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About This Manual

This manual provides information about analysis and mathematical 
concepts in LabVIEW.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software, 
such as menu items and dialog box options. Bold text also denotes 
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. This font also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames and extensions, and code excerpts.

Related Documentation
The following documents contain information that you might find helpful 
as you read this manual:

• LabVIEW Measurements Manual

• LabVIEW Help, available by selecting Help»Contents and Index

• LabVIEW User Manual
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• Getting Started with LabVIEW

• On the Use of Windows for Harmonic Analysis with the Discrete 
Fourier Transform (Proceedings of the IEEE, Volume 66, No. 1, 
January 1978)
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1
Signal Generation

This chapter explains how to produce signals using normalized frequency 
and how to build a simulated function generator. Signal generation VIs are 
available on the Functions»Analyze»Signal Processing»Signal 
Generation palette.

Some of the applications for signal generation are:

• Simulating signals to test your algorithm when real-world signals are 
not available (for example, when you do not have a DAQ device for 
obtaining real-world signals, or when access to real-world signals is 
not possible).

• Generating signals to apply to a D/A converter.

Normalized Frequency
In the analog world, a signal frequency is measured in Hz or cycles per 
second. But the digital system often uses a digital frequency, which is the 
ratio between the analog frequency and the sampling frequency:

digital frequency = analog frequency / sampling frequency

This digital frequency is known as the normalized frequency. Its units are 
cycles/sample.

Some of the Signal Generation VIs use an input frequency control, f, that 
is assumed to use normalized frequency units of cycles per sample. This 
frequency ranges from 0.0 to 1.0, which corresponds to a real frequency 
range of 0 to the sampling frequency fs. This frequency also wraps around 
1.0, so that a normalized frequency of 1.1 is equivalent to 0.1. As an 
example, a signal that is sampled at the Nyquist rate (fs/2) means that it is 
sampled twice per cycle (that is, two samples/cycle). This will correspond 
to a normalized frequency of 1/2 cycles/sample = 0.5 cycles/sample. 
The reciprocal of the normalized frequency, 1/f, gives you the number of 
times that the signal is sampled in one cycle.

When you use a VI that requires the normalized frequency as an input, you 
must convert your frequency units to the normalized units of cycles/sample. 
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You must use these normalized units with the following signal 
generation VIs:

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern

If you are used to working in frequency units of cycles, you can convert 
cycles to cycles/sample by dividing cycles by the number of samples 
generated.

You need only divide the frequency (in cycles) by the number of samples. 
For example, a frequency of 2 cycles is divided by 50 samples, resulting in 
a normalized frequency of f = 1/25 cycles/sample. This means that it takes 
25 (the reciprocal of f) samples to generate one cycle of the sine wave.

However, you may need to use frequency units of Hz (cycles/s). If you need 
to convert from Hz (or cycles/s) to cycles/sample, divide your frequency in 
cycles/s by the sampling rate given in samples/s.

For example, you divide a frequency of 60 Hz by a sampling rate of 
1000 Hz to get the normalized frequency of f = 0.06 cycles/sample. 
Therefore, it takes almost 17 (1/0.06) samples to generate one cycle of 
the sine wave.

The signal generation VIs create many common signals required for 
network analysis and simulation. You can also use the signal generation 
VIs in conjunction with National Instruments hardware to generate analog 
output signals.

cycles/s
samples/s
-----------------------

cycles
sample
-----------------=
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Wave and Pattern VIs
You will notice that the names of most of the signal generation VIs have 
the word wave or pattern in them. There is a basic difference in the 
operation of the two different types of VIs. It has to do with whether or not 
the VI can keep track of the phase of the signal that it generates each time 
it is called.

Phase Control
The wave VIs have a phase in control where you can specify the initial 
phase (in degrees) of the first sample of the generated waveform. They also 
have a phase out indicator that specifies what the phase of the next sample 
of the generated waveform is going to be. In addition, a reset phase control 
decides whether or not the phase of the first sample generated when the 
wave VI is called is the phase specified at the phase in control, or whether 
it is the phase available at the phase out control when the VI last executed. 
A TRUE value of reset phase sets the initial phase to phase in, whereas a 
FALSE value sets it to the value of phase out when the VI last executed.

The wave VIs are all reentrant (can keep track of phase internally) and 
accept frequency in normalized units (cycles/sample). The only pattern VI 
that presently uses normalized units is the Chirp Pattern VI. Setting the 
reset phase Boolean to FALSE allows for continuous sampling simulation.

Note Wave VIs are reentrant and accept the frequency input in terms of normalized units.
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2
Digital Signal Processing

This chapter describes the fundamentals of the Fast Fourier Transform 
(FFT) and the Discrete Fourier Transform (DFT) and how they are used in 
spectral analysis. Refer to the examples in examples\analysis\
dspxmpl.llb for examples of using the digital signal processing VIs, 
available on the Functions»Analyze»Signal Processing»Frequency 
Domain palette.

The Fast Fourier Transform (FFT)
The samples of a signal obtained from a DAQ device constitute the 
time domain representation of the signal. This representation gives 
the amplitudes of the signal at the instants of time during which it had 
been sampled. However, in many cases you want to know the frequency 
content of a signal rather than the amplitudes of the individual samples. 
The representation of a signal in terms of its individual frequency 
components is known as the frequency domain representation of the 
signal. The frequency domain representation could give more insight 
about the signal and the system from which it was generated.

The algorithm used to transform samples of the data from the time domain 
into the frequency domain is known as the discrete Fourier transform or 
DFT. The DFT establishes the relationship between the samples of a signal 
in the time domain and their representation in the frequency domain. 
The DFT is widely used in the fields of spectral analysis, applied 
mechanics, acoustics, medical imaging, numerical analysis, 
instrumentation, and telecommunications.



Chapter 2 Digital Signal Processing

LabVIEW Analysis Concepts 2-2 www.ni.com

Figure 2-1.  Discrete Fourier Transform

Suppose you have obtained N samples of a signal from a DAQ device. If 
you apply the DFT to N samples of this time domain representation of the 
signal, the result is also of length N samples, but the information it contains 
is of the frequency domain representation. The relationship between the 
N samples in the time domain and the N samples in the frequency domain 
is explained below.

If the signal is sampled at a sampling rate of fs Hz, then the time interval 
between the samples (that is, the sampling interval) is ∆t, where

The sample signals are denoted by x[i],  (that is, you have a 
total of N samples). When the discrete Fourier transform, given by

(2-1)

for

k = 0, 1, 2, …, N–1

is applied to these N samples, the resulting output (X[k], ) is 
the frequency domain representation of x[i]. Notice that both the time 
domain x and the frequency domain X have a total of N samples. Analogous 

Time Domain Representation of x[n] Frequency Domain Representation

DFT

t∆ 1
fs
---=

0 i N 1–≤ ≤

Xk xie
j2πik N⁄–

i 0=

N 1–

∑=

0 k N 1–≤ ≤
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to the time spacing of ∆t between the samples of x in the time domain, you 
have a frequency spacing of

between the components of X in the frequency domain. ∆f is also known as 
the frequency resolution. To increase the frequency resolution (smaller ∆f) 
you must either increase the number of samples N (with fs constant) or 
decrease the sampling frequency fs (with N constant).

In the following example, you will go through the mathematics of 
Equation 2-1 to calculate the DFT for a D.C. signal.

DFT Calculation Example
In the next section, you will see the exact frequencies to which the 
N samples of the DFT correspond. For the present discussion, assume that 
X[0] corresponds to D.C., or the average value, of the signal. To see the 
result of calculating the DFT of a waveform with the use of Equation 2-1, 
consider a D.C. signal having a constant amplitude of +1 V. Four samples 
of this signal are taken, as shown in Figure 2-2.

Figure 2-2.  DFT Samples

Each of the samples has a value +1, giving the time sequence

x[0] = x[1] = x[3] = x[4] = 1

Using Equation 2-1 to calculate the DFT of this sequence and making use 
of Euler’s identity,

exp (–iθ) = cos(θ ) – jsin(θ )

f∆
fs

N
----

1
N∆t
----------= =

x[0] x[1] x[2] x[3]

Time
0 1 2 3

+ 1V

A
m

pl
itu

de

• • • •
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you get:

 = x[0] + x[1] + x[2] + x[3] = 4

Therefore, except for the DC component, X[0], all the other values are zero, 
which is as expected. However, the calculated value of X[0] depends on the 
value of N (the number of samples). Because you had N = 4, X[0] = 4. If 
N = 10, then you would have calculated X[0] = 10. This dependency of X[ ] 
on N also occurs for the other frequency components. Thus, you usually 
divide the DFT output by N, so as to obtain the correct magnitude of the 
frequency component.

Magnitude and Phase Information
You have seen that N samples of the input signal result in N samples of 
the DFT. That is, the number of samples in both the time and frequency 
representations is the same. From Equation 2-1, you see that regardless 
of whether the input signal x[i] is real or complex, X[k] is always complex 
(although the imaginary part may be zero). Thus, because the DFT is 
complex, it contains two pieces of information— the amplitude and the 
phase. It turns out that for real signals (x[i] real) such as those obtained from 
the output of one channel of a DAQ device, the DFT is symmetric with the 
following properties:

| X[k] | = | X[N–k] |

and

phase ( X[k] ) = – phase(X[N–k] )

X 0[ ] xie
j2πi0 N⁄–

i 0=

N 1–

∑=

X 1[ ] x 0[ ] x 1[ ] π
2
--- 

 cos j
π
2
--- 

 sin– 
  x 2[ ] π( )cos j π( )sin–( )

x 3[ ] 3π
2

------ 
 cos j

3π
2

------ 
 sin– 

  1 j– 1– j+( ) 0==

+ + +=

X 2[ ] x 0[ ] x 1[ ] π( )cos j π( )sin–( ) x 2[ ] 2π( )cos j 2π( )sin–( )
x 3[ ] 3π( )cos j 3π( )sin–( ) 1 1– 1 1–+( ) 0==

+ + +=

X 3[ ] x 0[ ] x 1[ ] 3π
2

------ 
 cos j

3π
2

------ 
 sin– 

  x 2[ ] 3π( )cos j 3π( )sin–( )

x 3[ ] 9π
2

------ 
 cos j

9π
2

------ 
 sin– 

  1 j– 1– j–( ) 0==

+ +=
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The terms used to describe this symmetry are that the magnitude of X[k] is 
even symmetric, and phase(X[k]) is odd symmetric. An even symmetric 
signal is one that is symmetric about the y-axis, whereas an odd symmetric 
signal is symmetric about the origin. This is shown in the following figures.

Figure 2-3.  Signal Symmetry about the y-axis

The net effect of this symmetry is that there is repetition of information 
contained in the N samples of the DFT. Because of this repetition of 
information, only half of the samples of the DFT actually need to be 
computed or displayed, as the other half can be obtained from this 
repetition. If the input signal is complex, the DFT will be nonsymmetric 
and you cannot use this trick.

Frequency Spacing between DFT/FFT Samples
If the sampling interval is ∆t seconds, and the first (k = 0) data sample is 
at 0 seconds, then the kth (k > 0, k integer) data sample is at k∆t seconds. 
Similarly, if the frequency resolution is ∆f Hz.

( ) then the kth sample of the DFT occurs at a frequency of k∆f Hz.

(Actually, as you will soon see, this is valid for only up to the first half of 
the frequency components. The other half represent negative frequency 
components.) Depending on whether the number of samples, N, is even or 
odd, you can have a different interpretation of the frequency corresponding 
to the kth sample of the DFT. 

