure 3-12 and Figure 3-13 illustrate the Hanning window and one cycle
of asine pattern for a sample size of 8. You can see that the DFT-even
Hanning window is not symmetric about its midpoint and its last point is
not equal to itsfirst point, much like one complete cycle of a sine pattern.
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Hanning “Window
1.0 w
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Figure 3-12. Hanning Window for Sample Size 8
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Figure 3-13. Sine Pattern for Sample Size 8

Finally, the DFT considersinput sequences to be periodic—that the
signal being analyzed is actually a concatenation of the input signal.
Figure 3-14 shows three such cycles of the previous segquences,
demonstrating the smooth periodic extension of the DFT-even window and
the single-cycle sine pattern.
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Pericdic Extension
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Figure 3-14. Periodic Extension

Another type of window application isthat of FIR filter design. This
application requires windows that are symmetric about their midpoint.
Refer to Part |11, Measurement Analysisin LabVIEW, of the LabVIEW
Measurements Manual for more information about filtering.

The following equations of the Hanning window function illustrate the
difference between the DFT-even window function (spectral analysis)
and the symmetrical window function (coefficient design).

Hanning window function for spectral analysis:

wli] = 0.5%[—0085125'%5

for
i=0,1, 2, ..., N—1

Hanning window function for symmetrical coefficient design:

w[i] = o.sgl—cosg\l@]gg

for

i=0,1,2,..,N-1
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The two equations above show that you can implement the symmetrical
window functions by slightly modifying the use of the DFT-even window
functions.

What Type of Window Do | Use?

Now that you have seen several of the many different types of windowsthat
are available, you may ask, “What type of window should | use?’

The answer depends on the type of signal you have and what you are
looking for. Choosing the correct window requires some prior knowledge
of the signal that you are analyzing. In summary, Table 3-1 shows the
different types of signals and the appropriate windows that you can use
with them.

Table 3-1. Signals and Windows

Type of Signal Window

Transients whose duration is shorter than the length of the Rectangular

window

Transients whose duration is longer than the length of the Exponential, Hanning

window

General-purpose applications Hanning

Order tracking Rectangular

System analysis (frequency response measurements) Hanning (for random excitation),
Rectangular (for pseudorandom
excitation)

Separation of two tones with frequencies very close to each K aiser-Bessel

other, but with widely differing amplitudes

Separation of two tones with frequencies very close to each Rectangular

other, but with almost equal amplitudes

Accurate single tone amplitude measurements Flat Top

In many cases, you may not have sufficient prior knowledge of the signal,
S0 you need to experiment with different windows to find the best one.
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This chapter describes how to extract information from a data set to obtain
afunctional description. Refer to the examplesin exanpl es\

anal ysi s\regressn. | | b for examplesof how to usetheregressionVls,
available on the Functions»M athematics»Curve Fitting palette.

Introduction to Curve Fitting

Curvefitting analysisisatechnique for extracting a set of curve parameters
or coefficients from the data set to obtain a functional description of the
data set. The algorithm that fits a curve to aparticular data set is known as
the Least Squares Method and is discussed in most introductory textbooks
in probability and statistics. The error is defined as

&) = [f(x.a) —y(x)]? (4-1)

where e(a) isthe error, y(X) isthe observed data set, f(x,a) is the functional
description of the data set, and ais the set of curve coefficients which best
describes the curve.

For example, let a = {a,, a;}. Then the functional description of alineis
f(x,@) = ap +a X

The least squares algorithm finds a by solving the system
ie(a) =0 (4-2)
da

To solve this system, you set up and solve the Jacobian system generated
by expanding Equation 4-2. After you solve the system for a, you can
obtain an estimate of the observed data set for any value of x using the
functional description f(x, a).

In LabVIEW, the curvefitting VIs automatically set up and solve the
Jacobian system and return the set of coefficients that best describes your
dataset. You can concentrate on the functional description of your dataand
not worry about solving the system in Equation 4-2.
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Two input sequences, Y Values and X Values, represent the data set y(x).
A sampleor point in the data set is

(%, ¥)

wherex; istheith element of the sequence X Values, and y; isthe it element
of the sequence Y Values.

In general, for each predefined type of curvefit, there are two types of VIs,
unless otherwise specified. One type returns only the coefficients, so that
you can further manipulate the data. The other type returnsthe coefficients,
the corresponding expected or fitted curve, and the mean squared error
(MSE). Because it is adiscrete system, the VI calculates the M SE, which
isarelative measure of theresidual s between the expected curve valuesand
the actual observed values, using the formula

n-1

1 2
MSE = n Z (fi—-vi) (4-3)
i=0
where f is the sequence representing the fitted values, y is the sequence

representing the observed values, and n isthe number of sample points
observed.

TheFunctions»M athematics»Cur veFitting pal ette offersboth linear and
nonlinear curve fitting algorithms. The different types of curve fitting in
LabVIEW are outlined below:

¢ Linear Fit—fits experimental datato astraight line of the form
y=nmx+c
ylil=ag+ax{i]
*  Exponential Fit—fits datato an exponential curve of the form

y=a°
. ayx[i]
ylil = a9
e General Polynomial Fit—fits datato a polynomial function of
the form

y=a+bx+cx2+ ..
V[i] = agrayx[i]+aX[i]Z...
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* General Linear Fit—fits datato
yli] = ag+asfa(X[i])+afa(x[i]) + ...

wherey[i] isalinear combination of the parametersay, a, a,.... Thegenera
linear fit also features selectable algorithms for better precision and
accuracy. For example, y = a5 + a;sin(x) isalinear fit becausey hasalinear
relationship with parameters ay and a;. Polynomial fits are always linear
fits for the same reason. But special agorithms can be designed for the
polynomial fit to speed up the fitting processing and improve accuracy.

e Nonlinear Levenberg-Marquardt Fit—fits data to
ylil = (], a, &y, a...)

where ag, a4, a,... are the parameters. This method is the most general
method and does not requirey to have alinear relationship with ag, a4, a,....
It can be used to fit linear or nonlinear curves, but isamost always used to
fit anonlinear curve, because the general linear fit method is better suited
to linear curve fitting. The Levenberg-Marquardt method does not always
guarantee a correct result, so it is absolutely necessary to verify the results.

Applications of Curve Fitting

The practical applications of curvefitting are numerous. Some of them are
listed below.

 Remova of measurement noise.

*  Filling in missing data points (for example, if one or more
measurements were missed or improperly recorded).

e Interpolation (estimation of data between data points; for example,
if the time between measurements is not small enough).

» Extrapolation (estimation of data beyond data points; for example,
if you are looking for data values before or after the measurements
were taken).

« Differentiation of digital data. (For example, if you need to find the
derivative of the data points. The discrete data can be modeled by a
polynomial, and the resulting polynomial equation can be
differentiated.)

e Integration of digital data (for example, to find the area under a curve
when you have only the discrete points of the curve).

» To obtain the trgjectory of an object based on discrete measurements
of itsvelocity (first derivative) or acceleration (second derivative).
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General LS Linear Fit Theory

The Genera LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear
“mode!.”

Yi = boXig* ..o + b1 XK1
k-1
= z bx; i=0,1,...,n-1 (4-4)
i=o

where B isthe set of Coefficients, nisthe number of elementsinY Values
and the number of rows of H, and k is the number of Coefficients.

X;j isyour observation data, which is contained in H.
[Xoo  Xo1---  Xok-1 ]
X0 X Xgk-a
H =
| Xn-10 Xn-12 Xn—1k-1]

Equation 4-4 can also be written as Y = HB.

