sfl ?“

L 4

NATIONAL INSTRUMENTS™

LabVIEW

Development Guidelines

‘YNATIONAL i July 2000 Edition
’ INSTRUMENTS Part Number 321393C-01

Worldwide Technical Support and Product Information
WWW. ni . com

National Instruments Corporate Headquarters
11500 North Mopac Expressway ~ Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 O, Belgium 02 757 00 20, Brazil 011 284 5011,

Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,

China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,

Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,

Isragl 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,

Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail tot echpubs@i . com

© Copyright 1997, 2000 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed

for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instrumentsif errors are suspected. In no event shall National Instruments be liable for any damages arising out of

or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL
INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including

photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation.
Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTSAND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTSIN ANY LIFE SUPPORT SY STEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) INANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONSIN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES"). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTSIN COMBINATION WITH OTHER PRODUCTSIN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

About This Manual
CONVENTIONS ...ttt r e e r et n et r s iX
Related DOCUMENLELION.........covvuereeiirrreeeeerese e X
Chapter 1
Development Models
Common Devel opment PitfallS..........ooiiiiiiieee e 1-1
LIfECYCIE MOUEIS ... 1-4
Code and FiIX MOGELccooiiriiieee s 1-4
Waterfall MOEL ..o 1-5
Modified Waterfall MOE]..........ccerirririinreeresee e 1-7
L (011011 011 0o TSRS P ST P TSP STPTSTPROTORSTPN 1-7
LabVIEW Prototyping Methods...........coveirieineineieneeneeseeee 1-8
SPITAl MOGE ... s 1-9
SUMIMBIY .. cvtet et e ettt r e bt bt r s b s e er e b e s e se e e nnennes 1-11
Chapter 2
Incorporating Quality into the Development Process
QuUalitY REQUITEMENTS ...ttt e 2-1
Configuration ManagemMENLtcceeereerieieeenere et b e s sae b b e 2-2
SOUrCE COdE CONLIOLcovieerieetiiet et 2-2
Managing Project-Related FIles..........ccooiiiiiniieeeee e 2-3
Retrieving Old Versions of FileS.........coiiiiiineieieeeere e 2-3
Tracking ChanQES........cccieriririe ettt 2-4
Change CONLIOL.........eeeieeeierereetese e et e e enen 2-4
TESHING GUIAEIINEScvieeeeeeie ettt bbb et 2-5
Black Box and White BOX TeSING.......ccererererieieinene e 2-6
Unit, Integration, and System TeSHNG.......coovereriere e 2-6
L1 === (] o USSR 2-6
INtEgration TESHNGciirire et 2-8
SYSEEM TESHNG....eeceerieierieie e e e e 2-9
Formal Methods Of VerifiCation...........ccveereineeneiereeneeseeesee e 2-9
SEYIE GUILEIINES.....ceeeeeeee ettt ene s 2-10
DESIGN REVIBIWS ...ttt ettt bbb st se e s eenesaeeneene 2-11
Code WaIKENIOUGNS ...ttt 2-11
POSIMOITEM BEVAIUBLION.......c.eiveiiieiiicit e 2-12

© National Instruments Corporation v LabVIEW Development Guidelines

Contents

Software QUality StaNAardS............covreerrerieere e 2-13
International Organization for Standardization SO 9000..........ccccvcvrvreenenne. 2-13
U.S. Food and Drug Administration Standards...........c.ceeveereiennenseneeenens 2-14
Capability Maturity Model (CMM) ..o 2-14
Ingtitute of Electrical and Electronic Engineers (IEEE) Standards................. 2-16
Chapter 3
Prototyping and Design Techniques
Clearly Define the Requirements of the Applicationccccviieriieneiecnienereeee 31
QL0 oS B Lo Y T 1= Yo o PO SR 3-2
Data Acquisition System EXamplecocoererenieneneseesee e 3-3
BOtOM-UP DESIGN. ...ttt sttt sttt sttt se et e e be b saesbe e e 3-6
Instrument Driver EXamMPIe........ccoiiireieieeeeireee e 3-7
Designing for Multiple DEVEIOPEIS........ccooriririririeie e 3-8
Front Panel ProtOtYPiNg.......cocoererieerie et st e e eae e sne s 39
Performance BenChMarkingc.coeeeiiiiieiinieieeerere e e 3-10
Identify CommMON OPEIratiONS........ccoiereririirie ettt et e ene s 311
Chapter 4
Scheduling and Project Tracking
ESHIMELION. ...ttt 4-1
Source Lines of Code/Number of Nodes Estimation............ccccovreerrnenennee 4-2
Problems with Source Lines of Code and Number of Nodes........... 4-3
EFfOrt ESMEtioN. ..o s 4-4
Wideband Delphi EStiMationcccevivveierereeieeie st 4-4
Other EStimation TEChNIQUES.........c.coeiereeecere et 4-5
Mapping Estimatesto SChEAUIES..........cccccviiiiriececeeese et 4-6
Tracking Schedules Using MIlESIONEScccvvvierirereeeecese s 4-7
Responding to Missed MIleSIONESccceevveeere i 4-7
Chapter 5
Creating Documentation
Design and Development DOCUMENEALION.........c.civeerieirieirieerieere e 5-2
Developing User DOCUMENTALIONcoueuerieirieiirieesie et 5-2
Documentation for aLibrary of VIS ..o 5-2
Documentation for an AppliCaLiON...........cccveirrireireree e 5-3
Creating HEIP FIIES.....ouiec e 5-3
V1 and CoNtrol DESCIIPLIONS.cuevivierieeeteseeieseei ettt 5-4
V1 DESCITPHION ...ttt bbb 5-4
Self-Documenting Front PanelS..........oeerininnecrceeese s 5-4
Control and Indicator DESCIIPLIONS........coueerieerieerieerieerieeee e 5-5

LabVIEW Development Guidelines vi www.ni.com

Chapter 6
LabVIEW Style Guide
Organization..........cceeeverenenieseseseese e
Front Panel Style.......ccoovoiiiiniienciee
Fontsand Text Styles..................
COlOr ..o
Graphics and Custom Contrals....
LaYOUL.....c.eeeeieeieeeee e
Sizing and Positioning.................
LabElS ..o
Enums versus Rings.........ccccce....
Default Values and Ranges.........
Property Nodes..........ccoceeeeeeennene
Key Navigation..........ccccceeereneennne
Dialog BOXES......ccoveveeeeieieeaens
Block Diagram Style........ccocvevercieneniene
Good Wiring Techniques.............
Memory and Speed Optimization
Sizing and Positioning.................
L eft-to-Right Layouts ...
Block Diagram Comments..........
Icon and Connector Style..........c.ccoeevenienee.
[CON..ooiviriric e
CONNECEOocvevireirereee e
Style CheckIistoovveeveirrnireee
VI Checklist......cooorerieeeeenirieinen.
Front Panel Checklist
Block Diagram Checklist
Appendix A
References
Appendix B
Technical Support Resources
Glossary
Index
© National Instruments Corporation vii

Contents

LabVIEW Development Guidelines

Contents

Figures
Figure1-1. Waterfall Lifecycle MO ..o 1-5
Figure1-2. Spiral Lifecycle Model ... 1-9
Figure2-1. Capability Maturity MOlccooeiiiniinieee e 2-15
Figure3-1. Flowchart of a Data AcqUiSItion SyStemccccoceveverenereernenenenene 34
Figure3-2. Mapping Pseudocode into a LabVIEW Data Structure...........cc.ccoe..e. 35
Figure3-3. Mapping Pseudocode into Actual LabVIEW Code.........ccccoveerennnnne 35
Figure3-4. DataFlow for a Generic Data Acquisition Program...........ccccceeeeeeennene 3-6
Figure 3-5. VI Hierarchy for the Tektronix 370Accccoorrinninine e 3-8
Figure 3-6. Operations Run INdependentlyccccoerereninenenesneneresese e 311
Figure3-7. Loop Performs Operation Three TiMeS.......cocoevererierieienierienese e 311
Figure 6-1. Directory Hierarchyccocoeiiieiieneeininene e 6-2
Figure6-2. Example of Imported Graphics Used in aPict Ring........cccccoeeerccinnene 6-4
Figure6-3. Example of Using Decorationsto Visually Group Objects Together... 6-5
Figure6-4. Free LabelsonaBoolean Controlccocveiineneieneiinincne e 6-6
Figure6-5. While Loop with 50 Second Delayc.ccvviireieienienenene e 6-10
Figure 6-6. EXxample: QUEUE VIS.......ocoi ittt 6-13

Table
Table 1-1. Risk Exposure AnalysiS EXample........cccoeveiireneneneeisenere e 1-10

LabVIEW Development Guidelines viii www.ni.com

About This Manual

The LabVIEW Development Guidelines describe many of the issues that
arise when devel oping large applications. The guidelines are based on the
advice of LabVIEW developers, and provide a basic survey of software
engineering techniques you might find useful when developing your

own projects.

Thereisalso adiscussion of style for creating VIs. Devel opers who have
used LabVIEW and are comfortablein the LabVIEW environment can use
the LabVIEW Development Guidelines to maintain a consistent and
effective style in their projects.

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to afinal action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

Thisicon denotes atip, which alerts you to advisory information.

)

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, acrossreference, or an introduction
to akey concept. Thisfont also denotestext that is a placehol der for aword
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
Thisfontisalso used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation ix LabVIEW Development Guidelines

About This Manual

Related Documentation

The following documents contain information that you might find helpful
as you read this manual:

e LabVIEW Help, available by selecting Help»Contents and | ndex.

LabVIEW Development Guidelines X www.ni.com

Development Models

This chapter provides examples of some common devel opment pitfallsand
describes a number of software engineering lifecycle models.

LabVIEW makesit easy to assemble components of data acquisition, test,
and control systems. Because it is so easy to program in LabVIEW, you
might be tempted to begin developing VIsimmediately with relatively little
planning. For simple applications, such as quick lab tests or monitoring
applications, this approach might be appropriate. However, for larger
development projects, good planning becomes vital.

Common Development Pitfalls

If you have developed large applications before, you probably have heard
some of the following statements. Most of these approaches start out with
good intentions and seem quite reasonable. However, these approaches are
often unrealistic and can lead to delays, quality problems, and poor morale
among team members.

* “I haven't realy thought it through, but I'd guess that the project you
are requesting can be completed in...”

Off-the-cuff estimatesrarely are correct because they usually are based
on an incompl ete understanding of the problem. When devel oping for
someone el se, you might each have different ideas about regquirements.
To estimate accurately, you both must clearly understand the
requirements and work through at least apreliminary high-level design
so you understand the components you need to develop.

e “I think | understand the problem the customer wants to solve, so I’'m
ready to dive into devel opment.”

Therearetwo problemswith this statement. First, lack of consensuson
project goals results in schedule delays. Your idea of what a customer
wants might be based on inadequate communication. Developing a
requirements document and prototyping a system, both described in
the Lifecycle Model s section later in this chapter, can be useful toolsto
clarify goals. A second problem with this statement is that diving into
development might mean writing code without a detailed design. Just
as builders do not construct a building without architectural plans,

© National Instruments Corporation 1-1 LabVIEW Development Guidelines

Chapter 1 Development Models

LabVIEW Development Guidelines

developers should not begin building an application without a detailed
design. Refer to the Code and Fix Model section later in this chapter
for more information about development models to follow.

“We don’'t have time to write detailed plans. We're under atight
schedule, so we need to start developing right away.”

Thissituation is similar to the previous example but is such acommon
mistake that it is worth emphasizing. Software devel opers frequently
skip important planning because it does not seem as productive as
developing code. As aresult, you develop VIs without a clear idea of
how they all fit together, and you might have to rework sections asyou
discover mistakes. Taking thetimeto develop aplan can prevent costly
rework at the development stage. Refer to the Lifecycle Model s section
later in this chapter and Chapter 3, Prototyping and Design
Techniques, for better approaches to developing software.

“Let’'stry for the whole ball of wax in thefirst release. If it doesn't do
everything, it won't be useful.”

In some cases, this might be correct. However, in most applications,
developing in stages is a better approach. When you analyze the
reguirements for a project, prioritize features. You might be able to
develop aninitial V1 that provides useful functionality in ashorter time
at alower cost. Then, you can add features incrementally. The more
you try to accomplish in asingle stage, the greater the risk of falling
behind schedule. Releasing software incrementally reduces schedule
pressures and ensures timely software release. Refer to the Lifecycle
Models section later in this chapter for more information about using
development models.

“If | can just get all the features in within the next month, | should be
able to fix any problems before the software is rel eased.”

To release high-quality products on time, maintain quality standards
throughout devel opment. Do not build new features on an unstable
foundation and rely on correcting problems later. This exacerbates
problems and increases cost. Although you might complete all the
features on time, the time required to correct the problemsin the
existing and the new code can delay the release of the product.
Prioritize features and implement the most important ones first. Once
the most important features are tested thoroughly, you can choose to
work on lower priority features or defer them to afuture release. Refer
to Chapter 2, Incorporating Quality into the Devel opment Process, for
more information about techniques for producing high-quality
software.

1-2 www.ni.com

Chapter 1 Development Models

“We're behind in our project. Let’s throw more devel opers onto the
problem.”

In many cases, doing this actually can delay the project. Adding
developersto aproject requirestime for training, which can take awvay
time originally scheduled for development. Add resources earlier in
the project rather than later. Also, thereisalimit to the number of
people who can work on aproject effectively. With afew people, there
isless overlap. You can partition the project so each person works on
aparticular section. The more people you add, the more difficult it
becomes to avoid overlap. Chapter 3, Prototyping and Design
Techniques, describes methods for partitioning software for multiple
developers. Chapter 2, Incorporating Quality into the Devel opment
Process, describes configuration management techniquesthat can help
minimize overlap.

“We're behind in our project, but we still think we can get all the
featuresin by the specified date.”

When you are behind in aproject, it isimportant to recognize that fact
and deal with it. Assuming you can make up lost time can postpone
choices until it becomes costly to deal with them. For example, if
you readlize in the first month of a six-month project that you are
behind, you might sacrifice planned features or add time to the
overall schedule. If you do not realize you are behind schedule until
the fifth month, other groups might have made decisions that are
costly to change.

When you realize you are behind, adjust the schedule or consider
features you can drop or postpone to subsequent releases. Do not
ignore the delay or sacrifice testing scheduled for later in the process.

Numerous other problems can arise when devel oping software. The
following list includes some of the fundamental elements of developing
quality software on time:

© National Instruments Corporation

Spend sufficient time planning.

Make sure the whole team thoroughly understands the problems that
must be solved.

Have aflexible devel opment strategy that minimizesrisk and
accommodates changes.

1-3 LabVIEW Development Guidelines

Chapter 1 Development Models

Lifecycle Models

Software development projects are complex. To deal with these
complexities, developers have collected a core set of development
principles. These principles define the field of software engineering.

A major component of thisfield isthelifecycle model. Thelifecycle model
describes the steps you follow to devel op software—from the initial
concept stage to the rel ease, maintenance, and subsequent upgrading of the
software.

Currently, there are many different lifecycle models. Each has advantages
and disadvantages in terms of time-to-release, quality, and risk
management. This section describes some of the most common models
used in software engineering. Many hybrids of these models exist, so use
the parts you believe will work for your project.