For example, suppose N is even and let . Table 2-1 shows the
frequency to which each format element of the complex output sequence 
X corresponds.

Note that the pth element, X[p], corresponds to the Nyquist frequency. 
The negative entries in the second column beyond the Nyquist frequency 
represent negative frequencies.

y

x

y

x

Odd SymmetryEven Symmetry

f∆
fs

N
----=

p
N
2
----=
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For example, if N = 8, p = N/2 = 4, then ∆f is shown in Table 2-1 for X[p] 
for N = 8.

Here, X[1] and X[7] will have the same magnitude, X[2] and X[6] will have 
the same magnitude, and X[3] and X[5] will have the same magnitude. 
The difference is that whereas X[1], X[2], and X[3] correspond to positive 
frequency components, X[5], X[6], and X[7] correspond to negative 
frequency components. Note that X[4] is at the Nyquist frequency.

Figure 2-4 represents this complex sequence for N = 8.

Figure 2-4.  Complex Sequence for N = 8

Table 2-1.  X[p] for N = 8

X[p] ∆f

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] 4∆f (Nyquist frequency)

X[5] –3∆f

X[6] –2∆f

X[7] –∆f

Positive
Frequencies

Negative
Frequencies

Nyquist
Component

DC
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Such a representation, where you see both the positive and negative 
frequencies, is known as the two-sided transform.

Note that when N is odd, there is no component at the Nyquist frequency.

For example, if N = 7, p = (N–1)/2 = (7–1)/2 = 3, then ∆f is shown in 
Table 2-2 for X[p] for N = 7.

Now X[1] and X[6] have the same magnitude, X[2] and X[5] have the same 
magnitude, and X[3] and X[4] have the same magnitude. However, whereas 
X[1], X[2], and X[3] correspond to positive frequencies, X[4], X[5], and 
X[6] correspond to negative frequencies. Because N is odd, there is no 
component at the Nyquist frequency.

Table 2-2.  X[p] for N = 7

X[p] ∆f

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] –3∆f

X[5] –2∆f

X[6] –∆f
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Figure 2-5 illustrates Table 2-2 for N = 7.

Figure 2-5.  X[p] for N = 7

This is also a two-sided transform, because you have both the positive and 
negative frequencies.

Fast Fourier Transforms
Direct implementation of the DFT on N data samples requires 
approximately N2 complex operations and is a time-consuming process. 
However, when the size of the sequence is a power of 2,

N = 2m for m = 1, 2, 3,…

you can implement the computation of the DFT with approximately 
N log2(N) operations. This makes the calculation of the DFT much faster, 
and DSP literature refers to these algorithms as fast Fourier transforms 
(FFTs). The FFT is nothing but a fast algorithm for calculating the DFT 
when the number of samples (N) is a power of 2.

The advantages of the FFT include speed and memory efficiency, because 
the VI can compute the FFT in place, that is, no additional memory buffers 
are needed to compute the output. The size of the input sequence, however, 
must be a power of 2. The DFT can efficiently process any size sequence, 
but the DFT is slower than the FFT and uses more memory, because it must 
allocate additional buffers for storing intermediate results during 
processing.

Positive
Frequencies

Negative
Frequencies

DC
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Zero Padding
A technique employed to make the input sequence size equal to a power of 
2 is to add zeros to the end of the sequence so that the total number of 
samples is equal to the next higher power of 2. For example, if you have 
10 samples of a signal, you can add six zeros to make the total number of 
samples equal to 16 (= 24—a power of 2), as shown in Figure 2-6.

Figure 2-6.  Zero Padding

The addition of zeros to the end of the time domain waveform does 
not affect the spectrum of the signal. In addition to making the total number 
of samples a power of two so that faster computation is made possible 
by using the FFT, zero padding also helps in increasing the frequency 
resolution (recall that ∆f = fs/N) by increasing the number of samples, N.

FFT VIs
The Functions»Analyze»Signal Processing»Frequency Domain palette 
contains two VIs that compute the FFT of a signal. They are the Real FFT 
VI and Complex FFT VI.

The difference between the two VIs is that the Real FFT VI computes the 
FFT of a real-valued signal, whereas the Complex FFT VI computes the 
FFT of a complex-valued signal. However, keep in mind that the outputs of 
both VIs are complex.

Most real-world signals are real valued, and hence you can use the 
Real FFT VI for most applications. Of course, you could also use the 
Complex FFT VI by setting the imaginary part of the signal to zero. 
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An example of an application where you could use the Complex FFT VI is 
when the signal consists of both a real and imaginary component. Such a 
type of signal occurs frequently in the field of telecommunications, where 
you modulate a waveform by a complex exponential. The process of 
modulation by a complex exponential results in a complex signal, as shown 
in Figure 2-7.

Figure 2-7.  Modulation by a Complex Exponential

The Power Spectrum
You have seen that the DFT (or FFT) of a real signal is a complex number, 
having a real and an imaginary part. The power in each frequency 
component represented by the DFT/FFT can be obtained by squaring the 
magnitude of that frequency component. Thus, the power in the kth 
frequency component (the kth element of the DFT/FFT) is given by |X[k]|2. 
The plot showing the power in each of the frequency components is known 
as the power spectrum. Because the DFT/FFT of a real signal is symmetric, 
the power at a positive frequency of k∆f is the same as the power at the 
corresponding negative frequency of –k∆f (DC and Nyquist components 
not included). The total power in the DC

and Nyquist components are  and , respectively.

Loss of Phase Information
Because the power is obtained by squaring the magnitude of the DFT/FFT, 
the power spectrum is always real. The disadvantage of this is that the 
phase information is lost. If you want phase information, you must use the 
DFT/FFT, which gives you a complex output.

You can use the power spectrum in applications where phase information is 
not necessary (for example, to calculate the harmonic power in a signal). 
You can apply a sinusoidal input to a nonlinear system and see the power 
in the harmonics at the system output.

Modulation by
exp(–j   t)ωx(t) ωωy(t) = x(t)cos(  t) – jx(t)sin(  t)

X 0[ ] 2
X

N
2
----

2
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Frequency Spacing between Samples
You can use the Power Spectrum VI, available on the Functions»
Analyze»Signal Processing»Frequency Domain palette, to calculate the 
power spectrum of the time domain data samples. Just like the DFT/FFT, 
the number of samples from the Power Spectrum VI output is the same as 
the number of data samples applied at the input. Also, the frequency 
spacing between the output samples is ∆f = fs/N.

Summary
The time domain representation (sample values) of a signal can be 
converted into the frequency domain representation by means of an 
algorithm known as the discrete Fourier transform (DFT). To have fast 
calculation of the DFT, an algorithm known as the fast Fourier transform 
(FFT) is used. You can use this algorithm when the number of signal 
samples is a power of two.

The output of the conventional DFT/FFT is two-sided because it contains 
information about both the positive and the negative frequencies. This 
output can be converted into a one-sided DFT/FFT by using only half the 
DFT/FFT output points. The frequency spacing between the samples of the 
DFT/FFT is ∆f = fs/N.

The power spectrum can be calculated from the DFT/FFT by squaring the 
magnitude of the individual frequency components. The Power Spectrum 
VI in the advanced analysis library does this automatically for you. The 
units of the output of the Power Spectrum VI are in Vrms

2. However, the 
power spectrum does not provide any phase information.

The DFT, FFT, and power spectrum are useful for measuring the frequency 
content of stationary or transient signals. The FFT provides the average 
frequency content of the signal over the entire time that the signal was 
acquired.
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3
Smoothing Windows

This chapter explains how using windows prevents spectral leakage and 
improves the analysis of acquired signals. Refer to the example in 
examples\analysis\windxmpl.llb for an example of how to use 
the analysis window VIs, available on the Functions»Analyze»Signal 
Processing»Windows palette.

Introduction to Smoothing Windows
In practical signal-sampling applications, you can obtain only a finite 
record of the signal, even when you carefully observe the sampling theorem 
and sampling conditions. Unfortunately for the discrete-time system, the 
finite sampling record results in a truncated waveform that has different 
spectral characteristics from the original continuous-time signal. These 
discontinuities produce leakage of spectral information, resulting in a 
discrete-time spectrum that is a smeared version of the original 
continuous-time spectrum.

A simple way to improve the spectral characteristics of a sampled signal 
is to apply smoothing windows. When performing Fourier or spectral 
analysis on finite-length data, you can use windows to minimize the 
transition edges of your truncated waveforms, thus reducing spectral 
leakage. When used in this manner, smoothing windows act like 
predefined, narrowband, lowpass filters.
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About Spectral Leakage and Smoothing Windows
When you use the DFT/FFT to find the frequency content of a signal, it is 
inherently assumed that the data that you have is a single period of a 
periodically repeating waveform, as shown in Figure 3-1. The first period 
shown is the one sampled. The waveform corresponding to this period is 
then repeated in time to produce the periodic waveform.

Figure 3-1.  Periodic Waveform Created from Sampled Period

Because of the assumption of periodicity of the waveform, discontinuities 
between successive periods will occur. This happens when you sample a 
noninteger number of cycles. These artificial discontinuities turn up as very 
high frequencies in the spectrum of the signal, frequencies that were not 
present in the original signal. These frequencies could be much higher than 
the Nyquist frequency, and as you have seen before, will be aliased 
somewhere between 0 and fs/2. The spectrum you get by using the 
DFT/FFT therefore will not be the actual spectrum of the original signal, 
but will be a smeared version. It appears as if the energy at one frequency 
has leaked out into all the other frequencies. This phenomenon is known as 
spectral leakage.

Figure 3-2 shows a sine wave and its corresponding Fourier transform. The 
sampled time domain waveform is shown in Graph 1. Because the Fourier 
transform assumes periodicity, you repeat this waveform in time, and the 
periodic time waveform of the sine wave of Graph 1 is shown in Graph 2. 
The corresponding spectral representation is shown in Graph 3. Because 
the time record in Graph 2 is periodic, with no discontinuities, its spectrum 
is a single line showing the frequency of the sine wave. The reason that the 
waveform in Graph 2 does not have any discontinuities is because you have 
sampled an integer number of cycles (in this case, 1) of the time waveform.

Time

One Period Discontinuity
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Figure 3-2.  Sine Wave and Corresponding Fourier Transform

In Figure 3-3, you see the spectral representation when you sample a 
noninteger number of cycles of the time waveform (namely 1.25). 
Graph 1 now consists of 1.25 cycles of the sine wave. When you repeat 
this periodically, the resulting waveform, as shown in Graph 2, consists 
of discontinuities. The corresponding spectrum is shown in Graph 3. 
Notice how the energy is now spread over a wide range of frequencies. 
This smearing of the energy is spectral leakage. The energy has leaked 
out of one of the FFT lines and smeared itself into all the other lines.



Chapter 3 Smoothing Windows

LabVIEW Analysis Concepts 3-4 www.ni.com

Figure 3-3.  Spectral Representation When Sampling a Nonintegral Number 
of Samples

Leakage exists because of the finite time record of the input signal. 
To overcome leakage, one solution is to take an infinite time record, 
from –infinity to +infinity. Then the FFT would calculate one single line at 
the correct frequency. Waiting for infinite time is, however, not possible in 
practice. So, because you are limited to having a finite time record, another 
technique, known as windowing, is used to reduce the spectral leakage.