Thisisamultiple linear regression model, which uses several variables
Xios X1+ --+» Xj_ 1, 1O predict one variable y;. In contrast, the Linear Fit,
Exponential Fit, and Polynomial Fit VIsare all based on asingle predictor
variable, which uses one variable to predict another variable.

In most cases, we have more observation data than coefficients. The
equationsin 4-4 may not have the solution. Thefit problem becomestofind
the coefficient B that minimizes the difference between the observed data,
y; and the predicted value:

k-1
z = z b,x;;
i=0
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This VI usesthe least chi-sgquare plane method to obtain the coefficients
in 4-4, that is, finding the solution, B, which minimizes the quantity:

N

0 k-1 E
n-1 n_1§’i—zbjxijm
X = ki n g o R = [HoB-Yol2 (4-5)
ZD o U o o O e
i=0 i=ol O
O O
O O
where
hyj = =, yg = 2,i=0,1 j= k
Oij——,yoi—a-,l—, ., E1=0,1, L k-1

Inthisequation, o; isthe Standard Deviation. If the measurement errors
are independent and normally distributed with constant standard deviation
0; = 0, the preceding eguation is also the |east square estimation.

There are different waysto minimize x2 . Oneway to minimize x2 isto set
the partial derivatives of )(2 to zero with respect to by, by, ..., b.

2
oox” _
A =90
@abO

2
DOL:O
Dabl
0
0
0
0
0
0
E .
00x* _ g
Lob, _,

The preceding equations can be derived to:
HIH,B = HJY (4-6)

Where H{ is the transpose of H,.
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The equationsin 4-6 are also called normal equations of the least-square
problems. You can solve them using LU or Cholesky factorization
algorithms, but the solution from the normal equations is susceptible to
roundoff error.

An alternative, and preferred way to minimize x2 istofind theleast-square
solution of equations

HoB:Yo
You can use QR or SVD factorization to find the solution, B. For QR
factorization, you can choose Householder, Givens, and Givens2 (also
called fast Givens).
Different algorithms can give you different precision, and in some cases,
if one algorithm cannot solve the equation, perhaps another algorithm can.
You can try different algorithmsto find the best one based on your
observation data.

The Covariance matrix C is computed as
-1
C= (H{Hy)

The Best Fit Zis given by

k-1
z = Z b;x;;
i=0

The mse is obtained using the following formula:

mse =

Sk

n-1

i~ 4
z Og O
i=0
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The polynomidl fit that hasasingle predictor variable can bethought of as a
special case of multiple regression. If the observation data setsare{ x;, y}
wherei =0, 1, ..., -1, the model for polynomial fitis

k-1
yi = zbjx’; = by +byX; + byx?+ ... + b, xk-1 (4-7)

i=0
i=0,1,2,..,n-1
Comparing equations 4-4 and 4-7 showsthat x;; = x| . In other words,
Xio = X
y Xip = XE, . Xj_q = XK1

In this case, you can build H asfollows:

El Xo X3 .. x§1 E
El X, X3 .. xk-1 B
0 0
H=0. 0
[l 0
0- a
0 a
- 0
El Xo_1 X2_g .. xk-1 %

Instead of using x;; = X!, you can also choose another function formula
to fit the data sets{ x;,y}} . In general, you can select x;; = f;(x;). Here,
f;(x) isthe function model that you choose to fit your observation data.
In polynomid fit, f;(x;) = X .
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In general, you can build H asfollows:

Hfo(x))  filx0) fa(Xo) - Tia(%o) .
E fox)  fi(x))  falxy) - fioa(Xp) E
0 W
H=0. 0
O O
O - O
O O
g - O
go(xn—l) LETC Y B PICP) fk—l(xn—l)g

Your fit model is:

Yi = bofg(x) +byfy (X) + ... + by _4f, 4 (X)

How to Use the General LS Linear Fit VI

LabVIEW Analysis Concepts

The Linear Fit VI calculates the coefficients ag and a; that best fits the
experimental data (x[i] and y[i]) to astraight line model given by

ylil = &g + ayxi]

Here, y[i] isalinear combination of the coefficients ag and a;. You can
extend this concept further so that the multiplier for a; is some function
of x. For example:

Y] = @ + aysin(ex{i])
or
Ylil = ag + ay(i])?
or
Yli] = ap + aycos(wx{i]?)

where wisthe angular frequency. In each of these cases, y[i] isalinear
combination of the coefficients ay and a;. Thisisthe basic idea behind the
General LS Linear Fit VI, where the y[i] can be linear combinations of
several coefficients, each of which may be multiplied by some function of
the X[i]. Therefore, you can useit to cal culate coefficients of the functional
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models that can be represented as linear combinations of the coefficients,
such as

y = ag + a8in(wx)
or
y = ag + a;X2 + a,c08(wx?)

. ag
y = ag + 3;(3sin(wx)) + ayxd + <t

In each case, notethat y isalinear function of the coefficients (although it
may be a nonlinear function of x).

You will now see how to use the General LS Linear Fit VI to find the best
linear fit to a set of data points. The inputs and outputs of the General LS
Linear Fit VI are shown in Figure 4-1.

Standard Deviation ————

H Coefficients
Y Walues = s = Bezt Fit
covanance selector f % mae
algorithm errar
Covariance

General LS Linear Fitvi

Figure 4-1. General LS Linear Fit VI

The data that you collect (X[i] and y[i]) isto be given to the inputs H and
Y Values. The Covariance output isthe matrix of covariances between the
coefficients a,, where ¢;; is the covariance between g and &, and ¢ isthe
variance of a,. At this stage, you need not be concerned about the inputs
Standard Deviation, covariance selector, and algorithm. For now, you
will just use their default values. Refer to LabVIEW Help, available by
selecting Help»Contents and | ndex, for more information about these
inputs.

The matrix H is known as the Observation Matrix and will be explained
in more detail later. Y Valuesisthe set of observed data points y[i].

For example, suppose you have collected samples (Y Values) from a
transducer and you want to solve for the coefficients of the model:

y = a,+ a;sin(wx) + a,cos(wx) + a3x2
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You see that the multiplier for each g is a different function. For example,
ap ismultiplied by 1, a; ismultiplied by sin(wx), a, is multiplied by
cos(wx), and so on. To build H, you set each column of H to the
independent functions evaluated at each x value, X[i]. Assuming there are
100 x values, H would be:

1 sin(wxy) cos(wxXg) xo2

1 sin(wx;) cos(wxX;) xl2

1 sin(wx,) cos(wx,) x22

1 sin(wXgg) COS(WXgg) xgg2

If you have N data points and k coefficients (ay, ay, ....a1) for which to
solve, H will be an N-by-k matrix with N rows and k columns. Thus, the
number of rows of H isequal to the number of elementsin Y Values,
whereas the number of columnsof H isequal to the number of coefficients
for which you are trying to solve.

In practice, H is not available and must be built. Given that you have
the N independent X Values and observed Y Values, use the General LS
Linear Fit VI to build H.

Nonlinear Lev-Mar Fit Theory

LabVIEW Analysis Concepts

TheNonlinear Lev-Mar Fit V1, available on the Functions»M athematics»
Curve Fitting pal ette, determinesthe set of coefficientsthat minimize the
chi-square quantity:

f(Xlial aM)|:|

z e 5 a (4-8)

In this equation, (X, y;) are the input data points, and f(x;a;...ay) = f(X, A)
isthe nonlinear function where a;...ay, are coefficients. If the measurement
errors are independent and normally distributed with constant, standard
deviation o; = o, thisisalso the least-square estimation.