Although thissection istheoretical initsdiscussion, in practice consider all
the steps these model s encompass. Consider when and how you decide that
the requirements and specifications are complete and how you deal with
changes to them. The lifecycle model serves as afoundation for the entire
development process. Good choicesin this area can improve the quality of
the software you devel op and decrease the time it takes to develop it.

Code and Fix Model

LabVIEW Development Guidelines

The code and fix model probably isthe most frequently used devel opment
methodology in software engineering. It starts with little or no initial
planning. Y ou immediately start developing, fixing problems as you find
them, until the project is complete.

Code and fix is a tempting choice when you are faced with atight
development schedule because you begin devel oping code right away and
see immediate results.

Unfortunately, if you find major architectural problems|ate in the process,
you might have to rewrite large parts of the application. Alternative
development modelscan help you catch these problemsin the early concept
stages when it is easier and much less expensive to make changes.

The code and fix model is appropriate only for small projects that are not
intended to serve as the basis for future development.

1-4 www.ni.com

Waterfall Model

Chapter 1 Development Models

The waterfall model is the classic model of software engineering. It has
deficiencies, but it serves as a baseline for many other lifecycle models.

The pure waterfall lifecycle consists of several non-overlapping stages, as
shown in Figure 1-1. It begins with the software concept and continues
through requirements analysis, architectural design, detailed design,
coding, testing, and maintenance.

System

Requirements \

Software
Requirements

\ Architectural

Design

R \
\

\T:ng\
\

Maintenance

© National Instruments Corporation

Figure 1-1. Waterfall Lifecycle Model

System requirements—Establishes the components for building the
system. Thisincludesthe hardware requirements (number of channels,
acquisition speed, and so on), software tools, and other necessary
components.

Software reguirements—Concentrates on the expectations for
software functionality. You identify which of the system requirements
the software affects. Requirements analysis might include determining
interaction needed with other applications and databases, performance
requirements, user interface requirements, and so on.

Architectural design—Determinesthe softwareframework of asystem
to meet the specified requirements. The design defines the major
components and the interaction of those components, but it does not
define the structure of each component. You also determine the
external interfaces and tools to use in the project. Examples include

1-5 LabVIEW Development Guidelines

Chapter 1 Development Models

decisions on hardware, such as plug-in boards, and external pieces of
software, such as databases or other libraries.

* Detailed design—Examines the software components defined in the
architectural design stage and produces a specification for how each
component is implemented.

e Coding—Implements the detailed design specification.

e Testing—Determines whether the software meets the specified
reguirements and finds any errors present in the code.

¢ Maintenance—Perform as needed to deal with problems and
enhancement requests after the software is rel eased.

In some organizations, each changeis reviewed by a change control
board to ensure that quality is maintained. You also can apply the full
waterfall development cycle model when you implement these change
requests.

In each stage, you create documents that explain your objectives and
describe the requirementsfor that phase. At the end of each stage, you hold
areview to determine whether the project can proceed to the next stage.
Also, you can incorporate prototyping into any stage from the architectural
design and after. Refer to the Prototyping section later in this chapter for
more information about using prototyping in projects.

Thewaterfall lifecyclemodel isone of the oldest modelsand iswidely used
in government projects and in many major companies. Because it
emphasizes planning in the early stages, it helps catch design flaws before
they are developed. Also, becauseit is document and planning intensive, it
works well for projects in which quality control isamajor concern.

Many people believe you should not apply thismodel to all situations. For
example, with the pure waterfall model, you must state the requirements
before you begin the design, and you must state the compl ete design before
you begin coding. There is no overlap between stages. In real-world
development, however, you might discover issues during the design or
coding stages that point out errors or gaps in the requirements.

The waterfall method does not prohibit returning to an earlier phase, for
example, from the design phase to the requirements phase. However, this
involves costly rework. Each completed phase requires formal review and
extensive documentation development. Thus, oversights madein the
reguirements phase are expensive to correct later.

LabVIEW Development Guidelines 1-6 www.ni.com

Chapter 1 Development Models

Because the actual development comes late in the process, you do not see
results for along time. This can be disconcerting to management and to
customers. Many people also think the amount of documentation is
excessive and inflexible.

Although the waterfall model hasitsweaknesses, it isinstructive becauseit
emphasizes important stages of project development. Even if you do not
apply thismodel, consider each of these stages and its relationship to your
own project.

Modified Waterfall Model

Many engineers recommend modified versions of the waterfall lifecycle.
These modifications tend to focus on allowing some of the stagesto
overlap, reducing the documentation requirements, and reducing the cost of
returning to earlier stagesto revise them. Another common modificationis
to incorporate prototyping into the requirements phases, asdescribed in the
following section.

Overlapping stages such as requirements and design make it possible to
feed information from the design phase back into the requirements.
However, this can make it more difficult to know when you are finished
with a given stage. Consequently, it is more difficult to track progress.
Without distinct stages, problems might cause you to defer important
decisions until late in the process when they are more expensive to correct.

Prototyping

One of the main problemswith thewaterfall model isthat the requirements
often are not completely understood in the early devel opment stages. When
you reach the design or coding stages, you begin to see how everything
works together, and you might discover you need to adjust requirements.

Prototyping can be an effective tool for demonstrating how a design might
deal with a set of requirements. You can build a prototype, adjust the
requirements, and revise the prototype several times until you have aclear
picture of your overall objectives. In addition to clarifying the
requirements, the prototype also defines many areas of the design
simultaneously.

The pure waterfall model allows for prototyping in the later architectural
design stage and subsequent stages but not in the early requirements stages.

© National Instruments Corporation 1-7 LabVIEW Development Guidelines

Chapter 1

LabVIEW Development Guidelines

Development Models

Prototyping has drawbacks, however. Because it appears that you have a
working system quickly, customers might expect acomplete system sooner
than is possible. In most cases, the prototype is built on compromises that
alow it to come together quickly but that might prevent the prototype from
being an effective basisfor future development. You need to decide early if
you will use the prototype as abasis for future development. All parties
need to agree to this decision before development begins.

Be careful that prototyping does not become a disguise for a code and fix
development cycle. Before you begin prototyping, gather clear
reguirements and create adesign plan. Limit the amount of time you spend
prototyping before you begin. This helpsto avoid overdoing the
prototyping phase. As you incorporate changes, update the requirements
and the current design. After you finish prototyping, you might consider
returning to one of the other development models. For example, you might
consider prototyping as part of the requirements or design phases of the
waterfall model.

LabVIEW Prototyping Methods

There are anumber of ways to prototype a system.

In systemswith I/O requirements that might be difficult to satisfy, you can
develop a prototype to test the control and acquisition loops and rates. In
1/0 prototypes, random data can simulate data acquired in the real system.

Systemswith many user interface requirements are perfect for prototyping.
Determining the method you use to display data or prompt the user for
settings can be difficult on paper. Instead, consider designing VI front
panelswith the controls and indicators you need. You might leave the block
diagram empty and just talk through the way the controls work and how
various actions lead to other front panels. For more extensive prototypes,
tiethefront panelstogether. However, be careful not to get too carried awvay
with this process.

If you are bidding on aproject for aclient, using front panel prototypescan
be an extremely effective way to discuss with the client how you might be
able to satisfy his or her requirements. Because you can add and remove
controls quickly, especially if you avoid developing block diagrams, you
can help customers clarify requirements.

1-8 www.ni.com

Chapter 1 Development Models

Spiral Model

The spiral model isa popular aternative to the waterfall model. It
emphasizes risk management so you find major problems earlier in the
development cycle. Inthewaterfall model, you haveto completethe design
before you begin coding. With the spiral model, you break up the project
into a set of risks that need to be dealt with. Y ou then begin a series of
iterations in which you analyze the most important risk, evaluate options
for resolving therisk, deal with the risk, assessthe results, and plan for the
next iteration. Figure 1-2 illustrates the spiral lifecycle model.

Determine Objectives, Evaluate Alternatives
Alternatives, and Constraints and Risks
Risk]
nalysis Cumulative Cost

Commit to Prototype

Next Cycle

s

w

Plan Next Phase Develop and Test

Figure 1-2. Spiral Lifecycle Model

Risks are any issues that are not clearly defined or have the potential to
affect the project adversely. For each risk, you need to consider two things:
How likely it isto occur (probability) and the severity of its effect on the
project (loss). You might use ascale of 1to 10 for each of theseitems, with
1 representing the lowest and 10 representing the highest. Risk exposureis
the product of these two rankings.

© National Instruments Corporation 1-9 LabVIEW Development Guidelines

Chapter 1 Development Models

You can use atable to keep track of the top risk items of the project.
Table 1-1 gives an example of how to do this.

Table 1-1. Risk Exposure Analysis Example

Risk Risk Management

ID Risk Praobability Loss Exposure Approach
1 Acquisition rates 5 9 45 Develop prototype

too high to demonstrate feasibility
2 Fileformat might 5 3 15 Develop benchmarks

not be efficient to show speed of data

manipulation

3 Uncertain user 2 5 10 Involve customer;

interface develop prototype

LabVIEW Development Guidelines

In general, deal with the risks with the highest risk exposure first. In this
example, thefirst spiral dealswith the potential of the dataacquisition rates
being too high. After the first spiral, you might have demonstrated that the
rates are not too high, or you might have to change to a different
configuration of hardware to meet the acquisition requirements. Each
iteration might identify new risks. In this example, using more powerful
hardware might make higher cost a new, more likely risk.

For example, assume you are designing a data acquisition system with a
plug-in dataacquisition card. In thiscase, therisk iswhether the system can
acquire, analyze, and display data quickly enough. Some of the constraints
in this case are system cost and requirements for a specific sampling rate
and precision.

After determining the options and constraints, you evaluatetherisks. Inthis
example, create a prototype or benchmark to test acquisition rates. After
you seetheresults, you can eval uate whether to continue with the approach
or choose a different option. You do this by reassessing the risks based on
the new knowledge you gained from building the prototype.

In thefinal phase, you evaluate the results with the customer. Based on
customer input, you can reassess the situation, decide on the next highest
risk, and start the cycle over. This process continues until the softwareis
finished or you decide the risks are too great and terminate devel opment.
You might find that none of the options is viable because each istoo
expensive, time-consuming, or does not meet the requirements.

1-10 www.ni.com

Summary

Chapter 1 Development Models

The advantage of the spiral model over the waterfall model is that you can
evaluate which risks to take care of with each cycle. Because you can
evaluate risks with prototypes much earlier than in the waterfall process,
you can deal with mgjor obstacles and select alternativesin the earlier
stages, whichisless expensive. With astandard waterfall model, you might
have all owed assumpti ons about the risky componentsto spread throughout
the design, which requires much more expensive rework when the
problems are later discovered.

Lifecycle models are described as distinct choices from which you must
select. In practice, however, you can apply more than one model toasingle
project. Y ou might start a project with a spiral model to help refine the
requirements and specifications over several iterations using prototyping.
Once you have reduced the risk of a poorly stated set of requirements, you
might apply awaterfall lifecycle model to the design, coding, testing, and
mai ntenance stages.

Other lifecycle modelsexist. Appendix A, References, lists documents that
contain information about other devel opment methodologies.

© National Instruments Corporation 1-11 LabVIEW Development Guidelines

Incorporating Quality into the
Development Process

This chapter describes strategies for producing quality software.

Many devel opers who follow the code and fix style of programming
described in Chapter 1, Development Models, mistakenly believe they do
not need to deal with the issue of quality until the testing phase. Thisis
simply not true. Design quality into a product from the start. Developing
quality software begins by selecting a development model that helps you
avoid problems in the first place. Consider quality during all stages of
development: requirements and specification, design, coding, testing,
release, and maintenance.

Do not regard quality controls as tedious requirements that impede
development. Most of them help streamline devel opment so problems are
found before they are in the software, when it isinexpensive to fix them.

Quality Requirements

Set the quality standards for a product during the requirements stage.

The desired quality level istreated as a requirement, just like other
requirements. Weigh the merits and costs of various options you have for
applying quality measuresto the project. Some of the trade-offsto consider
include speed versus robustness, and ease of use versus power and
complexity.

For short projects, used only in-house as tools or quick prototypes, you do
not need to emphasize robustness. For example, if you decideto develop a
VI to benchmark 1/0O and graphing speeds, error checking is not as crucial.

However, with more complicated projects that must be reliable, such as
applications for monitoring and controlling afactory process, the software
must deal with invalid input gracefully. For example, if an operator
mistakenly selectsinvalid voltage or current settings, the application must
deal with it appropriately. Institute as many safeguards as possible to
prevent problems. Select alifecycle development model that helpsyou find

© National Instruments Corporation 2-1 LabVIEW Development Guidelines

Chapter 2 Incorporating Quality into the Development Process

problems as early as possible and allows time for formal reviews and
thorough testing.

Configuration Management

Configuration management is the process of controlling changes and
ensuring they are reviewed before they are made. Chapter 1, Devel opment
Models, outlines development models, such as the waterfall model. A
central focus of these modelsisto convert software development from a
chaotic, unplanned activity to acontrolled process. These modelsimprove
software development by establishing specific, measurable goals at each
stage of development.

Regardless of how well development proceeds, changes that occur later in
the process need to beimplemented. It is common for customersintroduce
new reguirements in the design stage. Performance problems discovered
during development prompt reeval uation of the design. You might need to
rewrite asection of codeto correct aproblem found in testing. Changes can
affect any component of the project from the requirements and
specification to the design, code, and tests. If these changes are not made
carefully, you might introduce problems that can delay development or
degrade quality.

Source Code Control

After setting the project quality requirements, develop a process to deal
with changes. Thisisimportant for projects with multiple developers. As
the developerswork on Vs, they need amethod for collecting and sharing
work. A simple method to deal with thisisto establish a central source
repository. If each of the developer’ s computersis networked, you can
create a shared location that serves as a central source for development.
When devel opers need to modify files, they can retrieve them from this
location. When they are finished with the changes and the system is
working, they can return the files to this location.

Common files and areas of overlap introduce the potential for accidental
loss of work. If two devel opers decide to work on the same V1 at the same
time, only one developer can easily merge changes into the project. The
other devel oper hasto use the Compare Vlistool, availableinthe LabVIEW
Professional Development System, to determine the differences and
merge the changesinto a new version. You might avoid this with good
communication, if each developer notifies the others when he or she needs
to work on a specific VI. Inevitably, however, mistakes occur, and work
islost.

LabVIEW Development Guidelines 2-2 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Source code control tools deal with the problems of sharing Vs and
controlling access to avoid accidental loss of data. Source code control
tools make it easy to set up shared projects and to retrieve the latest files
from the server. Once you have created a project, you can check out afile
for development. Checking out afile marksit with your name so that no
other devel oper can modify thefile. Other devel operscan, however, retrieve
the current version from the server. A developer can check out thefile,
make modifications, test the changes, and check in the file to the source
code system. After thefileis checked in, it is accessible to the whole
development team again. Another developer can then check out the fileto
make further modifications.