The amount of spectral leakage depends on the amplitude of the 
discontinuity. The larger the discontinuity, the more the leakage, and 
vice versa. You can use windowing to reduce the amplitude of the 
discontinuities at the boundaries of each period. It consists of multiplying 
the time record by a finite length window whose amplitude varies smoothly 
and gradually towards zero at the edges. This is shown in Figure 3-4, where 
the original time signal is windowed using a Hamming window. Notice that 
the time waveform of the windowed signal gradually tapers to zero at the 
ends. Therefore, when performing Fourier or spectral analysis on 
finite-length data, you can use windows to minimize the transition edges of 
your sampled waveform. A smoothing window function applied to the data 
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before it is transformed into the frequency domain minimizes spectral 
leakage.

Note that if the time record contains an integral number of cycles, as shown 
in Figure 3-2, then the assumption of periodicity does not result in any 
discontinuities, and thus there is no spectral leakage. The problem arises 
only when you have a nonintegral number of cycles.

Figure 3-4.  Time Signal Windowed Using a Hamming Window



Chapter 3 Smoothing Windows

LabVIEW Analysis Concepts 3-6 www.ni.com

Windowing Applications
There are several reasons to use windowing. Some of these are:

• To define the duration of the observation.

• Reduction of spectral leakage.

• Separation of a small amplitude signal from a larger amplitude signal 
with frequencies very close to each other.

Characteristics of Different Types of Window Functions
Applying a window to (windowing) a signal in the time domain is 
equivalent to multiplying the signal by the window function. Because 
multiplication in the time domain is equivalent to convolution in the 
frequency domain, the spectrum of the windowed signal is a convolution 
of the spectrum of the original signal with the spectrum of the window. 
Thus, windowing changes the shape of the signal in the time domain, 
as well as affecting the spectrum that you see.

Many different types of windows are available on the Functions»Analyze»
Signal Processing»Windows palette. Depending on your application, one 
may be more useful than the others. Some of these windows are:

Rectangular (None)
The rectangular window has a value of one over its time interval. 
Mathematically, it can be written as:

w(n) = 1.0

for

n = 0, 1, 2........N–1

where N is the length of the window. Applying a rectangular window 
is equivalent to not using any window. This is because the rectangular 
function just truncates the signal to within a finite time interval. 
The rectangular window has the highest amount of spectral leakage.
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The rectangular window for N = 32 is shown in Figure 3-5.

Figure 3-5.  Rectangular Window

The rectangular window is useful for analyzing transients that have a 
duration shorter than that of the window. It is also used in order tracking, 
where the effective sampling rate is proportional to the speed of the shaft in 
rotating machines. In this application, it detects the main mode of vibration 
of the machine and its harmonics.

Hanning
This window has a shape similar to that of half a cycle of a cosine wave. 
Its defining equation is

for

n = 0, 1, 2, .....N–1

w n( ) 0.5 0.5
2πn

N
----------cos–=
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A Hanning window with N = 32 is shown in Figure 3-6.

Figure 3-6.  Hanning Window

The Hanning window is useful for analyzing transients longer than the time 
duration of the window, and also for general purpose applications.

Hamming
This window is a modified version of the Hanning window. Its shape is also 
similar to that of a cosine wave. It can be defined as

for

n = 0, 1, 2, .....N–1

A Hamming window with N = 32 is shown in Figure 3-7.

Figure 3-7.  Hamming Window

w n( ) 0.54 0.46
2πn
N

----------cos–=
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You see that the Hanning and Hamming windows are somewhat similar. 
However, note that in the time domain, the Hamming window does not get 
as close to zero near the edges as does the Hanning window.

Kaiser-Bessel
This window is a “flexible” window whose shape the user can modify by 
adjusting the parameter beta. Thus, depending on your application, you can 
change the shape of the window to control the amount of spectral leakage. 
The Kaiser-Bessel window for different values of beta are shown in 
Figure 3-8.

Figure 3-8.  Kaiser-Bessel Window
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Note that for small values of beta, the shape is close to that of a rectangular 
window. Actually, for beta = 0 .0, you do get a rectangular window. As you 
increase beta, the window tapers off more to the sides.

This window is good for detecting two signals of almost the same 
frequency, but significantly different amplitudes.

Triangle
The shape of this window is that of a triangle. It is given by

for

n = 0, 1, 2, ..., n–1

A triangle window for N = 32 is shown in Figure 3-9.

Figure 3-9.  Triangle Window

Flat Top
This window has the best amplitude accuracy of all the window functions. 
The increased amplitude accuracy (± 0.02 dB for signals exactly between 
integral cycles) is at the expense of frequency selectivity. The Flattop 
window is most useful in accurately measuring the amplitude of single 
frequency components with little nearby spectral energy in the signal. 
The Flattop window can be defined as

w n( ) 1 2n N–
N

----------------–=

w n( ) a0 a1
2πn
N

----------cos a2
4πn
N

----------cos+ 
 –=
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where

a0 = 0.2810638602
a1 = 0.5208971735
a2 = 0.1980389663

A flattop window is shown in Figure 3-10.

Figure 3-10.  Flattop Window

Exponential
The shape of this window is that of a decaying exponential. It can be 
mathematically expressed as:

for

n = 0, 1, 2.......N – 1

where f is the final value. The initial value of the window is one, and it 
gradually decays towards zero. The final value of the exponential can be 
adjusted to between 0 and 1. The exponential window for N = 32, with the 
final value specified as 0.1, is shown in Figure 3-11.

w n[ ] e
n f( )ln
N 1–
--------------- 

 
f

n
N 1–
------------- 

 
= =
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Figure 3-11.  Exponential Window

This window is useful in analyzing transients (signals that exist only for a 
short time duration) whose duration is longer than the length of the window. 
This window can be applied to signals that decay exponentially, such as the 
response of structures with light damping that are excited by an impact (for 
example, a hammer).

Windows for Spectral Analysis Versus Windows 
for Coefficient Design

The window VIs in LabVIEW are designed for spectral analysis 
applications. In these applications, the input signal is windowed by passing 
it through one of the window VIs. The windowed signal is then passed to a 
DFT-based VI for frequency-domain display and analysis.

The window functions designed for spectral analysis must be DFT-even, 
a term defined by Fredric J. Harris in his paper On the Use of Windows 
for Harmonic Analysis with the Discrete Fourier Transform (Proceedings 
of the IEEE, Volume 66, No. 1, January 1978). A window function is 
DFT-even if its dot product (inner product) with integral cycles of sine 
sequences is identically zero. Another way to think of a DFT-even sequence 
is that its DFT has no imaginary component.

Figure 3-12 and Figure 3-13 illustrate the Hanning window and one cycle 
of a sine pattern for a sample size of 8. You can see that the DFT-even 
Hanning window is not symmetric about its midpoint and its last point is 
not equal to its first point, much like one complete cycle of a sine pattern.
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Figure 3-12.  Hanning Window for Sample Size 8

Figure 3-13.  Sine Pattern for Sample Size 8

Finally, the DFT considers input sequences to be periodic— that the 
signal being analyzed is actually a concatenation of the input signal. 
Figure 3-14 shows three such cycles of the previous sequences, 
demonstrating the smooth periodic extension of the DFT-even window and 
the single-cycle sine pattern.
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Figure 3-14.  Periodic Extension

Another type of window application is that of FIR filter design. This 
application requires windows that are symmetric about their midpoint. 
Refer to Part III, Measurement Analysis in LabVIEW, of the LabVIEW 
Measurements Manual for more information about filtering.

The following equations of the Hanning window function illustrate the 
difference between the DFT-even window function (spectral analysis) 
and the symmetrical window function (coefficient design).

Hanning window function for spectral analysis:

for 

i=0,1, 2, ..., N–1

Hanning window function for symmetrical coefficient design:

for

i=0, 1, 2, ..., N–1

w i[ ] 0.5 1
2πi
N 

 

cos–

=

w i[ ] 0.5 1
2πi

N 1– 
 


cos–

=
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The two equations above show that you can implement the symmetrical 
window functions by slightly modifying the use of the DFT-even window 
functions.

What Type of Window Do I Use?
Now that you have seen several of the many different types of windows that 
are available, you may ask, “What type of window should I use?” 
The answer depends on the type of signal you have and what you are 
looking for. Choosing the correct window requires some prior knowledge 
of the signal that you are analyzing. In summary, Table 3-1 shows the 
different types of signals and the appropriate windows that you can use 
with them.

In many cases, you may not have sufficient prior knowledge of the signal, 
so you need to experiment with different windows to find the best one.

Table 3-1.  Signals and Windows

Type of Signal Window

Transients whose duration is shorter than the length of the 
window

Rectangular

Transients whose duration is longer than the length of the 
window

Exponential, Hanning

General-purpose applications Hanning

Order tracking Rectangular

System analysis (frequency response measurements) Hanning (for random excitation), 
Rectangular (for pseudorandom 
excitation)

Separation of two tones with frequencies very close to each 
other, but with widely differing amplitudes

Kaiser-Bessel

Separation of two tones with frequencies very close to each 
other, but with almost equal amplitudes

Rectangular

Accurate single tone amplitude measurements Flat Top
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4
Curve Fitting

This chapter describes how to extract information from a data set to obtain 
a functional description. Refer to the examples in examples\
analysis\regressn.llb for examples of how to use the regression VIs, 
available on the Functions»Mathematics»Curve Fitting palette.

Introduction to Curve Fitting
Curve fitting analysis is a technique for extracting a set of curve parameters 
or coefficients from the data set to obtain a functional description of the 
data set. The algorithm that fits a curve to a particular data set is known as 
the Least Squares Method and is discussed in most introductory textbooks 
in probability and statistics. The error is defined as

e(a) = [f(x,a) – y(x)]2 (4-1)

where e(a) is the error, y(x) is the observed data set, f(x,a) is the functional 
description of the data set, and a is the set of curve coefficients which best 
describes the curve.

For example, let a = {a0, a1}. Then the functional description of a line is

f(x,a) = a0 + a1 x

The least squares algorithm finds a by solving the system

(4-2)

To solve this system, you set up and solve the Jacobian system generated 
by expanding Equation 4-2. After you solve the system for a, you can 
obtain an estimate of the observed data set for any value of x using the 
functional description f(x, a).

In LabVIEW, the curve fitting VIs automatically set up and solve the 
Jacobian system and return the set of coefficients that best describes your 
data set. You can concentrate on the functional description of your data and 
not worry about solving the system in Equation 4-2.

∂
∂a
------e a( ) 0=
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Two input sequences, Y Values and X Values, represent the data set y(x). 
A sample or point in the data set is

(xi, yi)

where xi is the ith element of the sequence X Values, and yi is the ith element 
of the sequence Y Values.

In general, for each predefined type of curve fit, there are two types of VIs, 
unless otherwise specified. One type returns only the coefficients, so that 
you can further manipulate the data. The other type returns the coefficients, 
the corresponding expected or fitted curve, and the mean squared error 
(MSE). Because it is a discrete system, the VI calculates the MSE, which 
is a relative measure of the residuals between the expected curve values and 
the actual observed values, using the formula

(4-3)

where f is the sequence representing the fitted values, y is the sequence 
representing the observed values, and n is the number of sample points 
observed.