You must specify the nonlinear function f = f(X, A) in the Formula Node on
the block diagram of the Target Fnc & Deriv NonLin VI, whichisasubVI
of the Nonlinear Lev-Mar Fit V1.
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This VI provides two ways to calculate the Jacobian (partial derivatives
with respect to the coefficients) needed in the algorithm. These two
methods follow:

*  Numerical calculation—Uses a numerical approximation to compute
the Jacobian.

e Formula calculation—Uses a formula to compute the Jacobian.
You need to specify the Jacobian function df/ dA inthe FormulaNode
on the block diagram of the Target Fnc & Deriv NonLin VI, aswell as
the nonlinear function f = f(X, A). Thisisamore efficient computation
than the numerical calculation, because it does not require anumerical
approximation to the Jacobian.

Theinput arrays X and Y define the set of input data points. The VI
assumes that you have prior knowledge of the nonlinear relationship
between the x and y coordinates. That is, f = f(X, A), where the set of
coefficients, A, is determined by the L evenberg-Marquardt a gorithm.

Using this function successfully sometimes depends on how close your
initial guess coefficients are to the solution. Therefore, it is aways worth
taking effort and time to obtain good initial guess coefficientsto the
solution from any available resources before using the function.

Using the Nonlinear Lev-Mar Fit VI

So far, you have seen Visthat are used when thereis alinear relationship
between y and the coefficients ag, a4, a,, ... However, when a nonlinear
relationship exists, you can usethe Nonlinear Lev-Mar Fit VI to determine
the coefficients. This VI uses the Levenberg-Marquardt method, which is
very robusgt, to find the coefficients A = {ay, &, &y, ..., &} of the nonlinear
relationship between A and y[i]. The VI assumes that you have prior
knowledge of the nonlinear relationship between the x and y coordinates.

Asapreliminary step, you need to specify the nonlinear function in
the Formula Node on the block diagram of one of the subV s of the
Nonlinear Lev-Mar Fit V1. This particular subV | is the Target Fnc and
Deriv NonLin VI.

When using the Nonlinear Lev-Mar Fit VI, you also must specify the
nonlinear function in the Formula Node on the block diagram of the
Target Fnc and Deriv NonLin V1.
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The connections to the Nonlinear Lev-Mar Fit VI are shown bel ow:

Standard Deviation Covarnance
s Best Fit Coefficients
Ny Best Fit
Initial Guessz Coefficients mae

riiax iteration
derivative

error

Monlinear Lev-Mar Fit_vi

Figure 4-2. Nonlinear Lev-Mar Fit VI
X andY aretheinput data points x[i] and y[i].

Initial Guess Coefficientsisyour initial guess as to what the coefficient
values are. The coefficients are those used in the formulathat you entered
in the Formula Node of the Target Fnc and Deriv NonLin VI. Using the
Nonlinear Lev-Mar Fit VI successfully sometimes depends on how close
your initial guess coefficients are to the actua solution. Therefore, it is
awaysworth taking the time and effort to obtain agood initial guessto the
solution from any available resource.

For now, you can |leave the other inputs to their default values. Refer to
LabVIEW Help, available by selecting Help»Contents and I ndex, for
more information about these inputs.

Best Fit Coefficients: the values of the coefficients (ag, ay, ...) that best fit
the model of the experimental data.
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This chapter explains how to use the linear algebra Vs to perform matrix
computation and analysis. Refer to the examplesin exanpl es\

anal ysi s\ i nxnpl . | | b for examples of how to use the linear algebra
Vls, available on the Functions»M athematics»L inear Algebra palette.

Linear Systems and Matrix Analysis

Types of Matrices

Systems of linear algebraic equations arise in many applications that

involve scientific computations such as signal processing, computational
fluid dynamics, and others. Such systems may occur naturally or may be
the result of approximating differential equations by algebraic equations.

Whatever the application, it isalwaysnecessary to find an accurate solution
for the system of equationsin avery efficient way. In matrix-vector
notation, such a system of linear algebraic equations has the form

AX =Db

where Aisan n x n matrix, bisagiven vector consisting of n elements, and
x isthe unknown solution vector to be determined. A matrix is represented
by a 2D array of elements. These elements may be real numbers, complex
numbers, functions, or operators. The matrix A shown below isan array of
mrows and n columns with m x n elements.

8o 891 -+ fgn-1
A=| %o a1 - 8

8m_1,0 8m-1,1 -+ Am_1,n-1

Here, a;; denotesthe (i,j)™" element located in thei™ row and thej™ column.
In general, such amatrix is called arectangular matrix. When m = n, so
that the number of rowsis equal to the number of columns, itiscaled a
square matrix. An mx 1 matrix (mrows and one column) iscalled a
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column vector. A row vector isa 1 x n matrix (1 row and n columns). If all
the elements other than the diagonal elements are zero (that is, g; = 0,
i #]), such amatrix is called a diagonal matrix. For example,

400
A=1050
009

isadiagonal matrix. A diagonal matrix with all the diagonal elementsequal
to oneis called an identity matrix, also known as unit matrix. If all the
elements below the main diagonal are zero, then the matrix is known as an
upper triangular matrix. On the other hand, if all the elements above the
main diagonal are zero, then the matrix is known as alower triangular
matrix. When all the elements are real numbers, the matrix isreferred to as
areal matrix. On the other hand, when at least one of the elements of the
matrix is a complex humber, the matrix is referred to as a complex matrix.

Determinant of a Matrix

LabVIEW Analysis Concepts

One of the most important attributes of amatrix isits determinant. In the
simplest case, the determinant of a2 x 2 matrix

A= |ab
cd
isgiven by ad —bc. The determinant of a square matrix isformed by
taking the determinant of its elements. For example, if

253
A=1617
169

then the determinant of A, denoted by |A , is

Al=||253|| O 0=
=@ 17| _g||67|| 4+ 3|6 L5
(/69 19 16|01
2(-33) —5(47) + 3(35) =—196
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The determinant tells many important properties of the matrix. For
example, if the determinant of the matrix is zero, then the matrix is
singular. In other words, the above matrix (with nonzero determinant) is
nonsingular. Refer to the Matrix Inverse and Solving Systems of Linear
Equations section for more information about singularity and the solution
of linear equations and matrix inverses.

Transpose of a Matrix

The transpose of areal matrix isformed by interchanging its rows and
columns. If the matrix B represents the transpose of A, denoted by AT,
then b ;=g; ;. For the matrix A defined above,

. |28l
B=A=|516
379

In case of complex matrices, we define complex conjugate transposition.
If the matrix D represents the complex conjugate transpose (if a= x + iy,
then complex conjugate a* = x - iy) of acomplex matrix C, then

D = CHD di,j: Cq'i

That is, the matrix D is obtained by replacing every element in C by its
complex conjugate and then interchanging the rows and columns of the
resulting matrix.

A real matrix is called a symmetric matrix if the transpose of the matrix is
equal to the matrix itself. The example matrix A is not asymmetric matrix.
If acomplex matrix C satisfiestherelation C = CH, then Ciiscalled a
Hermitian matrix.

Linear Independence

A set of vectors xy, Xo, ...., X, issaid to be linearly dependent if and only if
there exist scalars ay, Ay, ..., y, not al zero, such that

0 X +0,X+...+a.x, =0
In simpler terms, if one of the vectors can be written in terms of alinear

combination of the others, then the vectors are said to be linearly
dependent.
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If the only set of a; for which the above equation holdsis a; = 0,

o, =0, .., a, = 0, then the set of vectorsx, Xy, ..., X, is said to be
linearly independent. So, in this case, none of the vectors can bewritten in
terms of alinear combination of the others. Given any set of vectors, the
aboveequation alwaysholdsfora; = 0, a, = 0,.., a, = 0. Therefore,
to show the linear independence of the set, you must show that a; = 0,
a, = 0, .., a, = 0 istheonly set of a; for which the above equation
holds.