Managing Project-Related Files

Source code control tools can manage more than just VIs. You can use
them to manage all aspects of the project—requirements, specifications,
illustrations, reviews, and other documents related to the project. This
ensures that you can control access to these documents and share them as
needed. Y ou can use the tools to track changes and access older versions
of files.

As described in Chapter 3, Prototyping and Design Techniques, source
management of all project-related filesis extremely important for
developing quality software. In fact, source management is a requirement
for certification under existing quality standards such as 1SO 9000.

Retrieving 0ld Versions of Files

Therearetimeswhen you need to retrieve an old version of afile or project.
This might happen if you make a change to afile and check it in, only to
realize you made a mistake. Another reason you might need to retrieve an
old version of afileor project isif you send a beta version of the software
to acustomer and continue devel opment. If the customer reportsaproblem,
you might need to access a copy of the beta version of the software.

One way to access an old version of files or project isto back up files
periodically. However, unless you back up the VI after every change, you
might not have access to every version.

Source code control tools provide away to check in new versions of a
file and make a backup copy of the old version. Depending on how you
configure the system, the tools can maintain multiple backup copies of
afile.

© National Instruments Corporation 2-3 LabVIEW Development Guidelines

Chapter 2 Incorporating Quality into the Development Process

Tracking Changes

Change Control

LabVIEW Development Guidelines

You can use source code control toolsto label versions of files with
descriptive names like bet a, v1. 0, and so on. You can label any number
of filesand later retrieve al versions of afile with a specific label. When
you release a version of the software, 1abel the files specifically for that
version.

If you are managing a software project, it isimportant to monitor changes
and track progress toward specific milestone objectives. Y ou also can use
this information to determine problem areas of a project by identifying
which components required alot of changes.

Source code control tools maintain alog of all changes made to files and
projects. When checking in afile, the developer is prompted to enter a
summary of the changes made. This summary information is added to the
log for that file.

You can view the history information for afile or for the system and
generate reports that contain that information.

In addition, if you back up the project at specific checkpoints, you can use
the Compare VIstool to comparethelatest version of aproject with another
version to verify the changes in the project.

Large projects might require aformal process for evaluation and approval
of each change request. A formal evaluation system like this might be too
restrictive, so be selective when choosing the control mechanisms you
introduce into the system.

Changes to specific components, such as documents related to user
reguirements, must be dealt with cautiously because they generally are
worked out through several iterations with the customer. In this case, the
word customer isused in ageneral sense. You might be your own customer,
other departments in your company might be your target audience, or you
might devel op the software under contract for athird party. When you are
your own customer, it is much easier to adjust requirements as you move
through the specification and even the design stage. If you are developing
for someone else, changing requirements can be extremely difficult.

Source code control tools give you a degree of control when making
changes. You can track all changes, and you can configure the system to
maintain previous versions so you can back out of changesif necessary.

2-4 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Some source code control systems give you more options for controlling
software change. For example, with Microsoft Visual SourceSafe, Rational
Software ClearCase, or Perforce Software Perforce, you can control access
to files so some users have access to specific files but others do not. You
also can specify that anyone can retrieve files but only certain users can
make modifications.

With this kind of access control, you might limit change privileges for
requirement documents to specific team members. Or, you might control
access so a user has privileges to modify afile only when the change
request is approved.

The amount of control you apply can vary throughout the devel opment
process. In the early stages of the project, before formal evaluation of the
requirements, you do not necessarily need to restrict change accessto files
nor do you need to follow formal change request processes. Once the
requirements are approved, however, you can institute stronger controls.
You can apply the same concept of varying the level of control before and
after a project phase is complete to specifications, test plans, and code.

Testing Guidelines

Decide up front what level of testing is expected. Engineers under deadline
pressure frequently give short attention to testing, devoting more time to
other development. Most software engineers suggest a certain level of
testing, that is guaranteed to save you time.

Developers must clearly understand the degree to which you expect testing.
Also, testing methodol ogies must be standardized, and results of tests must
betracked. Asyou devel op the requirements and design specifications, also
develop atest plan to help you verify that the system and all its components
work. Testing reflects the quality goals you want to achieve. For example,
if performance is more critical than robustness, develop more tests for
performance and fewer that attempt incorrect input, low-memory
situations, and so on.

Testing is hot an afterthought. Consider testing as part of theinitial design
phases and test throughout development to find and fix problems as soon as
possible.

There are avariety of testing methodologies you can use to help increase
the quality of VI projects. The following sections describe some testing
methodologies.

© National Instruments Corporation 2-5 LabVIEW Development Guidelines

Chapter 2 Incorporating Quality into the Development Process

Black Box and White Box Testing

The method of black box testing is based on the expected functionality of
software, without knowledge of how it works. It is called black box testing
because you cannot see the internal workings. Y ou can perform black box
testing based largely on aknowledge of the requirements and the interface
of amodule. For asubV1, you can perform black box tests on the interface
of asubVI to evaluate results for various input values. If robustnessisa
quality goal, include erroneous input data to seeif the subV1 dealswith it
well. For example, for numeric inputs, see how the subV1 deals with
Infinity, Not A Number, and other out-of-range values. Refer to the Unit
Testing section later in this chapter for more examples.

The method of white box testing is designed with knowledge of theinternal
workings of the software. Use white box testing to check that al the major
paths of execution are exercised. By examining a block diagram and
looking at the conditions of Case Structures and the values controlling
loops, you can design tests that check those paths. White box testing on
alarge scale isimpractical because it is difficult to test all possible paths.

Although white box testing is difficult to fully implement for large
programs, you can choose to test the most important or complex paths.
You can combine white box testing with black box testing for more
thorough testing of software.

Unit, Integration, and System Testing

LabVIEW Development Guidelines

Use black box and white box testing to test any component of software,
regardless of whether itisanindividual VI or the complete application.
Unit testing, integration testing, and system testing are phases of the project
at which you can apply black box and white box tests.

Unit Testing

Y ou can use unit testing to concentrate on testing individual software
components. For example, you might test an individual VI to seethat it
works correctly, deal swith out-of-range data, has acceptabl e performance,
and that all major execution pathsin its block diagram are executed and
performed correctly. Individual developers can perform unit tests as they
work on the modules.

2-6 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Some examples of common problems unit tests might account for include
the following:

» Boundary conditions for each input, such as empty arrays and empty
strings, or O for asize input. Be sure floating point parameters deal
with Infinity and Not A Number.

e Invalid values for each input, such as—3 for asizeinput.
» Strange combinations of inputs.
» Missing files and bad pathnames.

* What happens when the user clicks the Cancel button in afile
dialog box?

* What happensif the user abortsthe VI?

Define various sets of inputs that thoroughly test the VI and write atest V1
that callsthe VI with each combination of inputs and checks the results.
You can useinteractive datalogging to create input sets, or test vectors, and
replay them interactively to re-test the VI or automatically from atest V1
that uses programmatic dataretrieval. Refer to the Unit Testing Validation
Procedure application notes for more information about testing VIs.

To perform unit testing, you might need to stub out some components that
have not been implemented yet or that are being devel oped. For example,
if you aredeveloping aV 1 that communi cates with an instrument and writes
information to afile, another developer can work on afile 1/0 driver that
writes the information in a specific format. To test the components early,
you might choose to stub out the file I/O driver by creating a V| with the
same interface. This VI can write the datain aformat that is easy for you
to check. You can test the driver with thereal file |/O driver later during the
integration phase as described in the following Integration Testing section.

Regardless of how you test Vs, record exactly how, when, and what you
tested and keep any test VIsyou created. This test documentation is
especially important if you are creating VIsfor paying customers, anditis
also useful for yourself. When you revise the Vs, run the existing tests to
make sure you have not broken anything. Also update the tests for any new
functionality you have added.

Refer to the LabVIEW Unit Validation Test Procedure application note for
more information about unit testing.

© National Instruments Corporation 2-7 LabVIEW Development Guidelines

Chapter 2 Incorporating Quality into the Development Process

Integration Testing

Y ou perform integration testing on a combination of units. Unit testing
usually finds most bugs, but integration testing might reveal unanticipated
problems. Modules might not work together as expected. They might
interact in unexpected ways because of the way they manipulate shared
data. Refer to the LabVIEW Performance application note for more
information about possible problems that are discovered during testing.

You a so can perform integration testing in earlier stages before you put the
whole system together. For example, if adeveloper createsaset of Visthat
communicates with aninstrument, he or she can devel op unit teststo verify
that each subV I correctly sends the appropriate commands. He or she also
can develop integration tests that use several of the subVIsin conjunction
with each other to verify that there is not any unexpected interaction.

Do not perform integration testing as a comprehensive test in which you
combine all the components and try to test the top-level program. Doing
this can be expensive because it is difficult to determine the specific source
of problems within alarge set of Vls. Instead, consider testing
incrementally with atop-down or bottom-up testing approach.

With a top-down approach, you gradually integrate major components,
testing the system with the lower level components of the system disabled,
or stubbed out, as described in the Unit Testing section earlier in this
chapter. Onceyou have verified that the existing componentswork together
within the existing framework, you can enable additional components.

With abottom-up approach, you test low-level modulesfirst and gradually
work up toward the high-level modules. Begin by testing asmall number of
components combined into a simple system, such as the driver test
described in the Unit Testing section earlier in this chapter. After you have
combined a set of modules and verified that they work together, add
components and test them with the already-debugged subsystem.

The bottom-up approach consists of tests that gradually increase in scope,
while the top-down approach consists of tests that are gradually refined as
new components are added.

Regardless of the approach you take, you must perform regression testing
at each step to verify that the features that already have been tested till
work. Regression testing consists of repeating some or al previous tests.
Because you might need to perform the same tests numerous times, you
might want to devel op representative subsets of tests to use for frequent
regression tests. You can run these components at each stage, while the

LabVIEW Development Guidelines 2-8 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

more detailed tests can be run to test an individua set of modules if
problems are encountered or as part of a more detailed regression test that
is applied periodically during development.

System Testing

System testing happens after integration to determine if the product meets
customer expectations and to make sure the software works as expected
within the hardware system. Y ou can do this as a set of black box tests to
verify that the requirements have been met. Most LabVIEW applications
perform some kind of 1/0. The application also might communicate with
other applications. With system testing, you test the software to make sure
it fitsinto the overall system as expected. When testing the system, ask and
answer questions such as the following:

» Areperformance requirements met?

» If my application communicates with another application, doesit deal
with an unexpected failure of that application well?

You can compl ete this testing with alpha and beta testing. Alpha and beta
testing serve to catch test cases that might not have been considered or
completed by the devel opers. With aphatesting, afunctionally complete
product istested in-house to see if any problems are found. When apha
testing is complete, the product is beta tested by customersin thefield.

Alpha and beta testing are the only testing mechanisms for some
companies. Thisis unfortunate because alpha and beta testing actually can
be inexact. Alpha and beta testing are not a substitute for other forms of
testing that rigorously test each component to verify that it meets stated
objectives. Because this type of testing is done late in the development
process, it is difficult and costly to incorporate changes suggested asa
result.

Formal Methods of Verification

Some software engineers are proponents of formal verification of software.
Other testing methodologies attempt to find problems by exploration, but
formal methods attempt to prove the correctness of software
mathematically.

The principal ideaisto analyze each function of a program to determine if
it doeswhat you expect. You mathematically state the list of preconditions
before the function and the postconditions that are present asaresult of the
function. You can perform this process either by starting at the beginning of
the program and adding conditions as you work through each function or

© National Instruments Corporation 2-9 LabVIEW Development Guidelines

Chapter 2

Incorporating Quality into the Development Process

by starting at the end and working backward, developing a set of weakest
preconditionsfor each function. Refer to Appendix A, References, for alist
of documents that include more information about the verification process.

This type of testing becomes more complex as more and more possible
paths of execution are added to a program through the use of loops and
conditions. Many people believe that formal testing presents interesting
ideas for looking at software that can help in small cases but that it is
impractical for most programs.

Style Guidelines

Inconsi stent approaches to development and to user interfaces can be a
problem when multiple developers work on a project. Each devel oper

has his or her own style of development, color preferences, display
techniques, documentation practices, and block diagram methodol ogies.
One devel oper might make extensive use of global variables and Sequence
Structures while another might prefer to make more use of data flow.

Inconsi stent style techniques can create software that, at a minimum, looks
bad. Users might become confused and find the user interface VIs difficult
to useif the VIs have different behaviors, such as some expecting a user to
click a button when he or she is finished and others expecting the user to
use a keyboard function key.

Inconsistent style also makes software difficult to maintain. For example,
if one developer does not like to use subVIs and decides to develop all
features within asingle large VI, that VI is difficult to modify.

Establish a set of guidelines for your VI development team. Establish an
initial set of guidelines and add additional rules as the project progresses.
You can use these style guidelines in future projects.

Chapter 6, LabVIEW Style Guide, provides some style recommendations.
Use these guidelines as a basis for developing your own style guide.

A single standard for programming style in any language really cannot
exist because what one group prefers, another group might disagree with.
Select a set of guidelines that works for you and your development team.

LabVIEW Development Guidelines 2-10 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Design Reviews

Design reviews are a great way to identify and fix problems during
development. When the design of afeature is complete, set up adesign
review with at least one other developer. Discuss quality goals, asking
questions such as the following:

» Doesthe design incorporate testing?
e Iserror handling built-in?
* Arethere any assumptionsin the system that might be invalid?

Also, look at the design with an eye for features that are essential as
opposed to features that are extras. Thereis nothing wrong with buildingin
extra features. If quality and schedule are important, however, ensure that
these extra features are scheduled for late in the development process, so
they can be dropped, or moved to the list of features for subsequent
releases. Document the results of the design review and any recommended
changes.

Code Walkthroughs

A code walkthrough is similar to a design review except that it analyzes
the codeinstead of the design. To perform acode review, give one or more
developers printouts of the VIsto review. Y ou might want to perform the
review online because Vs are easier to read and navigate online. Itiswise
for the designer talk through the design. The reviewers compare the
description to the actual implementation. The reviewers must consider
many of the same issuesincluded in a design review. During a code
walkthrough, many of the following questions might be asked and
answered:

* What happens if a specific VI or function returns an error? Are errors
dealt with and/or reported correctly?

» Arethere any race conditions? An example of arace conditionisa
block diagram that reads from and writesto aglobal variable. Thereis
the potential that a parallel block diagram simultaneously attempts to
manipul ate the same global variable, resulting in loss of data.

© National Instruments Corporation 2-11 LabVIEW Development Guidelines

Chapter 2 Incorporating Quality into the Development Process

e Istheblock diagram implemented well? Arethe algorithmsefficient in
terms of speed and/or memory usage? Refer to the LabVIEW
Performance application note for more information about creating
effective code.

* Istheblock diagram easy to maintain? Has the developer made good
use of hierarchy, or is he or she placing too much functionality in a
single V1? Does the devel oper adhere to established guidelines?

There are anumber of other features you can look for in a code
walkthrough. Take notes on the problems you encounter and add themto a
list you can use as a guideline for other walkthroughs.

Focus on technical issues when doing a code walkthrough. Remember to
review only the code, not the developer who produced it. Try not to focus
only on the negative and be sure to raise positive points.

Refer to Appendix A, References, for alist of documentsthat include more
information about walkthrough techniques.