The Functions»Mathematics»Curve Fitting palette offers both linear and 
nonlinear curve fitting algorithms. The different types of curve fitting in 
LabVIEW are outlined below:

• Linear Fit—fits experimental data to a straight line of the form 
y = mx + c

y[i]=a0+a1x[i]

• Exponential Fit—fits data to an exponential curve of the form 
y = ab

• General Polynomial Fit—fits data to a polynomial function of 
the form 

y = a + bx + cx^2 + ...
y[i] = a0+a1x[i]+a2x[i]2...

MSE
1
n
--- fi yi–( )2

i 0=

n 1–

∑=

y i[ ] a0
a1x i[ ]

=
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• General Linear Fit—fits data to 

y[i] = a0+a1f1(x[i])+a2f2(x[i]) + ...

where y[i] is a linear combination of the parameters a0, a1, a2.... The general 
linear fit also features selectable algorithms for better precision and 
accuracy. For example, y = a0 + a1sin(x) is a linear fit because y has a linear 
relationship with parameters a0 and a1. Polynomial fits are always linear 
fits for the same reason. But special algorithms can be designed for the 
polynomial fit to speed up the fitting processing and improve accuracy.

• Nonlinear Levenberg-Marquardt Fit—fits data to 

y[i] = f(x[i], a0, a1, a2...)

where a0, a1, a2... are the parameters. This method is the most general 
method and does not require y to have a linear relationship with a0, a1, a2.... 
It can be used to fit linear or nonlinear curves, but is almost always used to 
fit a nonlinear curve, because the general linear fit method is better suited 
to linear curve fitting. The Levenberg-Marquardt method does not always 
guarantee a correct result, so it is absolutely necessary to verify the results.

Applications of Curve Fitting
The practical applications of curve fitting are numerous. Some of them are 
listed below.

• Removal of measurement noise.

• Filling in missing data points (for example, if one or more 
measurements were missed or improperly recorded).

• Interpolation (estimation of data between data points; for example, 
if the time between measurements is not small enough).

• Extrapolation (estimation of data beyond data points; for example, 
if you are looking for data values before or after the measurements 
were taken).

• Differentiation of digital data. (For example, if you need to find the 
derivative of the data points. The discrete data can be modeled by a 
polynomial, and the resulting polynomial equation can be 
differentiated.)

• Integration of digital data (for example, to find the area under a curve 
when you have only the discrete points of the curve).

• To obtain the trajectory of an object based on discrete measurements 
of its velocity (first derivative) or acceleration (second derivative).
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General LS Linear Fit Theory
The General LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear 
“model.”

 i=0, 1, ... , n–1 (4-4)

where B is the set of Coefficients, n is the number of elements in Y Values 
and the number of rows of H, and k is the number of Coefficients.

 is your observation data, which is contained in H.

Equation 4-4 can also be written as Y = HB.

This is a multiple linear regression model, which uses several variables 
, to predict one variable yi. In contrast, the Linear Fit, 

Exponential Fit, and Polynomial Fit VIs are all based on a single predictor 
variable, which uses one variable to predict another variable.

In most cases, we have more observation data than coefficients. The 
equations in 4-4 may not have the solution. The fit problem becomes to find 
the coefficient B that minimizes the difference between the observed data, 
yi and the predicted value:

yi boxi0 … bk 1– xik 1–+ +=

bjxij  

j 0=

k 1–

∑=

xij

H

x00 x01… x0k 1–

x10 x11… x1k 1–

.

.

.

.

xn 10– xn 12– … xn 1k– 1–

=

xi0 xi1 … xik 1–, , ,

zi bjxij

j 0=

k 1–

∑=
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This VI uses the least chi-square plane method to obtain the coefficients 
in 4-4, that is, finding the solution, B, which minimizes the quantity:

 = |H0B–Y0|2 (4-5)

where

, , i=0, 1, ... , n–1; j=0, 1, ... , k–1

In this equation,  is the Standard Deviation. If the measurement errors 
are independent and normally distributed with constant standard deviation 

, the preceding equation is also the least square estimation.

There are different ways to minimize . One way to minimize  is to set 
the partial derivatives of  to zero with respect to b0, b1, ... , bk–1.

The preceding equations can be derived to:

(4-6)

Where  is the transpose of H0.

χ2 yi z– i
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σi
-----------------------------
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 
 
 

2
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xij
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-----= yoi
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σi σ=
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∂χ2
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∂b1
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.

.

.

.

∂χ2
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-------------- 0=
















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The equations in 4-6 are also called normal equations of the least-square 
problems. You can solve them using LU or Cholesky factorization 
algorithms, but the solution from the normal equations is susceptible to 
roundoff error.

An alternative, and preferred way to minimize  is to find the least-square 
solution of equations 

H0B=Y0

You can use QR or SVD factorization to find the solution, B. For QR 
factorization, you can choose Householder, Givens, and Givens2 (also 
called fast Givens).

Different algorithms can give you different precision, and in some cases, 
if one algorithm cannot solve the equation, perhaps another algorithm can. 
You can try different algorithms to find the best one based on your 
observation data.

The Covariance matrix C is computed as

The Best Fit Z is given by

The mse is obtained using the following formula:

χ2

C H0
TH0( ) 1–

=

zi bjxij

j 0=

k 1–

∑=

mse
1
n
---

yi z– i

σi
------------- 

 
2

i 0=

n 1–

∑=
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The polynomial fit that has a single predictor variable can be thought of as a 
special case of multiple regression. If the observation data sets are  
where i = 0, 1, …, n–1, the model for polynomial fit is

(4-7)

i = 0, 1, 2, ... , n – 1

Comparing equations 4-4 and 4-7 shows that . In other words, 

,

In this case, you can build H as follows:

Instead of using , you can also choose another function formula 
to fit the data sets . In general, you can select . Here, 

 is the function model that you choose to fit your observation data. 
In polynomial fit, .

xi yi,{ }

yi bjxi
j

j 0=

k 1–

∑= b0 b1xi b2xi
2 … bk 1– xi

k 1–+ + + +=

xij xj
i=

xi0 xi
0=

1= xi1 xi= xi2, x2
i … xik 1–, xk 1–

i= =

H

1 x0 x2
0 … xk 1–

0

1 x1 x2
1 … xk 1–

1

.

.

.

.

1 xn 1– x2
n 1– … xk 1–

n 1– 
 
 
 
 
 
 
 
 
 
 
 
 

=

xij xi
j=

xi,yi{ } xij fj xi( )=
fj xi( )

fj xi( ) xj
i=
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In general, you can build H as follows:

Your fit model is:

How to Use the General LS Linear Fit VI
The Linear Fit VI calculates the coefficients a0 and a1 that best fits the 
experimental data (x[i] and y[i]) to a straight line model given by 

y[i] = a0 + a1x[i]

Here, y[i] is a linear combination of the coefficients a0 and a1. You can 
extend this concept further so that the multiplier for a1 is some function 
of x. For example:

y[i] = a0 + a1sin(ωx[i])

or

y[i] = a0 + a1(x[i])2

or

y[i] = a0 + a1cos(ωx[i]2)

where ω is the angular frequency. In each of these cases, y[i] is a linear 
combination of the coefficients a0 and a1. This is the basic idea behind the 
General LS Linear Fit VI, where the y[i] can be linear combinations of 
several coefficients, each of which may be multiplied by some function of 
the x[i]. Therefore, you can use it to calculate coefficients of the functional 

H

f0 x0( ) f1 x0( ) f2 x0( ) … fk 1– x0( )

f0 x1( ) f1 x1( ) f2 x1( ) … fk 1– x1( )

.

.

.

.

f0 xn 1–( ) f1 xn 1–( ) f2 xn 1–( ) … fk 1– xn 1–( )
 
 
 
 
 
 
 
 
 
 
 
 
 

=

yi b0f0 x( ) b1f1 x( ) … bk 1– fk 1– x( )+ + +=
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models that can be represented as linear combinations of the coefficients, 
such as

y = a0 + a1sin(ωx)

or

y = a0 + a1x2 + a2cos(ωx2)

y = a0 + a1(3sin(ωx)) + a2x3 + + ...

In each case, note that y is a linear function of the coefficients (although it 
may be a nonlinear function of x).

You will now see how to use the General LS Linear Fit VI to find the best 
linear fit to a set of data points. The inputs and outputs of the General LS 
Linear Fit VI are shown in Figure 4-1.

Figure 4-1.  General LS Linear Fit VI

The data that you collect (x[i] and y[i]) is to be given to the inputs H and 
Y Values. The Covariance output is the matrix of covariances between the 
coefficients ak, where cij is the covariance between ai and aj, and ckk is the 
variance of ak. At this stage, you need not be concerned about the inputs 
Standard Deviation, covariance selector, and algorithm. For now, you 
will just use their default values. Refer to LabVIEW Help, available by 
selecting Help»Contents and Index, for more information about these 
inputs.

The matrix H is known as the Observation Matrix and will be explained 
in more detail later. Y Values is the set of observed data points y[i]. 
For example, suppose you have collected samples (Y Values) from a 
transducer and you want to solve for the coefficients of the model:

a3

x
-----

y ao a1 ωx( )sin a2 ωx( )cos a3x
2+ + +=
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You see that the multiplier for each aj is a different function. For example, 
a0 is multiplied by 1, a1 is multiplied by sin(ωx), a2 is multiplied by 
cos(ωx), and so on. To build H, you set each column of H to the 
independent functions evaluated at each x value, x[i]. Assuming there are 
100 x values, H would be:

If you have N data points and k coefficients (a0, a1, ....ak–1) for which to 
solve, H will be an N-by-k matrix with N rows and k columns. Thus, the 
number of rows of H is equal to the number of elements in Y Values, 
whereas the number of columns of H is equal to the number of coefficients 
for which you are trying to solve.

In practice, H is not available and must be built. Given that you have 
the N independent X Values and observed Y Values, use the General LS 
Linear Fit VI to build H.

Nonlinear Lev-Mar Fit Theory
The Nonlinear Lev-Mar Fit VI, available on the Functions»Mathematics»
Curve Fitting palette, determines the set of coefficients that minimize the 
chi-square quantity:

(4-8)

In this equation, (xi, yi) are the input data points, and f(xi;a1...aM) = f(X, A) 
is the nonlinear function where a1...aM are coefficients. If the measurement 
errors are independent and normally distributed with constant, standard 
deviation , this is also the least-square estimation.

You must specify the nonlinear function f = f(X, A) in the Formula Node on 
the block diagram of the Target Fnc & Deriv NonLin VI, which is a subVI 
of the Nonlinear Lev-Mar Fit VI.

H

1 ωx0( )sin ωx0( )cos x0
2

1 ωx1( )sin ωx1( )cos x1
2

1 ωx2( )sin ωx2( )cos x2
2

… … … …

1 ωx99( )sin ωx99( )cos x99
2

=

χ2 yi f xi a1…aM;( )–

σi
----------------------------------------- 

  2

i 0=

N 1–

∑=

σi σ=
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This VI provides two ways to calculate the Jacobian (partial derivatives 
with respect to the coefficients) needed in the algorithm. These two 
methods follow:

• Numerical calculation—Uses a numerical approximation to compute 
the Jacobian.

• Formula calculation—Uses a formula to compute the Jacobian. 
You need to specify the Jacobian function  in the Formula Node 
on the block diagram of the Target Fnc & Deriv NonLin VI, as well as 
the nonlinear function f = f(X, A). This is a more efficient computation 
than the numerical calculation, because it does not require a numerical 
approximation to the Jacobian.

The input arrays X and Y define the set of input data points. The VI 
assumes that you have prior knowledge of the nonlinear relationship 
between the x and y coordinates. That is, f = f(X, A), where the set of 
coefficients, A, is determined by the Levenberg-Marquardt algorithm.