For example, first consider the vectors

- -

Noticethat o, = 0 and o, = O aretheonly values, for which therelation
a;X+a,y = 0 holdstrue. Hence, these two vectors are linearly
independent of each other. Let us now look at vectors

S

Noticethat, if a; = =2 and a, = 1, then a;x+a,y = 0. Therefore,
these two vectors are linearly dependent on each other. You must
completely understand this definition of linear independence of vectorsto
fully appreciate the concept of the rank of the matrix as discussed next.

Matrix Rank

The rank of amatrix A, denoted by p(A), is the maximum number of
linearly independent columnsin A. If you look at the example matrix A,
you will find that al the columns of A are linearly independent of each
other. That is, none of the columns can be obtained by forming alinear
combination of the other columns. Hence, the rank of the matrix is 3.
Consider one more example matrix, B, where

011
B=1123
202

This matrix has only two linearly independent columns, because the third
column of Bislinearly dependent on thefirst two columns. Hence, the rank
of thismatrix is 2. It can be shown that the number of linearly independent
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columns of amatrix isequal to the number of independent rows. So, the
rank can never be greater than the smaller dimension of the matrix.
Consequently, if Aisan n x m matrix, then

p(A) < min(n, m)

where min denotes the minimum of the two numbers. In matrix theory,
the rank of a sguare matrix pertainsto the highest order nonsingular matrix
that can be formed from it. Remember from the earlier discussion that a
matrix issingular if its determinant is zero. So, the rank pertainsto the
highest order matrix that you can obtain whose determinant is not zero.
For example, consider a 4x4 matrix

1234
B=|01-10
1012
1102

For thismatrix, det(B) = 0, but

12 3
01-1| =-1
101

Hence, the rank of B is 3. A square matrix has full rank if and only if its
determinant is different from zero. Matrix B is not a full-rank matrix.

“Magnitude” (Norms) of Matrices

Y ou must develop a notion of the “magnitude” of vectors and matricesto
measure errors and sensitivity in solving alinear system of equations.

As an example, these linear systems can be obtained from applicationsin
control systems and computational fluid dynamics. In two dimensions,
for example, you cannot compare two vectors X = |x1 xz] and

y = [yl ng , because you might have x1 >y1 but X2 <y2. A vector
norm isaway to assign ascalar quantity to these vectors so that they can
be compared with each other. It is similar to the concept of magnitude,
modulus, or absolute value for scalar numbers.

There are ways to compute the norm of amatrix. Theseinclude the 2-norm
(Euclidean norm), the 1-norm, the Frobenius norm (F-norm), and the
Infinity norm (inf-norm). Each norm hasits own physical interpretation.
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Consider a unit ball containing the origin. The Euclidean norm of a vector
issimply the factor by which the ball must be expanded or shrunk in order
to encompass the given vector exactly. Thisis shownin Figure 5-1.

®

22

M
N

©) ®

1 unit ball of radius = 1 unit

2 vector of length 3 unit ball expanded by a

[92 4+ 9% = J8 =22 factor of 2./2

LabVIEW Analysis Concepts

Figure 5-1. Euclidean Norm of a Vector

Figure 1a shows a unit ball of radius = 1 unit. Figure 1b shows a vector

of length /2% + 22 = /8 = 2,/2.. Asshown in Figure 1c, the unit ball must
be expanded by afactor of 2./2 beforeit can exactly encompass the given
vector. Hence, the Euclidean norm of the vector is 2./2.

The norm of amatrix is defined in terms of an underlying vector norm. It is
the maximum rel ative stretching that the matrix doesto any vector. With the
vector 2-norm, the unit ball expands by a factor equal to the norm. On the
other hand, with the matrix 2-norm, the unit ball may become an ellipsoidal
(ellipsein 3-D), with some axes longer than others. The longest axis
determines the norm of the matrix.

Some matrix norms are much easier to compute than others. The 1-norm
is obtained by finding the sum of the absolute value of all the elementsin
each column of the matrix. The largest of these sumsis called the 1-norm.
In mathematical terms, the 1-norm is simply the maximum absolute
column sum of the matrix.
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n-1

1Al = manZ|ai,j|

i=0

For example,

then
1Al = max(3,7) = 7

The inf-norm of amatrix is the maximum absolute row sum of the matrix

n-1
1Al = maXiZIai,ﬂ
j=0
In this case, you add the magnitudes of all elementsin each row of the

matrix. The maximum value that you get is called the inf-norm. For the
above example matrix,

IAl, = max(4,6) = 6

The 2-norm is the most difficult to compute because it is given by the
largest singular value of the matrix. Refer to the Matrix Factorization
section for more information about singular values.

Determining Singularity (Condition Number)

Whereas the norm of the matrix provides away to measure the magnitude
of the matrix, the condition number of amatrix is a measure of how close
the matrix isto being singular. The condition number of a square
nonsingular matrix is defined as

cond(A) = ||A||pE”A_al

where p can be one of the four norm types discussed above. For example,
to find the condition number of amatrix A, you can find the 2-norm of A,
the 2-norm of theinverse of the matrix A, denoted by A1, and then multiply
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them together (the inverse of a square matrix A isasquare matrix B such
that AB=1, where| istheidentity matrix). Asmentioned earlier, the 2-norm
is difficult to calculate on paper. You can use the Matrix Norm VI to
compute the 2-norm. For example,

A = {1 z},A_l = {‘2 1 } |Al, = 5.4650, |a7Y,
34 15 -05

= 2.7325, cond(A) = 14.9331

The condition number can vary between 1 and infinity. A matrix with a
large condition number is nearly singular, while amatrix with a condition
number closeto 1 isfar from being singular. The matrix A aboveis
nonsingular. However, consider the matrix

B=| 1 099
199 2

The condition number of thismatrix is47168, and hence the matrix is close
to being singular. Asyou might recall, amatrix issingular if its determinant
is equal to zero. However, the determinant is not a good indicator for
assessing how close a matrix isto being singular. For the matrix B above,
the determinant (0.0299) is nonzero; however, the large condition number
indicates that the matrix is close to being singular. Remember that the
condition number of a matrix is always greater than or equal to one; the
latter being true for identity and permutation matrices (a permutation
matrix is an identity matrix with some rows and columns exchanged).
The condition number is avery useful quantity in assessing the accuracy
of solutionsto linear systems.

In this section, you have become familiar with some basic notation and
fundamental matrix concepts such as determinant of a matrix and its rank.
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Basic Matrix Operations and
Eigenvalues-Eigenvector Problems

In this section, consider some very basic matrix operations. Two matrices,
A and B, are said to be equal if they have the same number of rows and
columns and their corresponding elements are all equal. Multiplication of
amatrix Aby ascalar a isequal to multiplication of al its elementsby the
scalar. That is,

C=aAlU g @ a

2 12/ _ |24
34 68
Two (or more) matrices can be added or subtracted if and only if they
have the same number of rows and columns. If both matrices A and B have

m rows and n columns, then their sum C is an m-by-n matrix defined as

C = AtB,wherec; = g ;%b, ;. Forexample,

12,124 - |36

34 |51 85
For multiplication of two matrices, the number of columns of the first
matrix must be equal to the number of rows of the second matrix. If matrix

A has mrows and n columns and matrix B has n rows and p columns, then
their product C is an m-by-p matrix defined as C = AB, where

For example,

n-1
Gij= z 3y Kby
k=0

For example,

k-2
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So, you multiply the elements of the first row of A by the corresponding
elements of thefirst column of B and add all the resultsto get the elements
in the first row and first column of C. Similarly, to calculate the element in
theit" row and the jt" column of C, multiply the elementsin theit" row of A
by the corresponding elementsinthejth column of C, and then add themall.
Thisis shown pictorialy in Figure 5-2.