Postmortem Evaluation

At the end of each stage in the development process, consider having a
postmortem meeting to discuss what has gone well and what has not. Each
developer must evaluate the project honestly and discuss obstacles that
reduce the quality level of the project. Each developer must consider the
following questions:

e What arewe doing right? What is working well?
e What are we doing wrong? What can we improve?

* Arethere specific areas of the design/code that need alot of work?
Isadesign review or code walkthrough of that section necessary?

* Arethequality systems working? Can we catch more problems if we
changed the quality requirements? Are there better waysto get the
same results?

Postmortem meetings at major milestones can help to correct problems
mid-schedule instead of waiting until the release is complete.

LabVIEW Development Guidelines 2-12 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Software Quality Standards

As software has become amore critical component in systems, concerns
about software quality have increased. Consequently, a number of

organi zations have devel oped quality standardsthat are specific to software
or that can be applied to software. When developing software for some
large organizations, especially government organizations, you might be
required to follow one of these standards.

The following sections include a brief overview of the most popular
standards. Refer to Appendix A, References, for alist of documents that
include more information about these standards.

International Organization for Standardization 1SO 9000

The International Organization for Standardization (1SO) developed the

I SO 9000 family of standards for quality management and assurance.
Many countries have adopted these standards. | n some cases, governmental
bodies require compliance with this |SO standard. Compliance generally
is measured by certification performed by athird-party auditor. The

SO 9000 family iswidely used within Europe and Asia. It has not been
widely adopted within the United States, although many companies and
some government agencies are begining to useit.

In each country, the | SO family of standards are referred to by slightly
different names. For example, in the United States it has been adopted
as the ANSI/American Society for Quality Control (ASQC) Q90 Series.
In Europe, it has been adopted by the European Committee for
Standardization (CEN) and the European Committee for Electrotechnical
Standardization (CENELEC) as the European Norm (EN) 29000 Series.
In Canada, it has been adopted by the Canadian Standards Association
(CSA) asthe Q 9000 series. However, it is most commonly referred to as
ISO 9000 in all countries.

SO 9000 isan introduction to the | SO 9000 family of standards. SO 9001
isamodel for quality assurance in design, devel opment, production,
installation, and servicing. Its focus on design and devel opment makes it
the most appropriate standard for software products.

Because the SO 9000 family is designed to apply to any industry, it is
somewhat difficult to apply to software development. | SO 9000.3 is a set
of guidelines designed to explain how to apply 1SO 9001 specifically to
software development.

© National Instruments Corporation 2-13 LabVIEW Development Guidelines

Chapter 2 Incorporating Quali

ty into the Development Process

SO 9001 does not dictate software devel opment procedures. Instead, it
reguires documentation of development procedures and adherence to the
standards you set. Conformance with SO 9001 does not guarantee quality.
Instead, theideabehind SO 9001 isthat companiesthat emphasize quality
and follow their documented practices produce higher quality productsthan
companies that do not.

U.S. Food and Drug Administration Standards

The U.S. Food and Drug Administration (FDA) requires all software used
in medical applications to meet its Current Good Manufacturing Practices
(CGMP). One of the goals of the standard isto make it as consistent as
possible with SO 9001 and a supplement to 1SO 9001, |SO/CD 13485.
These FDA standards are largely consistent with SO 9001, but there are
some differences. Specifically, the FDA did not think SO 9001 was
specific enough about certain requirements, so the FDA clearly outlined
theminitsrules.

Refer tothe FDA web siteat ht t p: / / www. f da. gov for moreinformation
about the CGMP rules and how they compare to 1SO 9001.

Capability Maturity Model (CMM)

LabVIEW Development Guidelines

In 1984, the United States Department of Defense created the Software
Engineering Institute (SEI) to establish standards for software quality. The
SEI developed amodel for software quality called the Capability Maturity
Model (CMM). The CMM focuses on improving the maturity of an
organization’ s processes.

Whereas | SO establishes only two levels of conformance, pass or fail, the
CMM ranks an organization into one of five categories.

Level 1. Initial—The organization has few defined processes; quality
and schedules are unpredictable.

Level 2. Repeatable—The organization establishes policies based on
software engineering techniques and previous projects that
allow repeated success. Groups use configuration management
tools to manage projects. Also, they track software costs,
features, and schedules. Project standards are defined and
followed. Although the groups can deal with similar projects
based on this experience, their processes might not be mature
enough to deal with significantly different types of projects.

2-14 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Level 3. Defined—The organization establishes a baseline set of
policiesfor al projects. Groups are well trained and know how
to customize this set of policies for specific projects. Each
project haswell-defined characteristicsthat makeit possibleto
accurately measure progress.

Level 4. Managed—Theorganization setsquality goa sfor projectsand
processes and measures progress toward those goals.

Level 5. Optimizing—The organization emphasizes continuous
process improvement across all projects. The organization
evaluates the software engineering techniquesit usesin
different groups and applies them throughout the organization.

Figure 2-1 illustrates the five level s of the CMM and the processes
necessary for advancement to the next level.

Level 5
Optimizing
Tune Processes Based

on Measurements

Level 4
Managed
Measure Success
of Processes

Level 3
Defined
/ Defined Process
for Organization
Level 2
Repeatable

Stable Process
for Projects

Level 1
Initial

Figure 2-1. Capability Maturity Model

Most companiesare at Level 1 or 2. The U.S. Department of Defense
prefersalevel 3 or higher CMM assessment in bids on new government
software devel opment. Some commercial companies, mainly in the United
States, also use the CMM.

The CMM differsfrom ISO 9001 in that it is software specific. Also, the
I SO specifications are fairly high-level documents. 1SO 9001 isonly afew
pages. CMM isvery detailed, with more than 500 pages.

© National Instruments Corporation 2-15 LabVIEW Development Guidelines

Chapter 2 Incorporating Quality into the Development Process

Institute of Electrical and Electronic Engineers (IEEE) Standards

LabVIEW Development Guidelines

|EEE defined a number of standards for software engineering.

|EEE Standard 730, first published in 1980, is a standard for software
quality assurance plans. This standard serves as a foundation for several
other |IEEE standards and gives a brief description of the minimum
requirements for a quality plan in the following areas:

e Purpose

* Reference documents

e Management

e Documentation

e Standards, practices, conventions, and metrics
* Reviewsand audits

o Test

e Problem reporting and corrective action

e Tools, techniques, and methodologies

e Code control

e Mediacontrol

e Supplier control

* Records collection, maintenance, and retention
e Traning

¢ Risk management

Aswith the SO standards, |EEE 730 isfairly short. It does not dictate how

to meet the requirements but requires documentation for these practicesto
a specified minimum level of detail.

In addition to |EEE 730, several other |EEE standards related to software
engineering exist, including the following:

e |EEE 610—Defines standard software engineering terminology.
« |EEE 829—Establishes standards for software test documentation.

* |EEE 830—EXxplainsthe content of good software requirements
specifications.

e |EEE 1074—Describes the activities performed as part of a software
lifecycle without requiring a specific lifecycle model.

e |EEE 1298—Details the components of a software quality
management system; similar to SO 9001.

2-16 www.ni.com

Chapter 2 Incorporating Quality into the Development Process

Your projects might be required to meet some or al these standards. Even
if you are not required to develop to any of these specifications, they can be
helpful in developing your own requirements, specifications, and quality
plans.

© National Instruments Corporation 2-17 LabVIEW Development Guidelines

Prototyping and Design
Techniques

This chapter gives you pointersfor project design, including programming
approaches, prototyping, and benchmarking.

When you first begin a programming project, deciding how to start can be
intimidating. Many LabVIEW developers start immediately with a code
and fix development process, building some of the VIsthey think are
needed. Then they realizethey actually need something different from what
they have built already. Consequently, alot of code isdevel oped, reworked,
or thrown away unnecessarily.

Clearly Define the Requirements of the Application

Before you devel op adetailed design of asystem, definegoasasclearly as
possible. Begin by making alist of requirements. Some requirements are
specific, such asthe types of 1/0, sampling rates, or the need for real-time
analysis. Y ou need to do some research at this early stage to be sure you
can meet the specifications. Other requirements depend on user
preferences, such as file formats or graph styles.

Try to distinguish between absol ute requirementsand desires. You might be
ableto satisfy all requests, but it is best to have an idea about what you can
sacrifice if you run out of time.

Also, be careful that the requirements are not so detailed that they constrain
the design. For example, when you design an 1/O system, the customer
probably has certain sampling rate and precision requirements. He or she
aso is constrained by cost. Include those issues in the requirements.
However, if you can avoid specifying the operating system and hardware,
you can adjust the design after you begin prototyping and benchmarking
various components. Aslong as the costs are within budget and the timing
and precision issues are met, the customer might not care whether the
system uses a particular type of plug-in card or other hardware.

© National Instruments Corporation 3-1 LabVIEW Development Guidelines

Chapter 3 Prototyping and Design Techniques

Another example of overly constraining adesign isto be too specific about
the format for display used in various screens with which the customer
interacts. A picture of adisplay might be useful to explain requirements, but
be clear about whether the picture is a requirement or aguideline. Some
designers go through significant difficultiestrying to produce a system that
behaves in a specific way because a certain behavior was arequirement. In
this case, there might be a simpler solution that produces the same results
at amuch lower cost in a shorter time.

Top-Down Design

The block diagram programming metaphor LabVIEW uses was designed
to be easy to understand. Most engineers already use block diagrams to
describe systems. The goal of the block diagram isto makeit easier for you
to move from the system block diagrams you create to executable code.

The basic concept isto divide the task into manageabl e pieces at logical
places. Begin with a high-level block diagram that describes the main
components of the V1. For example, you might have a block diagram that
consists of ablock for configuration, ablock for acquisition, a block for
analysis of the acquired data, ablock for displaying the results, ablock for
saving the data to disk, and a block to clean up at the end of the VI.

After you determine the high-level blocks, create a block diagram that
uses those blocks. For each block, create anew stub VI, whichisa
non-functional prototype that represents afuture subV1. Create an icon for
thisstub VI and create afront panel with the necessary inputs and outputs.
You do not have to create ablock diagram for this VI yet. Instead, define
the interface and seeif this stub VI isauseful part of the top-level block
diagram.

After you assemble a group of these stub Vs, determine the function of
each block and how it works. Ask yourself whether any given block
generates information that a subsequent VI needs. If so, make sure the
top-level block diagram sketch contains wires to pass the data between the
VIs. You can document the functionality of the VI and the inputs and
outputs using the Documentation page of the VI Propertiesdialog box in
LabVIEW.

In analyzing the transfer of data from one block to another, try to avoid
global variables because they hide the data dependency among ViIsand
might introduce race conditions. Refer to the LabVIEW Performance
application notes for more information about issues that might arise when

LabVIEW Development Guidelines 3-2 www.ni.com

Chapter 3 Prototyping and Design Techniques

creating V1s. Asthe VI becomes larger, it becomes difficult to debug if you
use global variables as the method of transferring information among VIs.

Continue to refine the design by breaking down each of the component
blocks into more detailed outlines. You can do this by going to the block
diagram of what was once a stub V1 and filling out its block diagram,
placing lower level stub VIson the block diagram that represent each of the
major actions the VI must perform.

Be careful not to jump too quickly into implementing the system at this
point. One of the objectives hereisto gradually refinethe design so you can
determine if you have left out any necessary components at higher levels.
For example, when refining the acquisition phase, you might realize there
is more information you need from the configuration phase. If you
completely implement one block before you analyze a subsequent block,
you might need to redesign the first block significantly. It is better to try to
refine the system gradually on several fronts, with particular attention to
sections that have more risk because of the complexity.

Data Acquisition System Example

This example describes how you might apply top-down design techniques
to a data acquisition system. This system must let the user provide some
configuration of the acquisition, such asrates, channels, and so on; acquire
data; process the data; and save the data to disk.

Start to designthe VI hierarchy by breaking the probleminto logical pieces.
The flowchart in Figure 3-1 shows several major blocks you can expect to
see in one form or another in every data acquisition system.

© National Instruments Corporation 3-3 LabVIEW Development Guidelines

Chapter 3 Prototyping and Design Techniques

Main
Config Hardware File Read Process Save
Setup Setup Data Data Data
File /0 Hardware
Handler Drivers

Figure 3-1. Flowchart of a Data Acquisition System

Think about the data structures needed, asking questions such as “What
information needs to accompany the raw data values from the Read Data
V1 tothe Save DataV1?' Thismight imply acluster array, whichisan array
of many channels, each element of which isacluster that contains the
value, the channel name, scale factors, and so on. A method that performs
some action on such adata structureis called an algorithm. Algorithmsand
data structures are intertwined. Thisisreflected in modern structured
programming, and it works well in LabVIEW. If you like to use
pseudocode, try that technique as well. Figures 3-2 and 3-3 show a
relationship between pseudocode and LabVIEW structures.

LabVIEW Development Guidelines 3-4 www.ni.com

Chapter 3 Prototyping and Design Techniques

Pseudocode Configuration Data Structure
MODULES

FOR each nogul e d_efl ned 0 ACTIVE SLOT
IF nodule is active ﬂd
THEN (]

FOR each channel
| F channel is am Lo LS
THEN §IU

Read_Data (nodul e, channel); MAME
Store data in output array; Channel Mame
ENDI F
ENDFOR | ACTIVE
ENDI F
ENDFOR

Figure 3-2. Mapping Pseudocode into a LabVIEW Data Structure

FOR each nodul e defi ned ———»N]FOFR each module...
I F nmodule is acti ve——— | Ta[True]
THEN ? NI FOR each channel...
FOR each channel \%‘ﬁ ACTIVE Pl True]
I F channel is active—_ L= CHiII:J?'JTELS [TREHE |
THEN ACTIVE |
Read_Dat a (nodul e, channel); .
Store data in output array; [= T
ENDI F T
ENDFOR
ENDI F
ENDFOR 0 7
| 7

Figure 3-3. Mapping Pseudocode into Actual LabVIEW Code
Notice that the program and the data structure correspond in Figure 3-2.

Many experienced LabVIEW users prefer to use sketches of LabVIEW
code. You can draw caricatures of the familiar structures and wire them
together on paper. Thisis agood way to think things through, sometimes
with the help of other LabVIEW programmers.

If you are not sure how acertain function will work, prototypeitinasimple
test VI, asshownin Figure 3-4. Artificial datadependency betweentheVlis
and the main While Loop in Figure 3-4 eliminates the need for a Sequence
Structure.

© National Instruments Corporation 3-5 LabVIEW Development Guidelines

Chapter 3

Prototyping and Design Techniques

Read Process Save Dizplay
Data Data Data Data

S arnple Time|
=
=

F Lt

o

Figure 3-4. Data Flow for a Generic Data Acquisition Program

Finally, you are ready to write the program in LabVIEW. Remember to
make the code modular, building subV1swhen thereisalogical division of
labor or the potential for code reuse. Solvethe more general problemsalong
with the specific ones. Test the subVIs as you write them. This might
involve constructing higher level test routines. It ismuch easier to catch the
problems in one small module than in alarge hierarchy of Vls.

Bottom-Up Design

LabVIEW Development Guidelines

Usually, avoid bottom-up system design. It is sometimes useful when used
in conjunction with top-down design, with bottom-up design, you start by
building thelower level componentsand then progressing up the hierarchy,
gradually putting pieces together until you have the complete system.