Using this function successfully sometimes depends on how close your 
initial guess coefficients are to the solution. Therefore, it is always worth 
taking effort and time to obtain good initial guess coefficients to the 
solution from any available resources before using the function.

Using the Nonlinear Lev-Mar Fit VI
So far, you have seen VIs that are used when there is a linear relationship 
between y and the coefficients a0, a1, a2, .... However, when a nonlinear 
relationship exists, you can use the Nonlinear Lev-Mar Fit VI to determine 
the coefficients. This VI uses the Levenberg-Marquardt method, which is 
very robust, to find the coefficients A = {a0, a1, a2, ..., ak} of the nonlinear 
relationship between A and y[i]. The VI assumes that you have prior 
knowledge of the nonlinear relationship between the x and y coordinates.

As a preliminary step, you need to specify the nonlinear function in 
the Formula Node on the block diagram of one of the subVIs of the 
Nonlinear Lev-Mar Fit VI. This particular subVI is the Target Fnc and 
Deriv NonLin VI.

When using the Nonlinear Lev-Mar Fit VI, you also must specify the 
nonlinear function in the Formula Node on the block diagram of the 
Target Fnc and Deriv NonLin VI.

∂f ∂A⁄
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The connections to the Nonlinear Lev-Mar Fit VI are shown below:

Figure 4-2.  Nonlinear Lev-Mar Fit VI

X and Y are the input data points x[i] and y[i]. 

Initial Guess Coefficients is your initial guess as to what the coefficient 
values are. The coefficients are those used in the formula that you entered 
in the Formula Node of the Target Fnc and Deriv NonLin VI. Using the 
Nonlinear Lev-Mar Fit VI successfully sometimes depends on how close 
your initial guess coefficients are to the actual solution. Therefore, it is 
always worth taking the time and effort to obtain a good initial guess to the 
solution from any available resource.

For now, you can leave the other inputs to their default values. Refer to 
LabVIEW Help, available by selecting Help»Contents and Index, for 
more information about these inputs.

Best Fit Coefficients: the values of the coefficients (a0, a1, ...) that best fit 
the model of the experimental data.
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5
Linear Algebra

This chapter explains how to use the linear algebra VIs to perform matrix 
computation and analysis. Refer to the examples in examples\
analysis\linxmpl.llb for examples of how to use the linear algebra 
VIs, available on the Functions»Mathematics»Linear Algebra palette.

Linear Systems and Matrix Analysis
Systems of linear algebraic equations arise in many applications that 
involve scientific computations such as signal processing, computational 
fluid dynamics, and others. Such systems may occur naturally or may be 
the result of approximating differential equations by algebraic equations.

Types of Matrices
Whatever the application, it is always necessary to find an accurate solution 
for the system of equations in a very efficient way. In matrix-vector 
notation, such a system of linear algebraic equations has the form

where A is an  matrix, b is a given vector consisting of n elements, and 
x is the unknown solution vector to be determined. A matrix is represented 
by a 2D array of elements. These elements may be real numbers, complex 
numbers, functions, or operators. The matrix A shown below is an array of 
m rows and n columns with  elements.

Here, ai,j denotes the (i,j)th element located in the ith row and the jth column. 
In general, such a matrix is called a rectangular matrix. When , so 
that the number of rows is equal to the number of columns, it is called a 
square matrix. An  matrix (m rows and one column) is called a 

Ax b=

n n×

m n×

A

a0 0, a0 1, … a0 n 1–,

a1 0, a1 1, … a1 n 1–,

… … … …
am 1– 0, am 1– 1, … am 1– n 1–,

=

m n=

m 1×
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column vector. A row vector is a  matrix (1 row and n columns). If all 
the elements other than the diagonal elements are zero (that is, ai,j = 0, 

), such a matrix is called a diagonal matrix. For example,

is a diagonal matrix. A diagonal matrix with all the diagonal elements equal 
to one is called an identity matrix, also known as unit matrix. If all the 
elements below the main diagonal are zero, then the matrix is known as an 
upper triangular matrix. On the other hand, if all the elements above the 
main diagonal are zero, then the matrix is known as a lower triangular 
matrix. When all the elements are real numbers, the matrix is referred to as 
a real matrix. On the other hand, when at least one of the elements of the 
matrix is a complex number, the matrix is referred to as a complex matrix.

Determinant of a Matrix
One of the most important attributes of a matrix is its determinant. In the 
simplest case, the determinant of a 2 x 2 matrix

 

is given by . The determinant of a square matrix is formed by 
taking the determinant of its elements. For example, if

then the determinant of A, denoted by , is

 

= =

=–196

1 n×

i j≠

A
4 0 0

0 5 0

0 0 9

=

A a b

c d
=

ad bc–

A
2 5 3

6 1 7

1 6 9

=

A

A 2 5 3

6 1 7

1 6 9

2 1 7

6 9
5 6 7

1 9
– 3 6 1

1 6
+

 
 
 

=

2 33–( ) 5 47( )– 3 35( )+
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The determinant tells many important properties of the matrix. For 
example, if the determinant of the matrix is zero, then the matrix is 
singular. In other words, the above matrix (with nonzero determinant) is 
nonsingular. Refer to the Matrix Inverse and Solving Systems of Linear 
Equations section for more information about singularity and the solution 
of linear equations and matrix inverses.

Transpose of a Matrix
The transpose of a real matrix is formed by interchanging its rows and 
columns. If the matrix B represents the transpose of A, denoted by AT, 
then bj,i=ai,j. For the matrix A defined above,

In case of complex matrices, we define complex conjugate transposition. 
If the matrix D represents the complex conjugate transpose (if a = x + iy, 
then complex conjugate a* = x - iy) of a complex matrix C, then

That is, the matrix D is obtained by replacing every element in C by its 
complex conjugate and then interchanging the rows and columns of the 
resulting matrix.

A real matrix is called a symmetric matrix if the transpose of the matrix is 
equal to the matrix itself. The example matrix A is not a symmetric matrix. 
If a complex matrix C satisfies the relation C = CH, then C is called a 
Hermitian matrix.

Linear Independence
A set of vectors x1, x2, ...., xn is said to be linearly dependent if and only if 
there exist scalars α1, α2, ..., αn, not all zero, such that

 

In simpler terms, if one of the vectors can be written in terms of a linear 
combination of the others, then the vectors are said to be linearly 
dependent.

B AT
2 6 1

5 1 6

3 7 9

==

D CH di j, c∗ j i,=⇒=

α1x1 α2x2 … αnxn+ + + 0=
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If the only set of αi for which the above equation holds is , 
, ..., , then the set of vectors x1, x2, ...., xn is said to be 

linearly independent. So, in this case, none of the vectors can be written in 
terms of a linear combination of the others. Given any set of vectors, the 
above equation always holds for , , ..., . Therefore, 
to show the linear independence of the set, you must show that , 

, ...,  is the only set of αi for which the above equation 
holds.

For example, first consider the vectors

Notice that  and  are the only values, for which the relation 
 holds true. Hence, these two vectors are linearly 

independent of each other. Let us now look at vectors

Notice that, if  and , then . Therefore, 
these two vectors are linearly dependent on each other. You must 
completely understand this definition of linear independence of vectors to 
fully appreciate the concept of the rank of the matrix as discussed next.

Matrix Rank
The rank of a matrix A, denoted by ρ(A), is the maximum number of 
linearly independent columns in A. If you look at the example matrix A, 
you will find that all the columns of A are linearly independent of each 
other. That is, none of the columns can be obtained by forming a linear 
combination of the other columns. Hence, the rank of the matrix is 3. 
Consider one more example matrix, B, where

This matrix has only two linearly independent columns, because the third 
column of B is linearly dependent on the first two columns. Hence, the rank 
of this matrix is 2. It can be shown that the number of linearly independent 

α1 0=
α2 0= αn 0=

α1 0= α2 0= αn 0=
α1 0=

α2 0= αn 0=

x 1

2
= y 3

4
=

α1 0= α2 0=
α1x α2y+ 0=

x 1

2
= y 2

4
=

α1 2–= α2 1= α1x α2y+ 0=

B
0 1 1

1 2 3

2 0 2

=
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columns of a matrix is equal to the number of independent rows. So, the 
rank can never be greater than the smaller dimension of the matrix. 
Consequently, if A is an  matrix, then

 

where min denotes the minimum of the two numbers. In matrix theory, 
the rank of a square matrix pertains to the highest order nonsingular matrix 
that can be formed from it. Remember from the earlier discussion that a 
matrix is singular if its determinant is zero. So, the rank pertains to the 
highest order matrix that you can obtain whose determinant is not zero. 
For example, consider a 4×4 matrix

For this matrix, , but

Hence, the rank of B is 3. A square matrix has full rank if and only if its 
determinant is different from zero. Matrix B is not a full-rank matrix.

“Magnitude” (Norms) of Matrices
You must develop a notion of the “magnitude” of vectors and matrices to 
measure errors and sensitivity in solving a linear system of equations. 
As an example, these linear systems can be obtained from applications in 
control systems and computational fluid dynamics. In two dimensions, 
for example, you cannot compare two vectors  and 

, because you might have  but . A vector 
norm is a way to assign a scalar quantity to these vectors so that they can 
be compared with each other. It is similar to the concept of magnitude, 
modulus, or absolute value for scalar numbers.

There are ways to compute the norm of a matrix. These include the 2-norm 
(Euclidean norm), the 1-norm, the Frobenius norm (F-norm), and the 
Infinity norm (inf-norm). Each norm has its own physical interpretation. 

n m×

ρ A( ) min n m,( )≤

B

1 2 3 4

0 1 1– 0

1 0 1 2

1 1 0 2

=

det B( ) 0=

1 2 3

0 1 1–

1 0 1

1–=

x x1 x2=
y y1 y2= x1 y1> x2 y2<
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Consider a unit ball containing the origin. The Euclidean norm of a vector 
is simply the factor by which the ball must be expanded or shrunk in order 
to encompass the given vector exactly. This is shown in Figure 5-1.

Figure 5-1.  Euclidean Norm of a Vector

Figure 1a shows a unit ball of radius = 1 unit. Figure 1b shows a vector

of length  =  = . As shown in Figure 1c, the unit ball must 
be expanded by a factor of  before it can exactly encompass the given 
vector. Hence, the Euclidean norm of the vector is .

The norm of a matrix is defined in terms of an underlying vector norm. It is 
the maximum relative stretching that the matrix does to any vector. With the 
vector 2-norm, the unit ball expands by a factor equal to the norm. On the 
other hand, with the matrix 2-norm, the unit ball may become an ellipsoidal 
(ellipse in 3-D), with some axes longer than others. The longest axis 
determines the norm of the matrix.

Some matrix norms are much easier to compute than others. The 1-norm 
is obtained by finding the sum of the absolute value of all the elements in 
each column of the matrix. The largest of these sums is called the 1-norm. 
In mathematical terms, the 1-norm is simply the maximum absolute 
column sum of the matrix.

1 unit ball of radius = 1 unit 2 vector of length

 =  = 

3 unit ball expanded by a 

factor of 

1

1

2

2

2

2

2 22 2

1 2 3

22 22+ 8 2 2 2 2

22 22+ 8 2 2
2 2

2 2
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For example,

then

The inf-norm of a matrix is the maximum absolute row sum of the matrix

In this case, you add the magnitudes of all elements in each row of the 
matrix. The maximum value that you get is called the inf-norm. For the 
above example matrix, 

The 2-norm is the most difficult to compute because it is given by the 
largest singular value of the matrix. Refer to the Matrix Factorization 
section for more information about singular values.