R1-C1 R1+Cm

R1

Rn

Rne+C1 Rn+Cm

Figure 5-2. Matrix Multiplication

Matrix multiplication, in general, is not commutative, that is, AB # BA.
Also, remember that multiplication of amatrix by an identity matrix results
in the original matrix.

Dot Product and Outer Product

LabVIEW Analysis Concepts

If X represents avector and Y represents another vector, then the dot
product of these two vectorsis obtained by multiplying the corresponding
elements of each vector and adding the results. Thisis denoted by

n-1
XeY = zxiyi
i=0

where n isthe number of elementsin X and Y. Note that both vectors must
have the same number of elements. Thedot product isascalar quantity, and
has many practical applications.
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For example, consider thevectorsa = 2i+4j andb = 2i+j ina
two-dimensional rectangular coordinate system, illustrated in Figure 5-3.

a=2i+4j

a=36.86°
b=2i+j

v

Figure 5-3. Vectors aand b

Then the dot product of these two vectorsis given by

d= H-H = (2x2)+(4x1) = 8
4 1

The angle a between these two vectorsis given by

_ h:l_ D8|:|— 0
a mVCOSEIaJIbID mvcos[m] 36.86

where |a| denotes the magnitude of a.

Asasecond application, consider a body on which a constant force a acts,
as shown in Figure 5-4. The work W done by a in displacing the body is
defined as the product of |d| and the component of a in the direction of
displacement d. That is,

= |al|dlcosa = a-d

Force a

Figure 5-4. Force Vector
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On the other hand, the outer product of these two vectorsisa matrix.
The (i,j)" element of this matrix is obtained using the formula

a ;= X XY

For example,

Eigenvalues and Eigenvectors

LabVIEW Analysis Concepts

To understand eigenvalues and eigenvectors, start with the classical
definition. Given an n x n matrix A, the problemisto find ascalar A and a
nonzero vector x such that

AX = AX

Such ascalar A iscalled an eigenvalue, and x is a corresponding
eigenvector.

Calculating the eigenval ues and eigenvectors are fundamental principles of
linear algebra and allow you to solve many problems such as systems of
differential equations when you understand what they represent. Consider
an eigenvector x of amatrix A asanonzero vector that does not rotate when
x ismultiplied by A (except perhapsto point in precisely the opposite
direction). x may change length or reverse its direction, but it will not turn
sideways. In other words, there is some scalar constant A such that the
above equation holds true. The value A is an eigenvalue of A.

Consider the following example. One of the eigenvectors of the matrix A,
where
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Multiplying the matrix A and the vector x simply causes the vector x

to be expanded by afactor of 6.85. Hence, the value 6.85 is one of the
eigenvalues of the vector x. For any constant a , the vector ax isaso an
eigenvector with eigenvalue A , because

A(ax) = aAx= Aax

In other words, an eigenvector of a matrix determinesadirectionin
which the matrix expands or shrinks any vector lying in that direction by
ascalar multiple, and the expansion or contraction factor is given by the
corresponding eigenvalue. A generalized eigenvalue problemisto find a
scalar A and anonzero vector x such that

AXx = ABx
where B is another n x n matrix.

The following are some important properties of eigenvalues and
eigenvectors:

*  Theeigenvalues of amatrix are not necessarily al distinct. In other
words, a matrix can have multiple eigenvalues.

» Alltheeigenvaluesof areal matrix need not bereal. However, complex
eigenvalues of areal matrix must occur in complex conjugate pairs.

e Theeigenvalues of adiagona matrix are its diagonal entries, and the
eigenvectors are the corresponding columns of an identity matrix of
the same dimension.

* A rea symmetric matrix always has real eigenvalues and eigenvectors.
» Asdiscussed earlier, eigenvectors can be scaled arbitrarily.

There are many practical applicationsin the field of science and
engineering for an eigenvalue problem. For example, the stability of a
structure and its natural modes and frequencies of vibration are determined
by the eigenvalues and eigenvectors of an appropriate matrix. Eigenvalues
are also very useful in analyzing numerical methods, such as convergence
analysis of iterative methods for solving systems of algebraic equations,
and the stability analysis of methods for solving systems of differential
equations.

The EigenValuesand Vectors V1 isshown in Figure 5-5. Thelnput Matrix
isan N-by-N real square matrix. Matrix type determines the type of the
input matrix. Matrix type could be 0, indicating a general matrix, or 1,
indicating a symmetric matrix. A symmetric matrix always has real
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eigenvalues and eigenvectors. A general matrix has no specia property
such as symmetry or triangular structure.

[Fput b atriz e A] Eigerrvalues
matris type =] x""ﬁ Eigenvectors
output option — | T o

Figure 5-5. EigenValues and Vectors VI

Output option determines what needs to be computed. Output option =0
indicates that only the eigenval ues need to be computed. Output option =1
indicates that both the eigenvalues and the eigenvectors should be
computed. It is computationally very expensive to compute both the
eigenvalues and the eigenvectors. So, it isimportant that you use the output
option control in the EigenValuesand Vectors V| very carefully. Depending
on your particular application, you might just want to compute the
eigenvalues or both the eigenvalues and the eigenvectors. Also, a
symmetric matrix needs less computation than an nonsymmetric matrix.
So, choose the matrix type control carefully.

Matrix Inverse and Solving Systems of Linear Equations

Theinverse, denoted by Al of asquare matrix A isasquare matrix
such that

AA = AATY = |

where | isthe identity matrix. The inverse of amatrix existsif and only

if the determinant of the matrix is not zero, (that is, it is nonsingular).

In general, you can find the inverse of only a square matrix. You can,
however, compute the pseudoinverse of arectangular matrix. Refer to the
Matrix Factorization section later in this chapter for more information
about the pseudoinverse of arectangular matrix.

Solutions of Systems of Linear Equations

LabVIEW Analysis Concepts

In matrix-vector notation, a system of linear equations has the form

Ax = b,whereAisan x n matrix and bisagiven n-vector. Theaimisto
determine x, the unknown solution n-vector. There are two important
questions to be asked about the existence of such a solution. Does such a
solution exist, and if it doesisit unique? The answer to both of these
guestions lies in determining the singularity or nonsingularity of the
matrix A.
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Asdiscussed earlier, amatrix is said to be singular if it has any one of the
following equivalent properties:

» Theinverse of the matrix does not exist.

*  Thedeterminant of the matrix is zero.

*  Therows (or columns) of A are linearly dependent.
e Az = 0O for somevector z£0.

Otherwise, the matrix isnonsingular. If thematrix isnonsingul ar, itsinverse
A exists, and the system Ax = b hasaunique solution: x = A b
regardless of the value for b. On the other hand, if the matrix is singular,
then the number of solutionsis determined by the right-hand-side vector b.
If Aissingular and Ax = b, then A(x+ Yz) = b forany scalar Y', where
the vector zisasin the last definition above. Thus, if asingular system has
asolution, then the solution cannot be unique.