The problem with bottom-up design isthat because you do not start with a
clear idea of the big picture, you might build piecesthat do not fit together
the way you expect.

There are specific cases in which using bottom-up design is appropriate.
If the design is constrained by low-level functionality, you might need to
build that low-level functionality first to get an idea of how it can be used.
This might be true of an instrument driver, where the command set for the
instrument constrains you in terms of when you can do certain operations.
For example, with atop-down design, you might break up the design so
configuration of the instrument and reading a measurement from the
instrument are done in distinct VIs. The instrument command set might
turn out to be more constraining than you thought, requiring you to
combine these operations. In this case, with a bottom-up strategy, you
might start by building Vs that deal with the instrument command set.

3-6 www.ni.com

Chapter 3 Prototyping and Design Techniques

In most cases, use atop-down design strategy. You might mix in some
components of bottom-up design, if necessary. Thus, in the case of an
instrument driver, you might use arisk-minimization strategy to understand
the limitations of the instrument command set and devel op the lower level
components. Then you might use a top-down approach to develop the
high-level blocks.

The following example shows in more detail how you can apply this
technique to the process of designing a driver for a GPIB instrument.

Instrument Driver Example

A complex GPIB-controlled instrument can have hundreds of commands,
many of which interact with each other. A bottom-up approach might be
the most effective way to design adriver for such an instrument. The key
here isthat the problem is detail driven. Y ou must learn the command set
and design afront panel that is simple for the user yet gives full control of
theinstrument functionality. Design apreliminary VI hierarchy, preferably
one based on similar instrument drivers. Y ou must satisfy the user’ s needs.
Designing a driver requires more than putting knobs on GPIB commands.
The example chosen here isthe Tektronix 370A Curve Tracer. It has about
100 GPIB commands if you include the read and write versions of

each one.

Once you begin programming, the hierarchy fills out naturally, one subVI
at atime. Add lower level support ViIsasrequired, such asa
communications handler, aroutine to parse a complex header message, or
an error handler. For instance, the 370A requires a complicated parser for
the waveform preamble that contains information such as scale factors,
offsets, sources, and units. It is much cleaner to bury this operationin a
subV1 than to let it obscure the function of a higher level VI. Also, a
communications handler makes it simple to exchange messages with the
instrument. Such a handler formats and sends the message, reads the
response if required, and checksfor errors.

Once the basic functions are ready, assemble them into a demonstration
driver VI that makes the instrument do something useful. It quickly finds
any fundamental flawsin earlier choices of data structures, terminal
assignments, and default values.

Refer to the instrument drivers LabVIEW Help for more information about
developing.

© National Instruments Corporation 3-7 LabVIEW Development Guidelines

Chapter 3 Prototyping and Design Techniques

Thetop-level VI in Figure 3-5 isan automated test example. It calls nine of
the mgjor functions included in the driver package. Each function, in turn,
calls subVIsto perform GPIB 1/O, file 1/O, or data conversion.

Tek3700
HTE
Cerng

TEE IR

:f:g)j_?
TV

A0S 30 TEKZ?Og A0S 39

BRI o] proam| [T03] [Setup
Y e : Eoamtt TEXT
Xl 2]] B8
™

3>_ TEH

T2K3T0R|

=

Figure 3-5. VI Hierarchy for the Tektronix 370A

Designing for Multiple Developers

One of the main challenges in the planning stage is to establish discrete
project areas for each developer. Asyou design the specification and
architectural design, begin to see areas that have aminima amount of
overlap. For example, a complicated data monitoring system might have
one set of Visto display and manipulate data and another set to acquire the
information and transfer it to disk. These two modules are substantial, do
not overlap, and can be assigned to different developers.

Inevitably, there is some interaction among the modules. One of the
principal objectives of the early design work isto design how those
modulesinteract with each other. The data display system must access the
data it needs to display. The acquisition component needs to provide this
information for the other module. At an early stage in development, you

LabVIEW Development Guidelines 3-8 www.ni.com

Chapter 3 Prototyping and Design Techniques

might design the connector panes of Vs needed to transfer information
between the two modules. Likewise, if there are global data structures
that must be shared, analyze and define them early in the architectural
design stage before the individual devel opers begin work on the
components.

In the early stages, each developer can create stub VIs with the connector
pane interface that was defined for the shared module. Thisstub VI can do
nothing, or, if itisa VI that returnsinformation, you might haveit generate
random data. This allows each member of the development team to
continue devel opment without having to wait for the other modules to be
finished. It also makesit easy for the individual s to perform unit testing of
modules as described in Chapter 2, Incorporating Quality into the

Devel opment Process.

As components near completion, you can integrate the modules by
replacing the stub components with the real counterparts. At this point you
can perform integration testing to verify the system works asawhole. Refer
to the Integration Testing section in Chapter 2, Incorporating Quality into
the Development Process, for more information about integration testing.

Front Panel Prototyping

As mentioned in Chapter 1, Development Models, front panel prototypes
can provide insight into the organization of the program. Assuming the
program is user-interface intensive, you can attempt to create a mock
interface that represents what the user sees.

Avoid implementing block diagramsin the early stages of creating
prototypes so you do not fall into the code and fix trap. Instead, create just
the front panels. Asyou create buttons, listboxes, and rings, think about
what needs to happen as the user makes selections. Ask yourself questions
such as the following:

* Should the button lead to another front panel?

» Should some controls on the front panel be hidden and replaced by
others?

If new options are presented, follow those ideas by creating new front
panelstoillustratetheresults. Thiskind of prototyping can help solidify the
requirements for a project and give you a better idea of its scope.

Prototyping cannot solve all development problems, however. You haveto
be careful how you present the prototype to customers. Prototypes can give

© National Instruments Corporation 3-9 LabVIEW Development Guidelines

Chapter 3 Prototyping and Design Techniques

anoverly inflated sense that you are rapidly making progress on the project.
You have to be clear to the customer, whether it is an external customer or
other members of your company, that this prototype is strictly for design
purposes and that much of it is reworked in the development phase.

Another danger in prototyping isthat you might overdo it. Consider setting
strict time goals for the amount of time you prototype a system to prevent
yourself from falling into the code and fix trap.

Of course, front panel prototyping deals only with user interface
components. As described here, it does not deal with /O constraints, data
types, or algorithm issues in the design. The front panel issues might help
you better define some of these areas because it gives you an idea of some
of the major data structures you need to maintain, but it does not deal with
all theseissues. For those issues, you need to use one of the other methods
described in this chapter, such as performance benchmarking and top-down
design.

Performance Benchmarking

LabVIEW Development Guidelines

For 1/0 systems with a number of data points or high transfer rate
reguirements, test the performance-related components early because the
test might prove that the design assumptions are incorrect.

For example, if you plan to use an instrument as the data acquisition
system, you might want to build some simple tests that perform the type of
I/0 you planto use. Whilethe specifications might seem to indicate that the
instrument can handle the application you are creating, you might find that
triggering, for example, takes longer than you expected, that switching
between channels with different gains cannot be done at the necessary rate
without reducing the accuracy of the sampling, or that even though the
instrument can handle the rates, you do not have enough time on the
software side to perform the desired analysis.

A simple prototype of the time-critical sections of the application can
help reveal thiskind of problem. The timing template example in the
exanpl es/ general / structs. || b directory illustrates how to timea
process. Becausetimings can fluctuate from one run to another for avariety
of reasons, put the operation in aloop and display the average execution
time. You aso can use a graph to display timing fluctuations. Causes of
timing fluctuations can include system interrupts, screen updates, user
interaction, and initial buffer allocation.

3-10 www.ni.com

Chapter 3 Prototyping and Design Techniques

Identify Common Operations

Asyou design programs, you might find that certain operations are
performed frequently. Depending on the situation, this might be a good
place to use subV s or loops to repeat an action.

For example, consider Figure 3-6, where three similar operations run
independently.

aubi|

aubi|

aubi|

Figure 3-6. Operations Run Independently

An dternative to this design is aloop that performs the operation three
times, as shown in Figure 3-7. You can build an array of the different
arguments and use auto-indexing to set the correct value for each iteration
of the loop.

ubi|

L 7

Figure 3-7. Loop Performs Operation Three Times

If the array elements are constant, you can use an array constant instead of
building the array on the block diagram.

Some users mistakenly avoid using subV s because they are afraid of the

overhead it might add to the execution time. It istrue that you probably do
not want to create a subV1 from a simple mathematical operation such as

the Add function, especiadly if it must be repeated thousands of times.

© National Instruments Corporation 3-11 LabVIEW Development Guidelines

Chapter 3 Prototyping and Design Techniques

However, the overhead for asubV|I isfairly small and usualy is dwarfed
by any 1/0 you perform or by any memory management that might occur
from complex manipulation of arrays.

LabVIEW Development Guidelines 3-12 www.ni.com

Scheduling and Project Tracking

This chapter describes techniques for estimating development time and
using those estimates to create schedules. This chapter also distinguishes
between an estimate, which reflects the time required to implement a
feature, and a schedule, which reflects how you fulfill that feature.
Estimates are commonly expressed in ideal person-days, or 8 hours of
work. In creating a schedule from estimates, you must consider
dependencies—one project might have to be completed before another
can begin—and other tasks, such as meetings, support for existing projects,
and so on.

Estimation

One of the principle tasks of planning isto estimate the size of the project
andfit it into the schedule because most projectsare at least partially driven
by a schedule. Schedule, resources, and critical requirements interact to
determine what you can implement in arelease.

Unfortunately, when it comes to estimating software schedul es accurately,
few people are successful. Mg or companies have had software projects
exceed original estimates by ayear or more. Poor planning or an
incomplete idea of project goals often causes deadlines to be missed.
Another major cause of missed schedulesisfeature creep: The design
gradually growsto include features that were not part of the original
requirements. In many cases, the delays in schedule are aresult of using
acode and fix development process rather than a more measurable
development model.

Off-the-cuff estimates are almost never accurate for the following reasons:

» Peopleareusually overly optimistic. An estimate of two monthsat first
might seem like an infinite amount of time. During the last two weeks
of the project, when devel opers find themselves working many
overtime hours, it becomes clear that it is not.

» The objectives, implementation issues, and quality requirements are
not understood clearly. When challenged with the task of creating a

data monitoring system, an engineer might estimate two weeks. If the
product is designed by the engineer and for the engineer, this estimate

© National Instruments Corporation 4-1 LabVIEW Development Guidelines

Chapter 4

Scheduling and Project Tracking

might be right. However, if it is for other users, he or she probably is
not considering requirements that might be assumed by aless
knowledgeable user but never are specified clearly.

For example, Vs need to be reliable and easy to use because the
engineer is not going to be there to correct them if a problem occurs.
A considerable amount of testing and documentation is necessary.
Also, the user needs to save results to disk, print reports, and view
and manipulate the data on screen. If he or she has not discussed or
considered the project in detail, the engineer is setting himself or
herself up for failure.

e Day-to-day tasks are ignored. There are meetings and conferences to
attend, holidays, reports to write, existing projects to maintain, and
other tasks that make up a standard work week.

Accurate estimates are difficult because of the imprecise nature of most
software projects. In theinitial phase of a project, complete requirements
are not known. The way you implement those requirementsis even less
clear. Asyou clarify the objectives and implementation plans, you can
make more realistic estimates.

Thefollowing sections outline some of the current best-practice estimation
techniques in software engineering. All these techniques require breaking
the project down into more manageable components you can estimate
individually. There are other methods of estimating development time.
Refer to Appendix A, References, for alist of documents that describe
these and other estimation techniquesin more detail.

Source Lines of Code/Number of Nodes Estimation

LabVIEW Development Guidelines

Software engineering documentation frequently refers to source lines of
code (SLOC) as ameasurement, or metric, of software complexity. SLOC
as ameasurement of complexity is popular in part because the information
is easy to gather. Numerous programs exist for analyzing text-based
programming languages to measure complexity. In general, SLOC
measurements include every line of source code developed for a project,
excluding comments and blank lines.

The VI Metricstool, included in the LabVIEW Professional Development
System, provides a method for measuring a corresponding metric for
LabVIEW code. The VI Metrics tool counts the number of nodes used
within a VI or within a hierarchy of VIs. A nodeisamost any object on a
block diagram excluding labels and graphics but including functions, VIs,
and structures, such as loops and sequences. Refer to the LabVIEW Help

4-2 www.ni.com

Chapter 4 Scheduling and Project Tracking

for more information about how to use this tool and the accounting
mechanism it uses.

You can use number of hodes as a method for estimating future project
development efforts. For thisto work, you must build a base of knowledge
about current and previous projects. You must have an idea of the amount
of time it took to develop components of existing software products and
associate that information with the number of nodes used in that
component.

Armed with this historical information, you next need to estimate the
number of nodes required for anew project. Itisnot possibleto do thisfor
an entire project at once. Instead, you must break the project down into
subprojectsyou can compareto other tasks compl eted in the past. Onceyou
have broken it down, you can estimate each component and produce atotal
estimate of the number of nodes and the time required for devel opment.

Problems with Source Lines of Code
and Number of Nodes

Size-based metrics are not uniformly accepted in software engineering.
Many people favor them because it is arelatively easy metric to gather
and because alot of literature has been written about it. Detractors of size
metrics point out the following flaws:

e Size-based metrics are dependent on the organization. Lines of
code/numbers of nodes can be useful within an organization aslong as
you are dealing with the same group of people and they are following
the same style guidelines. Trying to use size metrics from other
companies/groups can be difficult because of differing levels of
experience, different expectations for testing and devel opment
methodologies, and so on.

* Size-based metrics are a so dependent on the programming language.
Comparing aline of codein assembly language to onewrittenin C can
be like comparing applesto oranges. Statements in higher level
languages can provide more functionality than those in lower level
languages. Comparing numbers of nodesin LabVIEW to lines of code
in atext-based programming language can be inexact for this reason.

* Not al codeis created with the same level of quality. A VI that
retrieves information from a user and writes it to afile can be written
so efficiently that it involves a small number of nodes or it can be
written poorly with alarge number of nodes.

© National Instruments Corporation 4-3 LabVIEW Development Guidelines

Chapter 4 Scheduling and Project Tracking

Effort Estimation

e Not al codeisequal in complexity. An add function is much easier
to use than an array index node. A block diagram that consists of
50 nested loops is much more difficult to understand than 50 subVlIs
connected together in aline.

» Size-based metrics rely on a solid base of information that associates
productivity with various projects. To be accurate, have statistics for
each member of ateam because the experience level of team members
varies.

Despite these problems, size metrics are used widely for estimating
projects. A good technique isto estimate a project using size metricsin
conjunction with one of the other methods described later in this chapter.
The two different methods can complement each other. If you find
differences between the two estimates, analyze the assumptionsin each
to determine the source of the discrepancy.

Effort estimation is similar in many ways to number of nodes estimation.
Y ou break down the project into components that can be more easily
estimated. A good guidelineis to break the project into tasks that take no
more than a week to complete. More complicated tasks are difficult to
estimate accurately.

Once you have broken down the project into tasks, you can estimate
the time to complete each task and add the results to calculate an
overall cost.