Determining Singularity (Condition Number)
Whereas the norm of the matrix provides a way to measure the magnitude 
of the matrix, the condition number of a matrix is a measure of how close 
the matrix is to being singular. The condition number of a square 
nonsingular matrix is defined as

 

where p can be one of the four norm types discussed above. For example, 
to find the condition number of a matrix A, you can find the 2-norm of A, 
the 2-norm of the inverse of the matrix A, denoted by A–1, and then multiply 

A 1 maxj ai j,

i 0=

n 1–

∑=

A 1 3

2 4
=

A 1 max 3 7,( ) 7= =

A ∞ maxi ai j,

j 0=

n 1–

∑=

A ∞ max 4 6,( ) 6= =

cond A( ) A p A 1–
p⋅=
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them together (the inverse of a square matrix A is a square matrix B such 
that AB=I, where I is the identity matrix). As mentioned earlier, the 2-norm 
is difficult to calculate on paper. You can use the Matrix Norm VI to 
compute the 2-norm. For example,

The condition number can vary between 1 and infinity. A matrix with a 
large condition number is nearly singular, while a matrix with a condition 
number close to 1 is far from being singular. The matrix A above is 
nonsingular. However, consider the matrix

The condition number of this matrix is 47168, and hence the matrix is close 
to being singular. As you might recall, a matrix is singular if its determinant 
is equal to zero. However, the determinant is not a good indicator for 
assessing how close a matrix is to being singular. For the matrix B above, 
the determinant (0.0299) is nonzero; however, the large condition number 
indicates that the matrix is close to being singular. Remember that the 
condition number of a matrix is always greater than or equal to one; the 
latter being true for identity and permutation matrices (a permutation 
matrix is an identity matrix with some rows and columns exchanged). 
The condition number is a very useful quantity in assessing the accuracy 
of solutions to linear systems.

In this section, you have become familiar with some basic notation and 
fundamental matrix concepts such as determinant of a matrix and its rank.

A 1 2

3 4
A 1–, 2– 1

1.5 0.5–
A 2, 5.4650 A 1–

2,

2.7325 cond A( ), 14.9331

= = =

= =

B 1 0.99

1.99 2
=
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Basic Matrix Operations and 
Eigenvalues-Eigenvector Problems

In this section, consider some very basic matrix operations. Two matrices, 
A and B, are said to be equal if they have the same number of rows and 
columns and their corresponding elements are all equal. Multiplication of 
a matrix A by a scalar  is equal to multiplication of all its elements by the 
scalar. That is,

 

For example,

Two (or more) matrices can be added or subtracted if and only if they 
have the same number of rows and columns. If both matrices A and B have 
m rows and n columns, then their sum C is an m-by-n matrix defined as 

, where . For example,

 

For multiplication of two matrices, the number of columns of the first 
matrix must be equal to the number of rows of the second matrix. If matrix 
A has m rows and n columns and matrix B has n rows and p columns, then 
their product C is an m-by-p matrix defined as , where

 

For example,

α

C αA ci j,⇒ α ai j,= =

2 1 2

3 4

2 4

6 8
=

C A B±= ci j, ai j, bi j,±=

1 2

3 4

2 4

5 1
+ 3 6

8 5
=

C AB=

ci j, ai k, bk j,

k 0=

n 1–

∑=

1 2

3 4

2 4

5 1
× 12 6

26 16
=
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So, you multiply the elements of the first row of A by the corresponding 
elements of the first column of B and add all the results to get the elements 
in the first row and first column of C. Similarly, to calculate the element in 
the ith row and the jth column of C, multiply the elements in the ith row of A 
by the corresponding elements in the jth column of C, and then add them all. 
This is shown pictorially in Figure 5-2.

Figure 5-2.  Matrix Multiplication

Matrix multiplication, in general, is not commutative, that is, . 
Also, remember that multiplication of a matrix by an identity matrix results 
in the original matrix.

Dot Product and Outer Product
If X represents a vector and Y represents another vector, then the dot 
product of these two vectors is obtained by multiplying the corresponding 
elements of each vector and adding the results. This is denoted by

where n is the number of elements in X and Y. Note that both vectors must 
have the same number of elements. The dot product is a scalar quantity, and 
has many practical applications.

Rn • C1 Rn • Cm

R1 • C1 R1 • Cm

R1

Rn

X
CmC1

=
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X Y• xiyi
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For example, consider the vectors  and  in a 
two-dimensional rectangular coordinate system, illustrated in Figure 5-3.

Figure 5-3.  Vectors a and b

Then the dot product of these two vectors is given by

The angle α between these two vectors is given by

where |a| denotes the magnitude of a.

As a second application, consider a body on which a constant force a acts, 
as shown in Figure 5-4. The work W done by a in displacing the body is 
defined as the product of |d| and the component of a in the direction of 
displacement d. That is,

Figure 5-4.  Force Vector

a 2i 4j+= b 2i j+=

a=2i+4j

α=36.86°

b=2i+j

d 2

4

2

1
• 2 2×( ) 4 1×( )+ 8= = =

α inv
a b•
a b
------------ 

 cos inv
8

10
------ 

 cos 36.86o= = =

W a d αcos a d•= =

d

Force a

Body
α
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On the other hand, the outer product of these two vectors is a matrix. 
The (i,j)th element of this matrix is obtained using the formula

For example,

Eigenvalues and Eigenvectors
To understand eigenvalues and eigenvectors, start with the classical 
definition. Given an  matrix A, the problem is to find a scalar λ and a 
nonzero vector x such that

 

Such a scalar λ is called an eigenvalue, and x is a corresponding 
eigenvector.

Calculating the eigenvalues and eigenvectors are fundamental principles of 
linear algebra and allow you to solve many problems such as systems of 
differential equations when you understand what they represent. Consider 
an eigenvector x of a matrix A as a nonzero vector that does not rotate when 
x is multiplied by A (except perhaps to point in precisely the opposite 
direction). x may change length or reverse its direction, but it will not turn 
sideways. In other words, there is some scalar constant λ such that the 
above equation holds true. The value λ is an eigenvalue of A. 

Consider the following example. One of the eigenvectors of the matrix A, 
where

is

ai j, xi yj×=

1

2

3

4
× 3 4

6 8
=

n n×

Ax λx=

A 2 3

3 5
=

x 0.62

1.00
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Multiplying the matrix A and the vector x simply causes the vector x 
to be expanded by a factor of 6.85. Hence, the value 6.85 is one of the 
eigenvalues of the vector x. For any constant , the vector  is also an 
eigenvector with eigenvalue , because

 

In other words, an eigenvector of a matrix determines a direction in 
which the matrix expands or shrinks any vector lying in that direction by 
a scalar multiple, and the expansion or contraction factor is given by the 
corresponding eigenvalue. A generalized eigenvalue problem is to find a 
scalar  and a nonzero vector x such that

where B is another  matrix.

The following are some important properties of eigenvalues and 
eigenvectors:

• The eigenvalues of a matrix are not necessarily all distinct. In other 
words, a matrix can have multiple eigenvalues. 

• All the eigenvalues of a real matrix need not be real. However, complex 
eigenvalues of a real matrix must occur in complex conjugate pairs. 

• The eigenvalues of a diagonal matrix are its diagonal entries, and the 
eigenvectors are the corresponding columns of an identity matrix of 
the same dimension. 

• A real symmetric matrix always has real eigenvalues and eigenvectors.

• As discussed earlier, eigenvectors can be scaled arbitrarily.

There are many practical applications in the field of science and 
engineering for an eigenvalue problem. For example, the stability of a 
structure and its natural modes and frequencies of vibration are determined 
by the eigenvalues and eigenvectors of an appropriate matrix. Eigenvalues 
are also very useful in analyzing numerical methods, such as convergence 
analysis of iterative methods for solving systems of algebraic equations, 
and the stability analysis of methods for solving systems of differential 
equations.

The EigenValues and Vectors VI is shown in Figure 5-5. The Input Matrix 
is an N-by-N real square matrix. Matrix type determines the type of the 
input matrix. Matrix type could be 0, indicating a general matrix, or 1, 
indicating a symmetric matrix. A symmetric matrix always has real 

α α x
λ

A αx( ) αAx λα x==

λ

Ax λBx=

n n×
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eigenvalues and eigenvectors. A general matrix has no special property 
such as symmetry or triangular structure.

Figure 5-5.  EigenValues and Vectors VI

Output option determines what needs to be computed. Output option = 0 
indicates that only the eigenvalues need to be computed. Output option = 1 
indicates that both the eigenvalues and the eigenvectors should be 
computed. It is computationally very expensive to compute both the 
eigenvalues and the eigenvectors. So, it is important that you use the output 
option control in the EigenValues and Vectors VI very carefully. Depending 
on your particular application, you might just want to compute the 
eigenvalues or both the eigenvalues and the eigenvectors. Also, a 
symmetric matrix needs less computation than an nonsymmetric matrix. 
So, choose the matrix type control carefully. 

Matrix Inverse and Solving Systems of Linear Equations
The inverse, denoted by , of a square matrix A is a square matrix 
such that

where I is the identity matrix. The inverse of a matrix exists if and only 
if the determinant of the matrix is not zero, (that is, it is nonsingular). 
In general, you can find the inverse of only a square matrix. You can, 
however, compute the pseudoinverse of a rectangular matrix. Refer to the 
Matrix Factorization section later in this chapter for more information 
about the pseudoinverse of a rectangular matrix.

Solutions of Systems of Linear Equations
In matrix-vector notation, a system of linear equations has the form 

, where A is a  matrix and b is a given n-vector. The aim is to 
determine x, the unknown solution n-vector. There are two important 
questions to be asked about the existence of such a solution. Does such a 
solution exist, and if it does is it unique? The answer to both of these 
questions lies in determining the singularity or nonsingularity of the 
matrix A.

A 1–

A 1– A AA 1– I= =

Ax b= n n×
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As discussed earlier, a matrix is said to be singular if it has any one of the 
following equivalent properties:

• The inverse of the matrix does not exist.

• The determinant of the matrix is zero.

• The rows (or columns) of A are linearly dependent.

•  for some vector .

Otherwise, the matrix is nonsingular. If the matrix is nonsingular, its inverse 
 exists, and the system  has a unique solution:  

regardless of the value for b. On the other hand, if the matrix is singular, 
then the number of solutions is determined by the right-hand-side vector b. 
If A is singular and , then  for any scalar , where 
the vector z is as in the last definition above. Thus, if a singular system has 
a solution, then the solution cannot be unique.