It isnot agood ideato explicitly compute the inverse of a matrix, because
such acomputation is prone to numerical inaccuracies. Therefore, it is not
agood strategy to solve alinear system of equations by multiplying the
inverse of the matrix A by the known right-hand-side vector. The genera
strategy to solve such a system of equationsisto transform the original
system into one whose solution is the same as that of the original system,
but is easier to compute. One way to do so isto use the Gaussian
Elimination technique. The three basic steps involved in the Gaussian
Elimination technique are as follows. First, express the matrix A asa
product

A=LU

where L isaunit lower triangular matrix and U is an upper triangular
matrix. Such afactorization is known as LU factorization. Given this, the
linear system Ax = b can be expressed as LUx = b. Such asystem can
then be solved by first solving the lower triangular system Ly = b fory by
forward-substitution. Thisis the second step in the Gaussian Elimination
technique. For example, if

s

1
[ P—
L T

O

I
w =

then
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Thefirst element of y can be easily determined due to the lower triangular
nature of the matrix L. Then you can use this value to compute the
remaining elements of the unknown vector sequentially. Hence, the name
forward-substitution. The final step involves solving the upper triangular
system Ux = y by back-substitution. For example, if

oo ol

(p—bn)
a

then

n=9m=
c

In this case, thislast element of x can be easily determined and then

used to determine the other elements sequentialy. Hence, the name
back-substitution. So far, this chapter has discussed the case of square
matrices. Because a nonsquare matrix is necessarily singular, the system
of equations must have either no solution or a nonunique solution. In such
asituation, you usually find a unique solution x that satisfies the linear
system in an approximate sense.

The Functions»M athematics»sL inear Algebra palette provides VIsfor
computing the inverse of a matrix, computing LU decomposition of a
matrix, and solving a system of linear equations. It isimportant to identify
the input matrix properly, as it helps avoid unnecessary computations,
which in turn helps to minimize numerical inaccuracies. The four possible
matrix types are general matrices, positive definite matrices, and lower and
upper triangular matrices. A real matrix is positive definite if and only if it
issymmetric and the quadratic form for al nonzero vectorsis X. If theinput
matrix issquare, but does not have afull rank (arank-deficient matrix), then
the VI findsthe least square solution x. The least square solution isthe one
which minimizes the norm of Ax—b. The same holds true aso for
nonsguare matrices.
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Matrix Factorization

The previous section discussed how alinear system of equations can be
transformed into a system whose solution is simpler to compute. The basic
idea was to factorize the input matrix into the multiplication of several,
simpler matrices. Y ou looked at one such technique, the LU decomposition
technique, in which you factorized the input matrix as a product of upper
and lower triangular matrices. Other commonly used factorization methods
are Cholesky, QR, and the Singular Value Decomposition (SVD). Y ou can
use these factorization methods to solve many matrix problems, such as
solving linear system of eguations, inverting a matrix, and finding the
determinant of amatrix.

If the input matrix A is symmetric and positive definite, then an

LU factorization can be computed such that A = U'U, whereU isan
upper triangular matrix. Thisis called Cholesky factorization. This
method requires only about half the work and half the storage compared
to LU factorization of a general matrix by Gaussian elimination. It is easy
to determine if amatrix is positive definite by using the Test Positive
Definite V1.

A matrix Q is orthogonal if its columns are orthonormal. That is,

if QTQ = |, theidentity matrix. QR factorization technique factors a
matrix as the product of an orthogonal matrix Q and an upper triangular
matrix R. That is, A = QR. QR factorization is useful for both square
and rectangular matrices. A number of algorithms are possible for

QR factorization, such as the Householder transformation, the

Givens transformation and the Fast Givens Transformation.

The Singular Value Decomposition (SV D) method decomposes a matrix
into the product of three matrices: A = U sV'.UandVare orthogonal
matrices. Sisadiagonal matrix whose diagonal values are called the
singular values of A. Thesi ngul ar values of A are the nonnegative square
roots of the eigenvalues of A’ A, and the columns of U and V, which are
called |eft and right singular vectors, are orthonormal eigenvectors of AAT
and ATA, respectively. SVD isuseful for solving analysis problems such
as computing the rank, norm, condition number, and pseudoinverse of
matrices. The following section discusses this last application.
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Pseudoinverse

Summary

The pseudoinverse of ascalar o isdefinedas 1/0 if 0#0, and zero
otherwise. In case of scalars, pseudoinverseis the same as the inverse.
Y ou can now define the pseudoinverse of adiagonal matrix by transposing
the matrix and then taking the scalar pseudoinverse of each entry. Thenthe
pseudoinverse of ageneral real mx n matrix A, denoted by AT, isgiven by

At = vsiu'

Note that the pseudoinverse exists regardless of whether the matrix
is sguare or rectangular. If A is square and nonsingular, then the
pseudoinverse is the same as the usual matrix inverse. The
Functions»M athematics»Linear Algebra palette includesaV1 for
computing the pseudoinverse of real and complex matrices.

LabVIEW Analysis Concepts

¢ A matrix can be considered as atwo-dimensional array of mrows and
n columns. Determinant, rank, and condition number are some
important attributes of a matrix.

e The condition number of a matrix affects the accuracy of the final
solution.

¢ Thedeterminant of adiagonal matrix, an upper triangular matrix, or a
lower triangular matrix is the product of its diagonal elements.

e Two matrices can be multiplied only if the number of columns of the
first matrix is equal to the number of rows in the second matrix.

« Aneigenvector of amatrix isanonzero vector that does not rotate
when the matrix is applied to it. Similar matrices have the same
eigenvalues.

* Theexistence of aunique solution for a system of equations depends
on whether the matrix is singular or nonsingular.
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This chapter explains some fundamental concepts on probability and
statistics and shows how to use these conceptsin solving real-world
problems. Refer to the examplesin exanpl es\ anal ysi s\

stat xnpl . I | b for examples of how to use the probability and statistics
Vs, available onthe Functions»M athematics»Pr obability and Statistics
palette.

Probability and Statistics

Facts and figures form an important part of life. Statements such as“ There
isa60% chance of thunderstorms,” “ Joe was ranked among the top fivein
the class,” “Michael Jordan has an average of 30 points a gamethis
season,” and so on are common. These statementsgive alot of information,
but we seldom think how thisinformation was obtained. Wasthere alot of
datainvolved in obtaining thisinformation? I f there was, how did someone
condenseit to single numbers such as 60% chance and average of 30 points
or terms such as top five. The answer to all these questions brings up the
very interesting field of statistics.

First, consider how information (data) is generated. Consider the 1997
baskethall season. Michael Jordan of the Chicago Bulls played 51 games,
scoring atotal of 1568 points. Thisincludes the 45 points he posted,
including the game-winning buzzer three-pointer, in a103-100 victory over
the Charlotte Hornets; his 36 pointsin an 88-84 victory over the Portland
Trail Blazers; a season high of 51 pointsin an 88-87 victory over the New
York Nicks; 45 points, 7 rebounds, 5 assistsand 3 stealsin a102-97 victory
over the Cleveland Cavaliers; and his 40 points, 6 rebounds, and 6 assists
in a 107-104 victory over the Milwaukee Bucks. The point is not that
Jordan isagreat player, but that asingle player can generate lots of datain
asingle season. The question is how to condense all this data so that it
brings out al the essential information and isyet easy to remember. Thisis
where the term statistics comes into the picture.

To condense all the data, single numbers must makeit moreintelligible and
help draw useful inferences. For example, consider the number of points
that Jordan scored in different games. It is difficult to remember how many

© National Instruments Corporation 6-1 LabVIEW Analysis Concepts



Chapter 6 Probability and Statistics

LabVIEW Analysis Concepts

points he scored in each game. But if you divide the total number of points
that Jordan scored (1568) by the number of games he has played (51), you
have a single number of 30.7 and can call it points per game average.

Suppose you want to rate Jordan’s free throw shooting skills. It might be
difficult to do so by looking at his performance in each game. However, you
can divide the number of free throws he has scored in all the games by the
total number of freethrows hewas awarded. This showshe hasafreethrow
percentage of 84.4%. You can obtain this number for al the NBA players
and then rank them. Thus, you can condense the information for all the
playersinto single numbers representing free throw percentage, points per
game, and three-point average. Based on this information, you can rank
playersin different categories. You can further weight these different
numbers and come up with a single number for each player. These single
numbers can then help usin judging the Most Valuable Player (MVP) for
the season. Thus, in abroad sense, theterm statisticsimplies different ways
to summarize data to derive useful and important information from it.