Wideband Delphi Estimation

LabVIEW Development Guidelines

Y ou can use wideband delphi estimation in conjunction with any of the
other estimation techniques this chapter describes to achieve morereliable
estimates. For successful wideband del phi estimation, multiple developers
must contribute to the estimation process.

First dividethe project into separate tasks. Then meet with other devel opers
toexplainthelist of tasks. Avoid discussing time estimatesduring thisearly
discussion.

Onceyou have agreed on aset of tasks, each devel oper separately estimates
the time it takes to complete each task using uninterrupted person-days as
the unit of estimation. The devel opers need to list any assumptions madein
forming estimates. The group then reconvenes to graph the overall
estimates as arange of values. It isagood idea to keep the estimates

4-4 www.ni.com

Chapter 4 Scheduling and Project Tracking

anonymous and to have a person outside the development team lead
this meeting.

After graphing the original set of values, each devel oper reports any
assumptions madein determining the estimate. For example, one devel oper
might have assumed a certain VI project takes advantage of existing
libraries. Another developer might point out that a specific VI ismore
complicated than expected becauseit invol ves communicating with another
application or a shared library. Another team member might be aware of a
task that involves an extensive amount of documentation and testing.

After stating assumptions, each devel oper reexamines and adjusts the
estimates. The group then graphs and discusses the new estimates. This
process might go on for three or four cycles.

In most cases, you converge to a small range of values. Absolute
convergence is not required. After the meeting, the developer in charge of
the project can use the average of the results, or he or she might ignore
certain outlying values. If some tasks turn out to be too expensive for the
timeallowed, he or she might consider adding resources or scaling back the
project.

Even if the estimate isincorrect, the discussion from the meetings gives a
clear idea of the scope of aproject. The discussion serves as an exploration
tool during the specification and design part of the project so you can avoid
problems later.

Refer to Appendix A, Referencesfor alist of documentsthat include more
information about the wideband delphi estimation method.

Other Estimation Techniques

Severa other techniques exist for estimating development cost. These are
described in detail in some of the documents listed in Appendix A,
References. The following list briefly describes some popular techniques:

* Function-Point Estimation—Function-point estimation differs
considerably from the size-estimation techniques described so far.
Rather than divide the project into tasks that are estimated separately,
function points are based on aformula applied to a category
breakdown of the project requirements. Therequirementsare analyzed
for features such as inputs, outputs, user inquiries, files, and external
interfaces. Thesefeatures aretallied, and each isweighted. Theresults
are added to produce a number that represents the complexity of the
project. You can compare this number to function-point estimates of
previous projects to determine an estimate.

© National Instruments Corporation 4-5 LabVIEW Development Guidelines

Chapter 4 Scheduling and Project Tracking

Function-point estimates were designed primarily with database
applications in mind but have been applied to other software areas as
well. Function-point estimation is popular as a rough estimation
method because it can be used early in the development process based
on requirements documents. However, the accuracy of function points
as an estimation method has not been thoroughly analyzed.

« COCOMO Estimation—COCOMO (COnstructive COst MOdel) isa
formula-based estimation method for converting software size
estimates to estimated devel opment time. COCOMO is a set of
methods that range from basic to advanced. Basic COCOMO makes a
rough estimate based on a size estimate and a simple classification of
the project type and experience level of ateam. Advanced COCOMO
takes into account reliability requirements, hardware features and
constraints, programming experience in a variety of areas, and tools
and methods used for devel oping and managing the project.

Mapping Estimates to Schedules

An estimate of the amount of effort required for a project can differ greatly
from the calendar time needed to complete the project. Y ou might
accurately estimate that aV 1 takes only two weeksto devel op. However, in
implementation you must fit that development into your schedule. You
might have other projects to complete first, or you might need to wait for
another developer to complete his or her work before you can start the
project. Y ou might have meetings and other events during that time also.

Estimate project development time separately from scheduling it into your
work calendar. Consider estimating tasksin ideal person-days, which
correspond to 8 hours of development without interruption.

After estimating project time, try to develop a schedul e that accounts for
overhead estimates and project dependencies. Remember that you have
weekly meetings to attend, existing projects to support, reports to write,
and other responsibilities.

Record progress meeting time estimates and schedul e estimates. Track
project time and time spent on other tasks each week. Thisinformation
might vary from week to week, but be able to determine an average that is
auseful referencefor future scheduling. Recording moreinformation helps
you plan future projects accurately.

LabVIEW Development Guidelines 4-6 www.ni.com

Chapter 4 Scheduling and Project Tracking

Tracking Schedules Using Milestones

Milestones are acrucia technique for gauging progress on a project.
If completing the project by a specific date is important, consider setting
milestones for completion.

Set up asmall number of major milestones for the project, making sure
each one has clear requirements. To minimize risk, set milestonesto
complete the most important components first. If, after reaching a
milestone, the project falls behind schedul e and thereis not enough timefor
another milestone, the most important components are already compl ete.

Throughout devel opment, strive to keep the quality level high. If you defer
problemsuntil amilestoneisreached, you are, in effect, deferring risksthat
might delay the schedule. Delaying problems can makeit seem likeyou are
making more progress than you actually are. Also, it can create asituation
where you attempt to build new devel opment on top of an unstable
foundation.

When working toward a major milestone, set smaller goals to gauge
progress. Derive minor milestones from the task list you created as part of
your estimation.

Refer to Appendix A, References, for alist of documentsthat include more
information about major and minor milestones.

Responding to Missed Milestones

One of the biggest mistakes people make is to miss a milestone and not
reexamine the project as a consequence. After missing a milestone, many
devel opers continue on the same schedul e, assuming they can work harder
and make up the time.

Instead, if you missamilestone, evaluate the reasonsyou missedit. Isthere
a systematic problem that might affect subsequent milestones? Isthe
specification still changing? Are quality problems slowing down new
development?1sthe devel opment team at risk of burning out from too much
overtime?

Consider problems carefully. Discuss each problem or setback and have
the entire team make suggestions on how to get back on track. Avoid
accusations. You might have to stop development and return to design for
aperiod of time. You might decide to cut back on certain features, stop
adding new features until al the problems are fixed, or renegotiate the
schedule.

© National Instruments Corporation 4-7 LabVIEW Development Guidelines

Chapter 4 Scheduling and Project Tracking

Deal with problems as they arise and monitor progress to avoid repeating
mistakes or making new ones. Do not wait until the end of the milestone or
the end of the project to correct problems.

Missing a milestone should not come as a complete surprise. Schedule
delays do not occur al at once. They happen little by little, day by day.
Correct problems as they arise. If you do not realize you are behind
schedule until the last two months of ayear-long project, you probably can
not get back on schedule.

LabVIEW Development Guidelines 4-8 www.ni.com

Creating Documentation

Taking the time to create quality documentation can mean the difference
between a usable and maintainable set of VIs, and VIsthat confuse users
and make future modifications needlessly difficult.

This chapter focuses on documentation that is specific to LabVIEW-based
development. It does not address general documentation issues that apply
to al software products.

Create several documents for software you develop. The two main
categories for this documentation are as follows:

» Design-related documentation—Requirements, specifications,
detailed design plans, test plans, and change history documents are
examples of the kinds of design-related documents you might need
to produce.

» User documentation—User documentation explains how to use the
software.

The style of each of these documentsis different. Design-related
documentation generally iswritten for an audience with extensive
knowledge of the tools that you are documenting, and that they are using.
User documentation is written for an audience with alesser degree of
understanding and experience with the software.

The size and style of each document can vary according to the type of
project. For simpletoolsthat are used only in-house, you might not need to
do much of either. If you planto sell aproduct, you must allow asignificant
amount of time to develop detailed user-oriented documentation that
describes the product. For products that must go through a quality
certification process, such as areview by the U.S. Food and Drug
Administration, you must ensure that the design-related documentation is
as detailed as required.

© National Instruments Corporation 5-1 LabVIEW Development Guidelines

Chapter 5 Creating Documentation

Design and Development Documentation

The format and detail level of the documentation you develop for
requirements, specifications, and other design-related documentation is
determined by the quality goals of the project. If you are devel oping to meet
aquality standard such as 1SO 9000, the format and detail level of these
documents are different from the format and detail level of an in-house
project.

Refer to Appendix A, References, for alist of documentsthat include more
information about the types of documents to prepare as part of the
development process.

LabVIEW includes features that simplify the process of creating
documentation for the VIs you design:

e History window—Usethe History window to record changesto a VI
as you make them.

« Print dialog box—Usethe Print dialog box to create printouts of the
front panel, block diagram, connector pane, and description of a V1.
You can also useit to print the names and descriptions of controls and
indicators for the VI and the names and paths of any subVIs. You can
print this information, generate Web pages, create online help source
files, or create word-processor documents.

Developing User Documentation

End users of VIsfall into two classes: end users of top-level VIsand end
users of subVIs. Each of these users have different documentation needs.
This section addresses techniques for creating documentation that helps
both of these classes of users. The format of user documentation depends
on the type of product you create.

Documentation for a Library of Vis

If the software you are creating is alibrary of VIsfor use by other
developers, such as an instrument driver or add-on package, create
documents with aformat similar to the LabVIEW Help. Because the
audience is other developers, you can assume they have aworking
knowledge of LabVIEW. The documentation might consist of an overview
of the contents of the package, examples of how to use the subVls, and a
detailed description of each subVI.

LabVIEW Development Guidelines 5-2 www.ni.com

Chapter 5 Creating Documentation

For each subV1, you might want to include the VI name and description, a
picture of the connector pane, and the description and a picture of the data
type for each of the controls and indicators on the connector pane.

You can generate much of this documentation easily if you use the
Documentation page of the VI Propertiesdiaog box for VIsand controls
asdescribed in the VI and Control Descriptions section later in this chapter.
You can use File»Print to create a printout of aV1 in aformat almost
identical to theformat used in the V1 and function reference information in
LabVIEW Help. With File»Print you a so can save the documentation to a
file and create documentation for multiple VIs at once.

Documentation for an Application

If you are developing an application for users who are not familiar with
LabVIEW, the documentation requires more introductory material. The
documentation covers basic features such as installation and system
requirements. It provides an overview of how the package works. If the
package uses /0O, describe the necessary hardware and any configuration
that must be done before the user starts the application.

For each front panel the user interacts with, provide a picture of the front
panel and a description of the major controls and indicators. Organize the
front panel descriptionsin atop-down fashion, with thefirst front panelsthe
user sees documented first. As described in the previous section, you can
use the Print dialog box to create this documentation.

Creating Help Files

Y ou can create online help or reference documents if you have the right
development tools. Online help documents are based on formatted text
documents. Y ou can create these documents using a word-processing
program, such as Microsoft Word, or using other help compiling tools. Y ou
can also create online help documentsin HTML with an HTML help
compiler. Special help features such as links and hotspots are created as
hidden text.

You can use the Print dialog box to help you create the source material for
the help documents.

Once you have created source documents, use a help compiler to create a
help document. If you need help files on multiple platforms, you must use
the help compiler for the specific platform on which the help files are used.
Onceyou have created and compiled the help files, you can add them to the

© National Instruments Corporation 5-3 LabVIEW Development Guidelines

Chapter 5 Creating Documentation

Help menu of LabVIEW or your own custom application by placing them
in the hel p directory. You aso can link to them directly from aV1 using
one of two ways.

You can link to the Help menu using the VI PropertiessDocumentation
dialog box. Refer to the VI Properites LabVIEW Help for more
information about linking to the Help menu from VIs. You also can use the
Help functions on the Functions»Application Control»Help palette to
link to topics in specific help files programmatically.

VI and Control Descriptions

Y ou can integrate information for the user in each VI you create by using
the VI description feature, by placing instructions on the front panel, and
by including descriptions for each control and indicator.

VI Description

The VI description in the File»VI Properties dialog box is often the only
source of information about a V| accessible to auser. The Context Help
window displaysthe VI description when the user moves the mouse cursor
over the VI icon, either the connector pane or the icon used as asubV1 on
ablock diagram.

Include the following important itemsin aV| description:
e Anoverview of the VI

e Instructionsfor use

« Descriptions of inputs and outputs

Self-Documenting Front Panels

One way of providing important instructionsisto place a block of text
prominently onthefront panel. A conciselist of important stepsisvaluable.
Y ou might even include a suggestion such as, “ Select File»V| Properties
for instructions” or “Select Help»Show Help.” For long instructions, you
can use a scrolling string control instead of afree label. Be sure to
right-click the control and select Data Oper ations»M ake Current Value
Default from the shortcut menu to save the text when you finish entering
the text.

If atext block requirestoo much space on the front panel, you can include

ahighly visible Help button on the front panel instead. Include the
instruction string on the front panel that appears when the user clicks the

LabVIEW Development Guidelines 5-4 www.ni.com

Chapter 5 Creating Documentation

Help button. Use the Window Appear ance page in the VI Properties
dialog box to configure this help panel as either a dialog box that requires
the user to click an OK button to close it and continue or as a window the
user can move anywhere and close anytime.

Alternatively, you can use aHelp button to open an entry in an online help
file. You can use the Help functions on the Functions»Application
Control»Help palette to open the Context Help window or to open ahelp
file and link to a specific topic.

Control and Indicator Descriptions

Include a description for every control and indicator. Y ou can enter this
with the Description and Tip shortcut menu item. The Context Help
window displays an object description when the user moves the mouse
cursor over the object.

When confronted with anew V1, auser has no aternative but to guess the
function of each control and indicator unless you include a description.
Always remember to enter a description as soon as you create the object.
Then, if you copy the object to another V1, the description is copied also.
Also be sure to tell users about this behavior.

Every control and indicator needs a description that includes the following
information:

* Functionality

o Datatype

» Vaid range (for inputs)

e Default value (for inputs)

» Behavior for special values (0, empty array, empty string, and so on)

» Additional information, such asif the user must set this value aways,
often, or rarely

Alternatively, you can list the default value in parentheses as part of the
control or indicator name. For controls and indicators on the VI connector
pane, mark the inputs and outputs by right-clicking the connector pane and
selecting This Connection is»sRequired, Recommended, or Optional
from the shortcut menu.

© National Instruments Corporation 5-5 LabVIEW Development Guidelines

LabVIEW Style Guide

This chapter describes recommended practices for good programming
technique and style. Remember that these are only recommendations, not
laws or strict rules. Severa experienced LabVIEW programmers have
contributed to this guide.

As mentioned in Chapter 2, Incorporating Quality into the Development
Process, inconsistent style causes problems when multiple developers are
working on the same project. The resulting VIs can confuse users and be
difficult to maintain. To avoid these problems, establish a set of style
guidelinesfor VI development. You can establish an initial set at the
beginning of the project and add additional guidelines as the project
progresses. The most important thing is often not the specific styleyou use,
but the consistency of that style.

A style checklist isincluded at the end of this chapter to help you maintain
quality asyou develop VIs. To savetime, review the list before and during
development. To create a successful V1, you must consider who will be
using it and for what reasons. Consider your audience:

e Usersneed aclear front panel
» Developers need an easy to read block diagram
» Everybody needs good documentation

Organization

Organize the Visin the file system to reflect the hierarchical nature of the
software. Make the top-level Vs directly accessible. Place subVlIsin
subdirectoriesand group them to reflect any modular componentsyou have
designed, such as instrument drivers, configuration utilities, and file 1/O
drivers.