It is not a good idea to explicitly compute the inverse of a matrix, because 
such a computation is prone to numerical inaccuracies. Therefore, it is not 
a good strategy to solve a linear system of equations by multiplying the 
inverse of the matrix A by the known right-hand-side vector. The general 
strategy to solve such a system of equations is to transform the original 
system into one whose solution is the same as that of the original system, 
but is easier to compute. One way to do so is to use the Gaussian 
Elimination technique. The three basic steps involved in the Gaussian 
Elimination technique are as follows. First, express the matrix A as a 
product

where L is a unit lower triangular matrix and U is an upper triangular 
matrix. Such a factorization is known as LU factorization. Given this, the 
linear system  can be expressed as . Such a system can 
then be solved by first solving the lower triangular system  for y by 
forward-substitution. This is the second step in the Gaussian Elimination 
technique. For example, if

 

then

Az 0= z 0≠
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The first element of y can be easily determined due to the lower triangular 
nature of the matrix L. Then you can use this value to compute the 
remaining elements of the unknown vector sequentially. Hence, the name 
forward-substitution. The final step involves solving the upper triangular 
system  by back-substitution. For example, if

then

In this case, this last element of x can be easily determined and then 
used to determine the other elements sequentially. Hence, the name 
back-substitution. So far, this chapter has discussed the case of square 
matrices. Because a nonsquare matrix is necessarily singular, the system 
of equations must have either no solution or a nonunique solution. In such 
a situation, you usually find a unique solution x that satisfies the linear 
system in an approximate sense.

The Functions»Mathematics»Linear Algebra palette provides VIs for 
computing the inverse of a matrix, computing LU decomposition of a 
matrix, and solving a system of linear equations. It is important to identify 
the input matrix properly, as it helps avoid unnecessary computations, 
which in turn helps to minimize numerical inaccuracies. The four possible 
matrix types are general matrices, positive definite matrices, and lower and 
upper triangular matrices. A real matrix is positive definite if and only if it 
is symmetric and the quadratic form for all nonzero vectors is X. If the input 
matrix is square, but does not have a full rank (a rank-deficient matrix), then 
the VI finds the least square solution x. The least square solution is the one 
which minimizes the norm of . The same holds true also for 
nonsquare matrices.

Ux y=

U a b

0 c
= x m

n
= y p

q
=

n
q
c
--- m, p bn–( )

a
--------------------= =

Ax b–
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Matrix Factorization
The previous section discussed how a linear system of equations can be 
transformed into a system whose solution is simpler to compute. The basic 
idea was to factorize the input matrix into the multiplication of several, 
simpler matrices. You looked at one such technique, the LU decomposition 
technique, in which you factorized the input matrix as a product of upper 
and lower triangular matrices. Other commonly used factorization methods 
are Cholesky, QR, and the Singular Value Decomposition (SVD). You can 
use these factorization methods to solve many matrix problems, such as 
solving linear system of equations, inverting a matrix, and finding the 
determinant of a matrix.

If the input matrix A is symmetric and positive definite, then an 
LU factorization can be computed such that , where U is an 
upper triangular matrix. This is called Cholesky factorization. This 
method requires only about half the work and half the storage compared 
to LU factorization of a general matrix by Gaussian elimination. It is easy 
to determine if a matrix is positive definite by using the Test Positive 
Definite VI.

A matrix Q is orthogonal if its columns are orthonormal. That is, 
if , the identity matrix. QR factorization technique factors a 
matrix as the product of an orthogonal matrix Q and an upper triangular 
matrix R. That is, . QR factorization is useful for both square 
and rectangular matrices. A number of algorithms are possible for 
QR factorization, such as the Householder transformation, the 
Givens transformation and the Fast Givens Transformation.

The Singular Value Decomposition (SVD) method decomposes a matrix 
into the product of three matrices: . U and V are orthogonal 
matrices. S is a diagonal matrix whose diagonal values are called the 
singular values of A. The singular values of A are the nonnegative square 
roots of the eigenvalues of , and the columns of U and V, which are 
called left and right singular vectors, are orthonormal eigenvectors of  
and , respectively. SVD is useful for solving analysis problems such 
as computing the rank, norm, condition number, and pseudoinverse of 
matrices. The following section discusses this last application.

A UTU=

QTQ I=

A QR=

A USVT=

ATA
AAT

ATA
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Pseudoinverse
The pseudoinverse of a scalar  is defined as  if , and zero 
otherwise. In case of scalars, pseudoinverse is the same as the inverse. 
You can now define the pseudoinverse of a diagonal matrix by transposing 
the matrix and then taking the scalar pseudoinverse of each entry. Then the 
pseudoinverse of a general real  matrix A, denoted by , is given by

Note that the pseudoinverse exists regardless of whether the matrix 
is square or rectangular. If A is square and nonsingular, then the 
pseudoinverse is the same as the usual matrix inverse. The 
Functions»Mathematics»Linear Algebra palette includes a VI for 
computing the pseudoinverse of real and complex matrices.

Summary

• A matrix can be considered as a two-dimensional array of m rows and 
n columns. Determinant, rank, and condition number are some 
important attributes of a matrix.

• The condition number of a matrix affects the accuracy of the final 
solution.

• The determinant of a diagonal matrix, an upper triangular matrix, or a 
lower triangular matrix is the product of its diagonal elements.

• Two matrices can be multiplied only if the number of columns of the 
first matrix is equal to the number of rows in the second matrix.

• An eigenvector of a matrix is a nonzero vector that does not rotate 
when the matrix is applied to it. Similar matrices have the same 
eigenvalues.

• The existence of a unique solution for a system of equations depends 
on whether the matrix is singular or nonsingular.

σ 1 σ⁄ σ 0≠

m n× A†

A† VS†UT=
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6
Probability and Statistics

This chapter explains some fundamental concepts on probability and 
statistics and shows how to use these concepts in solving real-world 
problems. Refer to the examples in examples\analysis\
statxmpl.llb for examples of how to use the probability and statistics 
VIs, available on the Functions»Mathematics»Probability and Statistics 
palette.

Probability and Statistics
Facts and figures form an important part of life. Statements such as “There 
is a 60% chance of thunderstorms,” “Joe was ranked among the top five in 
the class,” “Michael Jordan has an average of 30 points a game this 
season,” and so on are common. These statements give a lot of information, 
but we seldom think how this information was obtained. Was there a lot of 
data involved in obtaining this information? If there was, how did someone 
condense it to single numbers such as 60% chance and average of 30 points 
or terms such as top five. The answer to all these questions brings up the 
very interesting field of statistics.

First, consider how information (data) is generated. Consider the 1997 
basketball season. Michael Jordan of the Chicago Bulls played 51 games, 
scoring a total of 1568 points. This includes the 45 points he posted, 
including the game-winning buzzer three-pointer, in a 103-100 victory over 
the Charlotte Hornets; his 36 points in an 88-84 victory over the Portland 
Trail Blazers; a season high of 51 points in an 88-87 victory over the New 
York Nicks; 45 points, 7 rebounds, 5 assists and 3 steals in a 102-97 victory 
over the Cleveland Cavaliers; and his 40 points, 6 rebounds, and 6 assists 
in a 107-104 victory over the Milwaukee Bucks. The point is not that 
Jordan is a great player, but that a single player can generate lots of data in 
a single season. The question is how to condense all this data so that it 
brings out all the essential information and is yet easy to remember. This is 
where the term statistics comes into the picture.

To condense all the data, single numbers must make it more intelligible and 
help draw useful inferences. For example, consider the number of points 
that Jordan scored in different games. It is difficult to remember how many 
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points he scored in each game. But if you divide the total number of points 
that Jordan scored (1568) by the number of games he has played (51), you 
have a single number of 30.7 and can call it points per game average.

Suppose you want to rate Jordan’s free throw shooting skills. It might be 
difficult to do so by looking at his performance in each game. However, you 
can divide the number of free throws he has scored in all the games by the 
total number of free throws he was awarded. This shows he has a free throw 
percentage of 84.4%. You can obtain this number for all the NBA players 
and then rank them. Thus, you can condense the information for all the 
players into single numbers representing free throw percentage, points per 
game, and three-point average. Based on this information, you can rank 
players in different categories. You can further weight these different 
numbers and come up with a single number for each player. These single 
numbers can then help us in judging the Most Valuable Player (MVP) for 
the season. Thus, in a broad sense, the term statistics implies different ways 
to summarize data to derive useful and important information from it.

The next question is, what is probability? You have looked at ways to 
summarize lots of data into single numbers. These numbers then help draw 
conclusions for the present. For example, looking at Jordan’s statistics for 
the 1996 season helped elect him the MVP for that season. But can you say 
anything about the future? Can you measure the degree of accuracy in the 
inference and use it for making future decisions? The answer lies in the 
theory of probability. Whereas, in laymen’s terms, one would say that it is 
probable that Jordan will continue to be the best in the years to come, you 
can use different concepts in the field of probability, as discussed later in 
this chapter, to make more quantitative statements.

In a completely different scenario, there may be certain experiments whose 
outcomes cannot be predetermined, but certain outcomes may be more 
probable. This once again leads to the notion of probability. For example, 
if you flip an unbiased coin in the air, what is the chance that it will land 
heads up? The chance or probability is 50%. That means, if you repeatedly 
flip the coin, half the time it will land heads up. Does this mean that 
10 tosses will result in exactly five heads? Will 100 tosses result in exactly 
50 heads? Probably not. But in the long run, the probability will work out 
to be 0.5.

To summarize, whereas statistics allows you to summarize data and draw 
conclusions for the present, probability allows you to measure the degree 
of accuracy in those conclusions and use them for the future.
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Statistics
In this section, you will look at different concepts and terms commonly 
used in statistics and see how to use the Analysis VIs in different 
applications.

Mean
Consider a data set X consisting of n samples , , , , , . 
The mean value (a.k.a. average) is denoted by  and is defined by the 
formula

In other words, it is the sum of all the sample values divided by the number 
of samples. As in the Michael Jordan example, the data set consisted of 
51 samples. Each sample was equal to the number of points that Jordan 
scored in each game. The total of all these points was 1568, divided by the 
number of samples (51) to get a mean or average value of 30.7.

The input-output connections for the Mean VI are shown below.

Median
Let  represent the sorted sequence of the data 
set X. The sequence can be sorted either in the ascending order or in 
descending order. The median of the sequence is denoted by  and is 
obtained by the formula

where

 and 

In words, the median of a data sequence is the midpoint value in the 
sorted version of that sequence. For example, consider the sequence 

 consisting of five (odd number) samples. This sequence is 
already sorted in the descending order. In this case, the median is the 
midpoint value, 3. Consider a different sequence  consisting 
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of four (even number) samples. This sequence is already sorted in the 
ascending order. In this case, there are two midpoint values, 2 and 3. As per 
the formula above, the median is equal to . If a student 
X scored 4.5 points on a test and another student Y scored 1 point on the 
same test, the median is a very useful quantity for making qualitative 
statements such as “X lies in the top half of the class” or “Y lies in the 
bottom half of the class.”

Sample Variance
The sample variance of the data set X consisting of n samples is denoted by 

 and is defined by the formula

where  denotes the mean of the data set. Hence, the sample variance is 
equal to the sum of the squares of the deviations of the sample values from 
the mean divided by n–1.

Note The above formula does not apply for n=1. However, it does not mean anything to 
compute the sample variance if there is only one sample in the data set.

In other words, the sample variance measures the spread or dispersion of 
the sample values. If the data set consists of the scores of a player from 
different games, the sample variance can be used as a measure of the 
consistency of the player. It is always positive, except when all the sample 
values are equal to each other and in turn equal to the mean.

There is one more type of variance called population variance. The formula 
to compute population variance is similar to the one above to compute 
sample variance, except for the (n–1) in the denominator replaced by n.

The Sample Variance VI computes sample variance, whereas the Variance 
VI computes the population variance. Statisticians and mathematicians 
prefer to use the latter, engineers the former. It really does not matter for 
large values of , say .

Use the proper type of VI suited for your application.
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Standard Deviation
The positive square root of the sample variance  is denoted by  and is 
called the standard deviation of the sample.