The next question is, what is probability? You have looked at waysto
summarizelots of datainto single numbers. These numbersthen help draw
conclusions for the present. For example, looking at Jordan’s statistics for
the 1996 season helped elect him the MV P for that season. But can you say
anything about the future? Can you measure the degree of accuracy in the
inference and use it for making future decisions? The answer liesin the
theory of probability. Whereas, in laymen’s terms, one would say that it is
probable that Jordan will continue to be the best in the years to come, you
can use different conceptsin the field of probability, as discussed later in
this chapter, to make more quantitative statements.

Inacompletely different scenario, there may be certain experimentswhose
outcomes cannot be predetermined, but certain outcomes may be more
probable. This once again leads to the notion of probability. For example,
if you flip an unbiased coin in the air, what is the chance that it will land
heads up? The chance or probability is 50%. That means, if you repeatedly
flip the coin, half the time it will land heads up. Does this mean that

10 tosses will result in exactly five heads? Will 100 tossesresult in exactly
50 heads? Probably not. But in the long run, the probability will work out
tobe0.5.

To summarize, whereas statistics allows you to summarize data and draw
conclusions for the present, probability allows you to measure the degree
of accuracy in those conclusions and use them for the future.
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Mean

Median

In this section, you will look at different concepts and terms commonly
used in statistics and see how to use the Analysis VIsin different
applications.

Consider adata set X consisting of nsamples Xy, X;, Xp, X3, «.., X5+
The mean value (a.k.a. average) is denoted by x and is defined by the
formula

1

(Xo+ Xy X+ X3+ oo + X, _q)

Sk

In other words, it isthe sum of all the sample values divided by the number
of samples. Asin the Michael Jordan example, the data set consisted of
51 samples. Each sample was equal to the number of points that Jordan
scored in each game. Thetotal of all these points was 1568, divided by the
number of samples (51) to get a mean or average value of 30.7.

The input-output connections for the Mean VI are shown below.

Let S = {sy,51: Sy ..., S,_¢ represent the sorted sequence of the data
set X. The sequence can be sorted either in the ascending order or in
descending order. Themedian of the sequenceis denoted by X ,oqian @NAis
obtained by the formula

_ s nisodd
Xmedian = Ep.S(sk_l +8,) niseven
where

i= "1 gdk =

NIS

In words, the median of a data sequence isthe midpoint value in the
sorted version of that sequence. For example, consider the sequence
{54,3,2,1} consisting of five (odd humber) samples. This sequenceis
already sorted in the descending order. In this case, the median isthe
midpoint value, 3. Consider adifferent sequence {1, 2, 3,4} consisting
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Sample Variance

of four (even number) samples. This sequence is aready sorted in the
ascending order. In this case, there are two midpoint values, 2 and 3. As per
the formulaabove, themedianisequal to 0.5 x (2 + 3) = 2.5. If astudent
X scored 4.5 points on atest and another student Y scored 1 point on the
same test, the median is a very useful quantity for making qualitative
statements such as “ X liesin the top half of the class” or “Y liesin the
bottom half of the class.”

The sample variance of the data set X consisting of n samplesisdenoted by
§? and is defined by the formula

2

= 11[(x1—>_<)2+(x2—>_<)2+ +(xn—>_<)2]

n —_
where x denotes the mean of the data set. Hence, the sample variance is

equal to the sum of the squares of the deviations of the sample values from
the mean divided by n—1.

@ Note The above formula does not apply for n=1. However, it does not mean anything to
compute the sample variance if thereis only one samplein the data set.

LabVIEW Analysis Concepts

In other words, the sample variance measures the spread or dispersion of
the sample values. If the data set consists of the scores of a player from
different games, the sample variance can be used as a measure of the
consistency of the player. It is always positive, except when all the sample
values are equal to each other and in turn equal to the mean.

Thereisone moretype of variance called population variance. The formula
to compute population variance is similar to the one above to compute
sample variance, except for the (n—1) in the denominator replaced by n.

The Sample Variance VI computes sample variance, whereas the Variance
VI computes the population variance. Statisticians and mathematicians
prefer to use the latter, engineers the former. It really does not matter for
largevaluesof n, say n=30.

Use the proper type of VI suited for your application.
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Standard Deviation

Mode

The positive square root of the sample variance s isdenoted by s andis
called the standard deviation of the sample.

The mode of asampleisasample value that occurs most frequently in the
sample. For example, if the input sequence X is

X =1{0,1,3,3,4,4,4,55,7

thenthemode of Xis4, becausethat isthe valuethat most often occursin X.

Moment About Mean

Histogram

If X represents the input sequence with n number of elementsinit, and
X isthe mean of this sequence, then the mM-order moment can be
calculated using the formula

n-1

1 -\m
O-xrn = HZ(Xi_X)

i=0

In other words, the moment about mean isameasure of the deviation of the
elementsin the sequence from the mean. Notethat for m = 2, themoment
about mean is equal to the population variance.

So far, this chapter has discussed different ways to extract important
features of adata set. The datais usually stored in atable format, which
many people find difficult to grasp. The visua display of data helps us
gaininsightsinto the data. Histogram is one such graphical method for
displaying data and summarizing key information. Consider a data
sequence X = {0, 1, 3,3,4,4,4,5,5,8 . Divide the total range of
valuesinto 8 intervals. Theseintervalsare0-1,1-2,2-3,...,7-8.
The histogram for the sequence X then plots the number of data samples
that liein that interval, not including the upper boundary.
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1 2 3 45 6 7 8
A0 AL a7

Figure 6-1. Histogram

Figure 6-1 shows that one data sample liesintherangeO—21and 1 -2,
respectively. However, there isno samplein the interval 2 — 3. Similarly,
two samplesliein the interval 3 — 4, and three sampleslie in the range

4 - 5. Examine the data sequence X above and be sure you understand this
concept.

There are different ways to compute data for histogram. Next you will see
how it is done in the Histogram V1 using the sequence X.

= — Hiztogram: h(x]
intervals o alues
efrar

Hiztogram.vi

Figure 6-2. Histogram VI

Asshownin Figure 6-2, theinputsto this VI are theinput sequence X and
the number of intervalsm. The VI obtains Histogram:h(x) as follows.
It scans X to determine the range of valuesinit. Thenthe V1 establishesthe
interval width, Ax, according to the specified value of m

max—min
m

AX =

where max is the maximum value found in X, min is the minimum value
found in X, and mis the specified number of intervals.

Let
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Then

_8-0_
Ax = 5 - 1
Letx represent the output sequence X Values. The histogram is afunction
of X. This VI evaluates the elements of x using

X; = min+ 0.5AX +iAx for i=012..,m-1

For this example,

7.5

Xo = 05,x; = 15...,%7

The VI then defines the ith interval to bein the range of values from
X; — 0.5Ax up to but not including x; + 0.5AX,

A = [(X;—0.5A%), (x; + 0.5Ax)], for i=012,.. m-1
and defines the function y;(x) = 1 for x belonging to A; and zero
elsewhere. The function has unity value if the value of x falls within the
specified interval, not including the boundary. Otherwise, it is zero. Notice

that the interval is centered about; anditswidthis A, . If avalueisequal
to max, it is counted as belonging to the last interval.

For our example,
A, = [0,1],A, = [1,2],...,0, = [7,8]
and as an example
Yo(0) = 1
and
Yo(1) = Yo(3) = ¥o(4) = ¥o(5) = yo(8) = 0.