Create adirectory for all the VIsfor one application and giveit a
meaningful name, as shown in Figure 6-1. Save the main Vlsin this
directory and the subVIsin a subdirectory. If the subVIs have subVIs,
continue the directory hierarchy downward.

© National Instruments Corporation 6-1 LabVIEW Development Guidelines

Chapter 6 LabVIEW Style Guide

o
&

by App.vi My App Sub

Figure 6-1. Directory Hierarchy

When naming Vs, VI libraries, and directories, avoid using characters
that are not accepted by al file systems, such as slash (/), backslash (\),
colon (), tilde (~), and so on. Most operating systems accept long
descriptive names for files, up to 31 characters on a Macintosh and
255 characters on other platforms.

Select Tools»Options to make sure the VI Search Path contains

<t opvi >\ * and <f oundvi >\ *. The* causes all subdirectoriesto be
searched. In Figure 6-1, MyApp. vi isthetop-level VI. This meansthat the
application searches for subVIsin the directory MyApp. Once asubVl is
found in a directory, the application looksin that directory for subsequent
subVls.

Avoid creating files with the same name anywhere within the hierarchy.
Only one VI of agiven name can bein memory at atime. If you haveaVI
with a specific name in memory and you attempt to load another V1 that
references asubV|I of the same name, the VI linksto the VI in memory. If
you make backup copies of files, be sure to save them into a directory
outside the normal search hierarchy so that LabVIEW does not mistakenly
load them into memory when you open development VIs.

Refer to the Saving VIs section of Chapter 7, Creating VIsand SubVis, in
the LabVIEW User Manual for more information about saving VIs
individually and in VI libraries.

LabVIEW Development Guidelines 6-2 www.ni.com

Chapter 6 LabVIEW Style Guide

Front Panel Style

Remember that a user’ sfirst contact with your work is the front panel.
Front panels should be well organized and easy to use.

Fonts and Text Styles

Do not be tempted to use all the fonts and styles available. Limit the VI to
thethree standard fonts—application, system, and dial og—unlessyou have
a specific reason to use adifferent font. For example, monospace fonts,
fonts that are proportionally spaced, are useful for string controls and
indicatorswhere the number of charactersiscritical. To set thedefault font,
select it from the Text Settings pull-down menuin the toolbar without any
text or objects selected. Y ou can select all thelabel syou need to change and
set the font in al of them at once using the Text Settings pull-down menu.

The actual font used for the three standard fonts varies depending on the
platform. For example, when working under Windows, preferences and
video driver settings will affect the size of the fonts. Text might appear
larger or smaller on different systems, depending on these factors. To
compensate for this, allow extra space for larger fonts and enable the Size
to Text option on the shortcut menu. Use carriage returnsto make multiline
text instead of resizing the text frame.

You can prevent labels from overlapping because of font changes on
multiple platforms by allowing extra space between controls. For example,
make spaceto theright of text that has been | eft-justified. Fontsarethe least
portable aspect of the front panel, so always test them on all of the target
platforms.

Color

Likefonts, it is easy to get carried away with color. The particular danger
of color isthat it distracts the operator from important information. For
instance, ayellow, green, and bright orange background makeit difficult to
see ared danger light. Another problem isthat other platforms might not
have as many colors available. Also, some users have black-and-white
monitorsthat cannot display certain color combinationswell. For example,
black-and-white monitors display black letters on ared background as all
black. Use aminimal number of colors, emphasizing black, white, and
gray. The following are some simple guidelines for using color:

* Never use color asthe soleindicator of device state. People with some
degree of color-blindness might not detect the change. Also, multiplot
graphsand charts can lose meaning when displayed in black and white.

© National Instruments Corporation 6-3 LabVIEW Development Guidelines

Chapter 6 LabVIEW Style Guide

e Useline stylesin addition to color.

« Uselight gray, white, or pastel colors for backgrounds.

e Sdect bright, highlighting colorsonly when theitemisimportant, such

as an error notification.

* Always check the VI on other platforms and on a black-and-white

monitor.

*« Beconsistent in use of color.

Graphics and Custom Controls

Y ou can enhance the functionality of the front panel with imported
graphics. Y ou can import bitmaps, Macintosh PICTs, Windows Enhanced
Metafiles, and text objects for use as backgrounds or in pict rings and
custom controls, as shown in Figure 6-2.

o r

Ll
—F
Ll

Figure 6-2. Example of Imported Graphics Used in a Pict Ring

Use a pict ring when a function or mode is conveniently described by a

picture.

Check how the imported pictures ook when the VI isloaded on another
platform. For example, aMacintosh PICT file that has an irregular shape
might convert to arectangular bitmap with awhite background on

Windows or UNIX.

One disadvantage of imported graphicsis that they slow down screen
updates. Make sure indicators and controls are not placed on top of a
graphic object. That way, the object does not have to be redrawn each time

the indicator is updated.

)

Tip If you must use alarge background picture with controls on top of it, try breaking it

into several smaller objects and import them separately. L arge graphics usually take longer
to draw than small ones. For instance, import several pictures of valves and pipes
individually instead of importing one large picture.

Use a custom Boolean control that istransparent in one state, and isvisible
in another to detect mouse clicks in specified regions of the screen.

LabVIEW Development Guidelines 6-4

www.ni.com

Chapter 6 LabVIEW Style Guide

Layout

Consider the arrangement of controls on front panels. Keep front panels
simple to avoid confusing the user, and use menus to help reduce clutter.
For top-level VIsthat users see, place the most important controlsin the
most prominent positions. Use the Align Objects and the Distribute
Objects pull-down menus to create a uniform layout. Use Edit»Reor der
Controlsin Panel to arrange controlsin alogical sequence.

Do not overlap controls with other controls or with their own label, digital
display, or other parts unless you are trying to achieve a special effect.
Overlapped controls are much slower to draw and might flash.

Use decorations such as raised rectangles or recessed framesto visually
group objectswith related functions, asshown in theillustration below. Use
clustersto group related data. However, do not use clusters for aesthetic
purposes only. It makes connectionsto the VI more difficult to understand.
Avoid importing graphic objects that are inanimate copies of real controls.
For instance, do not use a copy of acluster border to group controlsthat are
not actually in acluster.

Timebaze 1' 500 pSec ’I

Trigger 4 Mone 3

Fattern FFFFOO00
b azk: = 88880000

Rt IEI Single e |

Figure 6-3. Example of Using Decorations to Visually Group Objects Together

For subV I front panels the user does not see, you can place the objects so
they correspond to the connector pattern. Generally, place inputs on the | eft
and outputs on the right.

Sizing and Positioning

Front panels should fit on amonitor that is the standard resolution for most
intended users. Make the window as small as possible without crowding
controls or sacrificing agood layout. If the Vs are intended for in-house
use and everyone is using high-resolution display settings, design large

© National Instruments Corporation 6-5 LabVIEW Development Guidelines

Chapter 6

Labels

LabVIEW Style Guide

front panels. If you are doing commercia development, keep in mind that
some displays might offer alimited resolution, especially LCD displays
and touchscreens.

Front panels should open in the upper-l€eft corner of the screen for the
convenience of users with small screens. Place sets of Vs that are often
opened together so the user can see at least asmall part of each. Place front
panels that open automatically in the center of the screen by selecting

V1 PropertiessWindows Appear ance»Auto-Center. Centering the front
panels makes the the VI eaiser to read for users on monitors of various
Ssizes.

The Context Help window displays labels as part of the connector. If the
default value of acontrol isvalid, add it to the name in parentheses. Include
the units of the value, where applicable. The Required, Recommended,
Optional setting for connector pane terminal s affectsthe appearance of the
inputs and outputsin the Context Help window.

The name of a control or indicator should describe its function. For
example, for aring or labeled slide with options for volts, ohms, or
amperes, aname like " Select unitsfor display” is better than “V/O/A” and
iscertainly animprovement over thegeneric“Mode.” If the control isgoing
to be visible to the user, use captions to display along description and add
ashort label to prevent using valuable space on the block diagram. Use
property nodes to change captions programatically. For Boolean controls,
the name should give an indication of which state corresponds to which
function, while still indicating the default state. Free labels next to a
Boolean can help clarify the meaning of each position on a switch, as
shown in Figure 6-4.

Reset Device? [F)

Reset to default configuration before munning o
Fun with current configuration

Figure 6-4. Free Labels on a Boolean Control

Enums versus Rings

LabVIEW Development Guidelines

Becausethe names are a part of the datatype, you cannot change the names
in an enumeration programmatically at run time. Also, you cannot compare
two enumumerations of different types. If you wire an enumeration control
to something that expects a standard numeric, you will see a coercion dot

because the type is being converted.

6-6 www.ni.com

Chapter 6 LabVIEW Style Guide

Enumeration controls are useful for making code easier to read. Ring
controls are useful for front panels the user interacts with, where you want
to programmatically change the strings.

Default Values and Ranges

Property Nodes

Expect the user to supply invalid valuesto every control. Y ou can check for
invalid values in the block diagram or right-click the control and select
Data Rangeto set the control item to coerce valuesinto the desired range:
Minimum, Maximum, and | ncrement.

Set controls with reasonable default values. A V1 should not fail when run
with default values. Remember to show the default in parentheses in the
control label. Do not set default values of indicatorslike graphs, arrays, and
strings without a good reason because that wastes disk space when saving
the V1.

Usedefault valuesintelligently. In the case of high-level fileVIssuch asthe
Write Charactersto File V1, the default is an empty path that forcesthe VI
to display a File Selection dialog box. This can save the use of a Boolean
switch in many cases.

Other difficult situations must be dealt with programmatically. Many GPIB
instruments limit the permissible settings of one control based on the
settings of another. For example, a voltmeter might permit a range setting
of 2,000 V for DC but only 1,000 V for AC. If the affected controls like
Range and Mode reside in the same VI, place the interlock logic there. If
one or more of the controls are not readily available, you can request the
present settings from the instrument to ensure you do not try to set an
invalid combination.

Use property nodes to give the user more feedback on the front panel and
to makethe VI easier to use. Thefollowing are examples of using property
nodes to enhance ease of use:

* Set thetext focus to the main, most commonly used control.

» Disable or hide controls that are not currently relevant or valid.
* Guidethe user through steps by highlighting controls.

» Changewindow colorsto bring attention to error conditions.

© National Instruments Corporation 6-7 LabVIEW Development Guidelines

Chapter 6 LabVIEW Style Guide

Key Navigation

Dialog Boxes

LabVIEW Development Guidelines

Some users prefer to use the keyboard instead of a mouse. In some
environments, such as amanufacturing plant, only akeyboard isavailable.
Even if amouse is used, keyboard shortcuts, such as using the <Ent er >
key to select the default action of adialog box, add convenience. For these
reasons, consider including keyboard shortcuts for the Vls.

Select Edit»Reorder Controlsin Panel to see the order of the front panel
controls. In general, set the order to read left to right and top to bottom.

Pay attention to the key navigation options for buttons on the front panel.
You can set key navigation options by right-clicking any control and
selecting Advanced»K ey Navigation from the shortcut menu. Set the
<Ent er > key to bethe keyboard shortcut to the front panel default control.
However, if you have a multiline string control on the front panel, you
might not want to use the <Ent er > key as a shortcut. Refer to the
Controlling Button Behavior with Key Navigation section of the LabVIEW
User Manual for more information about using key navigation options.

If the front panel has a Cancel button, assign a shortcut to the <Esc> key.
You also can use function keys as navigation buttons to move from screen
to screen. If you do this, be sure to use the shortcuts consistently. For
controlsthat are offscreen, use the K ey Navigation dialog box to skip over
the controls when tabbing.

Also, you might consider using the K ey Focus property to set the focus
programmatically to a specific control when the front panel opens.

Dialog boxes can be used effectively in LabVIEW applications asaway to
group controlsthat are too numerous to place on one front panel. Consider
using the tab control to group controls effectively and reduce clutter.

Many modern programs use dial og boxesto announce messagesto the user,
but quite often thisis overused. Consider using a status text window to
display less serious warnings. Refer to the Designing Dial og Boxes section
of Chapter 4, Building the Front Panel, of the LabVIEW User Manual for
more information about creating dialog boxes.

6-8 www.ni.com

Chapter 6 LabVIEW Style Guide

Block Diagram Style

Styleisjust asimportant on the block diagram of the VI asthe front panel.
Users may not seeit, but other developerswill. A well-planned, consistent
block diagram is easier to understand and modify.

Good Wiring Techniques

The block diagram is the primary way for others to understand how a V1
works, therefore it is often worth the effort to follow afew simple steps to
make the block diagrams more organized and easier to read. The Align and
Distribute featurein LabVIEW can makeit easy to quickly arrange objects
on the block diagram to make it easier to see and understand groupings of
objects. Placing objects using symmetry and straight lines can make the
block diagram easier to read.

Some other good wiring tips are:

» Avoid placing any wires under any block diagram objects such as
subVIs or structures.

» Addasfew bendsinthewiresaspossiblewhiletryingto keep thewires
short. Avoid creating wires with long complicated paths that can be
confusing.

» Delete any extraneous wires to keep block diagram clean.

» Avoidtheuse of local variableswhen it is possible to pass the data by
wire. Every local variable that reads the data makes a copy of it.

» Try not to pass wires though structures if the datain the wire itself is
not used within the structure.

» Evenly space parallel wiresin straight lines and around corners.

Memory and Speed Optimization

There are many things you can do to optimize usage and execution time of
aLabVIEW VI. Generally an advanced topic, optimization quickly
becomes a concern when a program has large arrays and/or critical timing
problems. Refer to the LabVIEW Performance application note for more
information about optimizing LabVIEW VIs. Even though optimization
can be avery involved topic, you can take the following basic actions to
optimize an application:

» If speedisnot necessary to aWhile Loop, add aWait function to avoid
the problem of slowing down other tasks. Generally slowing down
other tasksis only an issue with loops that are not as active between
iterations, such asthe user interface loops, because LabVIEW runsthe

© National Instruments Corporation 6-9 LabVIEW Development Guidelines

Chapter 6 LabVIEW Style Guide

loop asquickly as possible and does not give many processor resources
to any other tasks. The dowing of tasks outside of the loop resultsin
the computer seeming sluggish even though it isrunning asimpleloop.
Adding a dlight delay between iterations with the Wait (ms) function
can dramatically help the computer run outside tasks normally without
affecting the operation of the loop. Typically adelay of 50 to 100 MS
is sufficient, but other factorsin the application might affect the delay.
The delay does not have to have any data dependencies, as shown in
Figure 6-5.

Mumber of 5amples|

[CoeT
50ms deday
]
0 O s v B IV [

Figure 6-5. While Loop with 50 Second Delay

« If possible, do not build arrays using the Build Array function within
aloop because the function makes repetitive calls to the memory
manager. A more efficient method of building an array isto use
auto-indexing or pre-sizethe array and use the Replace Array Element
function to place valuesin it. Similar issues exist when dealing with
strings because in memory, LabVIEW handles strings as arrays of
characters.