Mode
The mode of a sample is a sample value that occurs most frequently in the 
sample. For example, if the input sequence X is

then the mode of X is 4, because that is the value that most often occurs in X. 

Moment About Mean
If X represents the input sequence with n number of elements in it, and 

is the mean of this sequence, then the mth-order moment can be 
calculated using the formula

In other words, the moment about mean is a measure of the deviation of the 
elements in the sequence from the mean. Note that for , the moment 
about mean is equal to the population variance.

Histogram
So far, this chapter has discussed different ways to extract important 
features of a data set. The data is usually stored in a table format, which 
many people find difficult to grasp. The visual display of data helps us 
gain insights into the data. Histogram is one such graphical method for 
displaying data and summarizing key information. Consider a data 
sequence . Divide the total range of 
values into 8 intervals. These intervals are 0 – 1, 1 – 2, 2 – 3, ..., 7 – 8. 
The histogram for the sequence X then plots the number of data samples 
that lie in that interval, not including the upper boundary.

s
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Figure 6-1.  Histogram

Figure 6-1 shows that one data sample lies in the range 0 – 1 and 1 – 2, 
respectively. However, there is no sample in the interval 2 – 3. Similarly, 
two samples lie in the interval 3 – 4, and three samples lie in the range 
4 – 5. Examine the data sequence X above and be sure you understand this 
concept. 

There are different ways to compute data for histogram. Next you will see 
how it is done in the Histogram VI using the sequence X.

Figure 6-2.  Histogram VI

As shown in Figure 6-2, the inputs to this VI are the input sequence X and 
the number of intervals m. The VI obtains Histogram:h(x) as follows. 
It scans X to determine the range of values in it. Then the VI establishes the 
interval width, , according to the specified value of m

where max is the maximum value found in X, min is the minimum value 
found in X, and m is the specified number of intervals.

Let 
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Then

Let  represent the output sequence X Values. The histogram is a function 
of X. This VI evaluates the elements of  using

 

For this example, 

The VI then defines the ith interval to be in the range of values from 
 up to but not including ,

and defines the function  for x belonging to  and zero 
elsewhere. The function has unity value if the value of x falls within the 
specified interval, not including the boundary. Otherwise, it is zero. Notice 
that the interval is centered about  and its width is . If a value is equal 
to max, it is counted as belonging to the last interval.

For our example,

and as an example 

and

.

Finally, the VI evaluates the histogram sequence H using

∆x
8 0–

8
------------ 1= =

χ
χ

χ i min 0.5∆x i∆x+ += for i 0 1 2 … m 1–, , , ,=

χ0 0.5 χ1, 1.5 … χ7, , 7.5= = =

χ i 0.5∆x– χ i 0.5∆x+

∆i χ i 0.5∆x–( ) χ i 0.5∆x+( ) ] for, ,[= i 0 1 2 … m 1–, , , ,=

yi x( ) 1= ∆i

χ i ∆x

∆0 0 1 ] ∆1, ,[ 1 2 ] … ∆7, , ,[ 7 8 ],[= = =

y0 0( ) 1=

y0 1( ) y0 3( ) y0 4( ) y0 5( ) y0 8( ) 0= = = = =

hi yi xj( )

j 0=

n 1–

∑= for i 0 1 2 … m 1–, , , ,=



Chapter 6 Probability and Statistics

LabVIEW Analysis Concepts 6-8 www.ni.com

where  represents the elements of the output sequence Histogram: h(X) 
and n is the number of elements in the input sequence X. For this example, 

.

The Functions»Mathematics»Probability and Statistics palette also has 
a General Histogram VI that is more advanced than the Histogram VI. 
Refer to LabVIEW Help, available by selecting Help»Contents and Index, 
for more information about the probability and statistics VIs.

Mean Square Error (MSE)
If X and Y represent two input sequences, then the mean square error 
is the average of the sum of the square of the difference between the 
corresponding elements of the two input sequences. The following formula 
is used to find the mse.

where n is the number of data points. 

Consider a digital signal x fed to a system, S1. The output of this system is 
y1. Now you acquire a new system, S2, which is theoretically known to 
generate the same result as S1 but has two times faster response time. Before 
replacing the old system, you want to be absolutely sure that the output 
response of both the systems is the same. If the sequences y1 and y2 are very 
large, it is difficult to compare each element in the sequences. In such a 
scenario, you can use the MSE VI to calculate the mean square error (mse) 
of the two sequences y1 and y2. If the mse is smaller than an acceptable 
tolerance, then the system S1 can be reliably replaced by the new system S2.

Root Mean Square (RMS)
The root mean square  of a sequence X is the positive square root of the 
mean of the square of the input sequence. In other words, you can square 
the input sequence, take the mean of this new squared sequence, and then 
take the square root of this quantity. The formula used to compute the rms 
value is

hi
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where n is the number of elements in X.

RMS is a widely used quantity in the case of analog signals. For a sine 
voltage waveform, if Vp is the peak amplitude of the signal, then the

root mean square voltage Vrms is given by .

Probability
In any random experiment, there is always a chance that a particular event 
will or will not occur. A number between 0 and 1 is assigned to measure 
this chance, or probability, that a particular event occurs. If you are 
absolutely sure that the event will occur, its probability is 100% or 1.0, 
but if you are sure that the event will not occur, its probability is 0.

Consider a simple example. If you roll a single unbiased die, there are six 
possible events that can occur—either a 1, 2, 3, 4, 5, or 6 can result. What 
is the probability that a 2 will result? This probability is one in six, or 
0.16666. You can define probability in simple terms as the following: the 
probability that an event A will occur is the ratio of the number of outcomes 
favorable to A to the total number of equally likely outcomes.

Random Variables
Many experiments generate outcomes that you can interpret in terms of real 
numbers. Some examples are the number of cars passing a stop sign during 
a day, number of voters favoring candidate A, and number of accidents at 
a particular intersection. The values of the numerical outcomes of this 
experiment can change from experiment to experiment and are called 
random variables. Random variables can be discrete (if they can take on 
only a finite number of possible values) or continuous. As an example of 
the latter, weights of patients coming into a clinic may be anywhere from, 
say, 80 to 300 pounds. Such random variables can take on any value in an 
interval of real numbers. Given such a situation, suppose you want to find 
the probability of encountering a patient weighing exactly 172.39 pounds. 
You will see how to calculate this probability next using an example.

Vp

2
-------
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Consider an experiment to measure the life lengths x of 50 batteries of a 
certain type. These batteries are selected from a larger population of such 
batteries. The histogram for observed data is shown below.

Figure 6-3.  Life Lengths Histogram

Figure 6-3 shows that most of the life lengths are between zero and 
100 hours, and the histogram values drop off smoothly when you look at 
larger life lengths.

You can approximate the histogram shown above by an exponentially 
decaying curve. You could take this function as a mathematical model for 
the behavior of the data sample. If you want to know the probability that a 
randomly selected battery will last longer than four hundred hours, this 
value can be approximated by the area under the curve to the right of the 
value 4. Such a function that models the histogram of the random variable 
is called the probability density function.

To summarize all the information above in terms of a definition, a random 
variable X is said to be continuous if it can take on the infinite number of 
possible values associated with intervals of real numbers, and there is a 
function f(x), called the probability density function, such that

1.

2.

3.
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Histogram
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Notice from equation (3) above, that for a specific value of the continuous 
random variable, that is for

X=a,

It should not be surprising that you assign a probability of zero to any 
specific value, because there are an infinite number of possible values that 
the random variable can take. Therefore, the chance that it will take on a 
specific value  is extremely small.

The previous example used the exponential function model for the 
probability density function. There are a number of different choices for 
this function. One of these is the Normal Distribution, discussed below.

Normal Distribution
The normal distribution is one of the most widely used continuous 
probability distributions. This distribution function has a symmetric bell 
shape.

The curve is centered at the mean value , and its spread is measured 
by the variance . These two parameters completely determine the 
shape and location of the normal density function, whose functional form 
is given by

Suppose a random variable Z has a normal distribution with mean equal to 
zero and variance equal to one. This random variable is said to have 
standard normal distribution.

The Normal Distribution VI computes the one-sided probability, p, of the 
normally distributed random variable x.

where X is a standard normal distribution with the mean value equal to zero 
and variance equal to one, p is the probability and x is the value.

P X a=( ) f x( ) xd

a

a

∫ 0= =

X a=

x 0=
s2 1=

f x( ) 1

2πs
-------------e x x–( )

2
2s

2( )⁄–=

p Prob X x≤( )=
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Suppose you conduct an experiment in which you measure the heights of 
adult males. You conduct this experiment on 1000 randomly chosen men 
and obtain a data set S. The histogram distribution has many measurements 
clumped closely about a mean height, with relatively few very short and 
very tall males in the population. Therefore, the histogram can be closely 
approximated by a normal distribution. Now suppose that, among a 
different set of 1000 randomly chosen males, you want to find the 
probability that the height of a male is greater than or equal to 170 cms. 
You can use the Normal Distribution VI to find this probability. Set the 
input . Thus, the choice of the probability density function is 
fundamental to obtaining a correct probability value.

The Inverse Normal Distribution VI performs exactly the opposite 
function. Given a probability p, it finds the values x that have the chance of 
lying in a normally distributed sample. For example, you might want to find 
the heights that have a 60% chance of lying in a randomly chosen data set. 

As mentioned earlier, there are different choices for the probability density 
function. The well-known and widely used ones are the Chi-Square 
distribution, the F distribution, and the T-distribution. The 
Functions»Mathematics»Probability and Statistics palette has VIs that 
compute the one-sided probability for these different types of distributions. 
In addition, it also has VIs that perform the inverse operation. 

Summary

• Different concepts in statistics and probability help decipher 
information and data to make intelligent decisions.

• Mean, Median, Sample Variance, and Mode are some of the statistics 
techniques to help in making inferences from a sample to a population.

• Histograms are widely used as a simple but informative method of data 
display.

• Using the theory of probability, you can make inferences from a 
sample to a population and then measure the degree of accuracy in 
those inferences.

x 170=
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A
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving 
installation, configuration, and application problems and questions. Online 
problem-solving and diagnostic resources include frequently asked 
questions, knowledge bases, product-specific troubleshooting wizards, 
manuals, drivers, software updates, and more. Web support is available 
through the Technical Support section of www.ni.com 

NI Developer Zone
The NI Developer Zone at zone.ni.com is the essential resource for 
building measurement and automation systems. At the NI Developer Zone, 
you can easily access the latest example programs, system configurators, 
tutorials, technical news, as well as a community of developers ready to 
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your 
training needs, from self-paced tutorials, videos, and interactive CDs to 
instructor-led hands-on courses at locations around the world. Visit the 
Customer Education section of www.ni.com for online course schedules, 
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other 
dilemmas, you may prefer to employ consulting or system integration 
services. You can rely on the expertise available through our worldwide 
network of Alliance Program members. To find out more about our 
Alliance system integration solutions, visit the System Integration section 
of www.ni.com
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Worldwide Support
National Instruments has offices located around the world to help address 
your support needs. You can access our branch office Web sites from the 
Worldwide Offices section of www.ni.com. Branch office web sites 
provide up-to-date contact information, support phone numbers, e-mail 
addresses, and current events.

If you have searched the technical support resources on our Web site and 
still cannot find the answers you need, contact your local office or National 
Instruments corporate. Phone numbers for our worldwide offices are listed 
at the front of this manual.
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