Finally, the VI evaluates the histogram sequence H using

n-1
h = Zyi(xj) for i=012,..,m-1
j=0
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where h; represents the elements of the output sequence Histogram: h(X)
and n isthe number of elementsin the input sequence X. For this example,
ho =1,h, =3, ...,h; = 1.

The Functions»M athematics»Probability and Statistics palette also has
a General Histogram V1 that is more advanced than the Histogram V1.
Refer to LabVIEW Help, available by selecting Help»Contentsand | ndex,
for more information about the probability and statistics VIs.

Mean Square Error (MSE)

If X and Y represent two input sequences, then the mean square error
isthe average of the sum of the square of the difference between the
corresponding elements of the two input sequences. Thefollowing formula
is used to find the mse.

n-1

mse = %Z (% —yi)2

i=0
where n isthe number of data points.

Consider adigital signal x fed to asystem, S;. The output of thissystemis
y1- Now you acquire anew system, S,, which istheoretically known to
generatethe sameresult as S; but hastwo timesfaster responsetime. Before
replacing the old system, you want to be absolutely sure that the output
response of both the systemsisthe same. If the sequencesy; andy, arevery
large, it is difficult to compare each element in the sequences. In such a
scenario, you can use the MSE VI to cal culate the mean square error (mse)
of the two sequencesy; and y,. If the mseis smaller than an acceptable
tolerance, then the system S, can bereliably replaced by the new system S,.

Root Mean Square (RMS)

LabVIEW Analysis Concepts

Theroot mean square W, of asequence X isthe positive square root of the
mean of the square of the input sequence. In other words, you can square

the input sequence, take the mean of this new squared sequence, and then

take the square root of this quantity. The formula used to compute the rms
valueis
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where n is the number of elementsin X.

RMSisawidely used quantity in the case of analog signals. For asine
voltage waveform, if V, is the peak amplitude of the signal, then the

Y,
root mean square voltage V, IS given by 7; .

Random Variahles

In any random experiment, thereis always a chance that a particular event
will or will not occur. A number between 0 and 1 is assigned to measure
this chance, or probability, that a particular event occurs. If you are
absolutely sure that the event will occur, its probability is 100% or 1.0,
but if you are sure that the event will not occur, its probability is 0.

Consider asimple example. If you roll asingle unbiased die, there are six
possible events that can occur—either al, 2, 3, 4, 5, or 6 can result. What
is the probability that a 2 will result? This probability isonein six, or
0.16666. You can define probability in simple terms as the following: the
probability that an event A will occur istheratio of the number of outcomes
favorable to A to the total number of equally likely outcomes.

Many experiments generate outcomesthat you can interpret in termsof real
numbers. Some examples are the number of cars passing astop sign during
aday, number of voters favoring candidate A, and number of accidents at
aparticular intersection. The values of the numerical outcomes of this
experiment can change from experiment to experiment and are called
random variables. Random variables can be discrete (if they can take on
only afinite number of possible values) or continuous. As an example of
the latter, weights of patients coming into a clinic may be anywhere from,
say, 80 to 300 pounds. Such random variables can take on any valuein an
interval of real numbers. Given such a situation, suppose you want to find
the probability of encountering a patient weighing exactly 172.39 pounds.
You will see how to calculate this probability next using an example.
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Consider an experiment to measure the life lengths x of 50 batteries of a
certain type. These batteries are selected from alarger population of such
batteries. The histogram for observed data is shown below.

A
\ Histogram

»
|

0 1 2 3 4 5 6
Life Length in Hundreds of Hours

Figure 6-3. Life Lengths Histogram

Figure 6-3 shows that most of the life lengths are between zero and
100 hours, and the histogram values drop off smoothly when you look at
larger life lengths.

You can approximate the histogram shown above by an exponentially
decaying curve. You could take this function as a mathematical model for
the behavior of the data sample. If you want to know the probability that a
randomly selected battery will last longer than four hundred hours, this
value can be approximated by the area under the curve to the right of the
value 4. Such afunction that models the histogram of the random variable
is called the probability density function.

To summarize all the information above in terms of a definition, arandom
variable X is said to be continuous if it can take on the infinite number of
possible values associated with intervals of real numbers, and thereisa
function f(x), called the probability density function, such that

1. f(x)=0 for all x

2. J'f(x)dx =1
—o b

3. P(asX<h) = J'f(x)dx
a
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Chapter 6 Probability and Statistics

Notice from equation (3) above, that for a specific value of the continuous
random variable, that isfor

X=a,P(X=a) = J’f(x)dx =0

a

It should not be surprising that you assign a probability of zero to any
specific value, because there are an infinite number of possible values that
the random variable can take. Therefore, the chance that it will take on a
specificvalue X = a isextremely small.

The previous example used the exponential function model for the
probability density function. There are a number of different choices for
this function. One of theseisthe Normal Distribution, discussed below.

Normal Distribution

The normal distribution is one of the most widely used continuous
probability distributions. This distribution function has a symmetric bell
shape.

The curveis centered at themean value x = 0, and its spread is measured
by the variance §° = 1. Thesetwo parameters completely determine the
shape and location of the normal density function, whose functional form
isgiven by

2,
f(x) = 1 e—(x—x) /(25°)
21s
Suppose arandom variable Z has anormal distribution with mean equal to
zero and variance equal to one. Thisrandom variable is said to have
standard normal distribution.

The Normal Distribution VI computes the one-sided probability, p, of the
normally distributed random variable x.

p = Prob(X<Xx)

where X isastandard normal distribution with the mean value equal to zero
and variance equal to one, p isthe probability and x is the value.
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Summary

Suppose you conduct an experiment in which you measure the heights of
adult males. You conduct this experiment on 1000 randomly chosen men
and obtain adataset S The histogram distribution has many measurements
clumped closely about a mean height, with relatively few very short and
very tall malesin the population. Therefore, the histogram can be closely
approximated by anormal distribution. Now suppose that, among a
different set of 1000 randomly chosen males, you want to find the
probability that the height of amale is greater than or equal to 170 cms.
You can use the Normal Distribution V1 to find this probability. Set the
input x = 170. Thus, the choice of the probability density functionis
fundamental to obtaining a correct probability value.

The Inverse Normal Distribution VI performs exactly the opposite

function. Given aprobability p, it finds the values x that have the chance of
lyinginanormally distributed sample. For example, you might want to find
the heights that have a 60% chance of lying in arandomly chosen data set.

Asmentioned earlier, there are different choices for the probability density
function. The well-known and widely used ones are the Chi-Square
distribution, the F distribution, and the T-distribution. The

Functions»M athematics»Pr obability and Statistics palette has Vs that
compute the one-sided probability for these different types of distributions.
In addition, it also has VIsthat perform the inverse operation.

LabVIEW Analysis Concepts

« Different conceptsin statistics and probability help decipher
information and data to make intelligent decisions.

¢ Mean, Median, Sample Variance, and Mode are some of the statistics
techniquesto help in making inferences from a sampleto a population.

* Histogramsarewidely used asasimple but informative method of data
display.

e Using the theory of probability, you can make inferences from a

sample to a population and then measure the degree of accuracy in
those inferences.
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Technical Support Resources

Web Support

National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
guestions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of www. ni . com

NI Developer Zone

The NI Developer Zone at zone. ni . comisthe essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education

National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of www. ni . comfor online course schedules,
syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of wwv. ni . com
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Appendix A Technical Support Resources

Worldwide Support

National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of www. ni . com Branch office web sites
provide up-to-date contact information, support phone numbers, e-mail
addresses, and current events.

If you have searched the technical support resources on our Web site and
till cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.
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