¢ Useglobal and local variables as sparingly as possible. You can use
both global and local variablesto write Vis very efficiently. However,
if you are misuse or abuse global and local variables, the memory
usage of the VI increases and the performance is affected.

« Choosing the proper data type for the data to be handled can be very
important in controlling the memory usage of the application. For
exampl e, imagine you have an extended-precision floating-point array
of 100,000 values, but the actual valuesthat are stored in the array are
only between the values 0 to 10. You could have used an array of
single-precision floating-point values for the following difference in
memory usage in Windows:

Array Data Type Memory Used

Array of 100,000 EXT values 1MB

LabVIEW Development Guidelines 6-10 www.ni.com

Chapter 6 LabVIEW Style Guide

Array Data Type Memory Used
Array of 100,000 SGL values 400 KB
Memory saved 600 KB

» Avoiding coercion dots also can hel p you reduce unnecessary memory
usage and speed. Coercion dots indicate that a conversion is taking
place from one data type to another, which means that a copy of the
data must be made. The effects of this become much more dramatic
when there is coercion on large arrays of data.

» Considerindicator overhead when designing the V1 if performanceis a
concern for the application. Frequently updating front panel indicators
with new data can effect the performance of the VI especidly if you
are displaying large amounts of datain graphs or charts. To optimize
the performance of the VI, only display the necessary information on
the front panel and only send datato indicatorsif the datais different
from what is already displayed.

Sizing and Positioning

The size of the block diagram window can affect how readable your
LabVIEW codeisto others. In general, try to make the block diagram
window no larger than the screen size. To ensure that the block diagram is
readable, keep it smaller than 800 x 600 pixels. Whileit isgood to be aware
of the size of the block diagram window, it isalso very important to ensure
that the LabVIEW code that is displayed in it is not too large. Code that is
much larger than the window displaying it can force others to scroll the
window, sometimes making the code harder to read. Code that requiresthe
user to scroll only horizontally or vertically isacceptable aslong asthe user
does not have to scroll an unreasonable amount to view the entire code.

Left-to-Right Layouts

LabVIEW was designed to use aleft-to-right and sometimes top-to-bottom
layout. Block diagrams should follow this convention. While the positions
of program elements do not determine execution order, avoid wiring from
right to left. Only wires and structures determine execution order.

Block Diagram Comments

Developers who maintain and modify V1s need good documentation.
Without it, modifying the code is more time-consuming and error-prone
than necessary.

© National Instruments Corporation 6-11 LabVIEW Development Guidelines

Chapter 6

LabVIEW Style Guide

Use comments on the block diagrams to explain what the codeis
doing. LabVIEW codeis not self-documenting even though it is
graphical. Free labels with a colored background work well for block
diagram comments.

Omit labels on function and subV | calls because they tend to be large
and unwieldy. Someone looking at the blcok diagram can easily find
out the name of afunction or subVI call by using the Context Help
window.

Usefreelabelsonwirestoidentify their use. Thisis particularly useful
for wires coming from shift registers.

Use labels on structures to specify the main functionality of that
structure.

Use labels on constants to specify the nature of the constant.

Use labelson Call Library Nodes to specify what function the nodeis
caling.

Use the description of Code Interface Nodes (CINSs) to record the
following information:

— Source codetitle and filename

— Platform and O/S

— Compiler version

— Whereto find the source code

— What the code does

— List of other files required by the CIN

— Other critical information required to maintain the CIN

Use comments to document algorithms that you use on the block
diagrams. If you use an algorithm from a book or other reference,
provide the reference information.

Icon and Connector Style

Using good style techniques when creating the icons and connectors for
Vs can greatly benefit users of those Vls.

For examples of good icons and connector designs, the LabVIEW Queue
Vs, available on Functions»Advanced»Synchr onization»Queue pal ette.

LabVIEW Development Guidelines

6-12 www.ni.com

Icon

@

Chapter 6 LabVIEW Style Guide

Theicon represents the VI on a palette and the block diagram. Use the
follwoing suggestions when creating icons:

» Createameaningful iconfor every V1. The LabVIEW librariesarefull
of well-designed icons that try to show the functionality of the
underlying program; use them as prototypes where applicable. When
you don't have a picture, text is acceptable.

Tip 8pt Small Fontsisagood size and font choice for text icons

» Createaunifiedicon style for related Vis. This helps users visually
understand what subV 1 calls are associated with the top-level V1.

* Do not use plays on words when making the icon. Plays on words
usually do not work for users who speak a different language. For
example, don't represent the datalogging V1 by a picture of a piece of
atree branch or alumberjack. This sort of picture does not
trandlate well.

» Always create a black and white icon for printing purposes. Probably
not every user has access to a nice color printer.

» Alwayscreate standard size (32x32) icons. VIswith smaller icons can
be awkward to select and wire. They also tend to look strange when
wired.

> Queue |

- | (- |- || e
R ®

|—__|':'_
b
5]

2.
m+ -m-
@

Figure 6-6. Example: Queue VIs

The Queue VIs use a picture (a graphical representation of a queue) asa
common element in their iconsto unify theicon designs. Notice that al of
theiconsuse pictures only (and nonethat are playson words), making these
icons suitable for speakers of any language.

Refer to the Creating an Icon section of the LabVIEW User Manual for
more information about using icons.

© National Instruments Corporation 6-13 LabVIEW Development Guidelines

Chapter 6 LabVIEW Style Guide

Connector

The connector has terminals that connect to the controls and indicators of
the subVIsof thetop-level VI. Usethefollowing suggestionswhen creating
connectors:

Style Checklist

Always select a connector pane pattern with extra terminals.
Unforeseen additionsto the VI may require more terminals. Changing
patterns requires relinking to the subV1 in all calling Vs and may
result in wiring incompatibilities.

Choose the same connector pane pattern for related VIs. Wire related
inputs and outputs on opposite terminals .

Wire inputs on the left and outputs on the right to follow the standard
|eft-to-right data flow.

Use the Required, Recommended, Optional setting for every
terminal.

Choose only connector pane patterns with 16 or fewer terminals.
While patterns with more terminals might seem useful, they are very
difficult to wire. If you need to pass more data, use clusters.

Strive for similar arrangements between panel and connector pane
layouts.

Use the following checklist to help you maintain consistent style and
quality. Y ou might want to copy this checklist to use on all LabVIEW
projects.

VI Checklist

LabVIEW Development Guidelines

Organize VIsin ahierarchical directory with easily accessible
top-level VIsand subVIsin subdirectories.

Avoid putting too many VIsin one library because large LLBs take
longer to save.

With LLBs, use Tools»Edit VI Library to mark top-level Vis.

If the VIswill be used as subV s, create a. mu file or edit the menu
that ispart of the LLB. Be sureto arrange the pal ettes, name the menus,
and hide dependent subVls.

6-14 www.ni.com

© National Instruments Corporation

Chapter 6 LabVIEW Style Guide

Give VI meaningful names without special characters, such as
backslash (\), dlash (/), colon (:), and tilde (~).

Use standard extensions so Windows and UNIX can distinguish files
(-vi,.ctl).

Capitalize first letters of VI names.

Distinguish example Vs, top-level Vs, subVIls, controls, and global
variables by saving them in subdirectories, separate librariesin the
same directory, or by giving them descriptive names such as

Mai nX. vi , Exanpl e of X vi,d obal X vi,and

TypeDef X. ctl.

Writea V1 description. Proofread it. Check the Context Help window.

Include your name and/or company and the dateinthe VI Description
on the Documentation page of the VI Properties dialog box.

When you modify a VI, use the History window to document the
changes.

Create a meaningful black-and-whiteicon in addition to a color icon.

Choose a connector pane pattern to leave extraterminalsfor later
development. Use consistent layout acrossrelated Vls.

Avoid using connector panes with more than 16 terminals.
Consider VI and window options carefully.

Hiding menu bars and using dial og box style makes Context Help and
V| descriptions inaccessible.

Hiding Abort and debugging buttons increases performance slightly.
Set print options to print attractive output in the most useful format.

Make test VIsthat check error conditions, invalid values, and Cancel
buttons.

Save test VIsin a separate directory so you can reuse them.

Load and test VIs on multiple platforms, making sure labels fit and
window size and position are correct.

6-15 LabVIEW Development Guidelines

Chapter 6 LabVIEW Style Guide

Front Panel Checklist

[1 Give controls meaningful names. Use consistent capitalization.
Make name label backgrounds transparent.
Check for consistent placement of control names.

Use standard, consistent fonts throughout al front panels.

O o o O

Use Sizeto Text for al text for portability and add carriage returns if
necessary.

[0 UseRequired, Recommended, and Optional settings on the
connector pane.

Put default values in parentheses after input names.

Include unit information in names if applicable, for example, Time
Limit (10 Seconds).

[0 Write descriptions for controls, including array, cluster, and refnum
elements. Remember that you might need to change the description
if you copy the control.

1 Arrange controls logically. For top-level Vs, put the most important
controlsin the most prominent positions. For subV s, put inputs on the
left and outputs on the right and follow connector pane terminals.

[l Arrange controls attractively, using the Align Objects and the
Distribute Objects pull-down menus.

Do not overlap controls.
Use color logically and sparingly, if at all.

Use error in and error out clusters where appropriate.

O o o d

Consider other common thread controls, such as taskID, refnum,
and name.

[0 ProvideaStop button if necessary. Do not usethe Abort button to stop
aVI. Hidethe Abort button.

[1 Usering controls and enumerated controls where appropriate. If you

are using a Boolean controls for two options, consider using an
enumerated control instead to allow for future expansion of options.

LabVIEW Development Guidelines 6-16 www.ni.com

0

U

Chapter 6 LabVIEW Style Guide

Use custom controls or typedefs for common controls, especially for
rings and enums.

In system controls, label controls with the same name asthe VI, for
example, Al ar m Bool ean. ct | hasthe default name Alarm Boolean.

Block Diagram Checklist

O

U

O O o oo d

O

© National Instruments Corporation

Avoid creating extremely large block diagrams. Limit the scrolling
necessary to seein the entire block diagram to one direction.

Label controls, important functions, constants, property nodes, local
variables, global variables, and structures.

Add comments. Use object |abels instead of free labels where
applicable and scrollable string constants for long comments.

Place labels bel ow objects when possible and right-justify text if label
is placed to the left of an object.

Use standard, consistent font conventions throughout.
Use Sizeto Text for all text and add carriage returns if necessary.

Reduce white space in smaller block diagrams but allow at least 3 or
4 pixels between objects.

Flow data from Ieft to right. Wires enter from the left and exit to the
right, not the top or the bottom.

Align and distribute functions, terminals, and constants.
Label long wires with small labels with white backgrounds.
Do not wire behind objects.

Make good use of reusable, testable subVIls.

Make sure the program can deal with error conditions and invalid
values.

Show name of source code or include source code for any CINs.
Save with the most important or the first frame of structures showing.
Review for efficiency, especially data copying, and accuracy,
especially parts without data dependency.

6-17 LabVIEW Development Guidelines

References

This appendix provides alist of references for further information about
software engineering concepts.

LabVIEW Technical Resource. Edited by Lynda P. Gruggett, LTR
Publishing, phone (214) 706-0587, fax (214) 706-0506.

http://ww. LTRPub. com A quarterly newsletter and disk of VIsthat
features technical articles about all aspects of LabVIEW.

Rapid Development: Taming Wild Software Schedules. Steve C.
McConnell, Microsoft Press. Explanation of software engineering
practices with many examples and practical suggestions.

Microsoft Secrets. Michael A. Cusumano and Richard W. Selby, Free Press.
In-depth examination of the programming practices Microsoft uses.
Containsinteresting discussions of what Microsoft has done right and what
it has done wrong. Includes a good discussion of team organization,
scheduling, and milestones.

Dynamics of Software Development. Jim McCarthy, Microsoft Press.
Another look at what has worked and what has not for devel opers at
Microsoft. Thisbook iswritten by adevel oper from Microsoft and contains
numerous real-world stories that help bring problems and solutionsinto
focus.

Software Engineering—A Practitioner’s Approach. Roger S. Pressman,
McGraw-Hill Inc. A detailed survey of software engineering techniques
with descriptions of estimation techniques, testing approaches, and quality
control techniques.

Handbook of Walkthroughs, Inspections, and Technical Reviews:
Evaluating Programs, Projects, and Products. Daniel P. Freedman

and Gerald M. Weinberg, Dorset House Publishing Co., Inc. A discussion
of how to conduct design and code reviews with many examples of things
to look for and the best practices to follow during areview.

SO 9000.3: A Tool for Software Product and Process | mprovement.
Raymond Kehoe and Alka Jarvis, Springer-Verlag New York, Inc.

© National Instruments Corporation A-1 LabVIEW Development Guidelines

Appendix A References

Describes what is expected by 1SO 9001 in conjunction with SO 9000.3
and provides templates for documentation.

Software Engineering Economics. Barry W. Boehm, Prentice-Hall.
Description of the wideband del phi and COCOM O estimation techniques.

Software Engineering. Edited by Merlin Dorfman and Richard Thayer,
IEEE Computer Science Press. Collection of articles on a variety of
software engineering topics, including a discussion of the spiral life cycle
model by Barry W. Boehm.

LabVIEW Development Guidelines A-2 www.ni.com

Technical Support Resources

Web Support

National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of www. ni . com

NI Developer Zone

The NI Developer Zone at zone. ni . comis the essentia resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education

National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at |ocations around the world. Visit the
Customer Education section of www. ni . comfor online course schedules,
syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of www. ni . com

© National Instruments Corporation B-1 LabVIEW Development Guidelines

Appendix B Technical Support Resources

Worldwide Support

National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of www. ni . com Branch office web sites
provide up-to-date contact information, support phone numbers, e-mail
addresses, and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

LabVIEW Development Guidelines B-2 www.ni.com

Glossary

black box testing

C

Capability Maturity
Model (CMM)

COCOMO Estimation

code and fix model

configuration
management

F

Function-Point
Estimation

© National Instruments Corporation G-1

A form of testing where a module is tested without knowing how the
moduleisimplemented. The moduleistreated asif it were ablack box that
you cannot look inside. Instead, you generate tests to verify the module
behaves the way it is supposed to according to the requirements
specification.

A model for judging the maturity of the processes of an organization and
for identifying the key practices that are required to increase the maturity
of these processes. The Software CMM (SW-CMM) has become ade facto
standard for assessing and improving software processes. Through the
SW-CMM, the Software Engineering Institute and software devel opment
community have put in place an effective means for modeling, defining,
and measuring the maturity of the processes software professional s use.

COnstructive COst MOdel. A formula-based estimation method for
converting software size estimates to estimated development time.

A lifecycle model that involves developing code with little or no planning,
and fixing problems as they arise.

A mechanism for controlling changesto source code, documents, and other
materials that make up a product. During software devel opment, Source
Code Control isaform of configuration management: Changes occur only
through the Source Code Control mechanism. It is also common to
implement rel ease configuration management to ensure a particular rel ease
of software can be rebuilt, if necessary. Thisimplies archival development
of tools, source code, and so on.

A formula-based estimation method applied to a category breakdown of
project requirements.

LabVIEW Development Guidelines

Glossary

integration testing

L

lifecycle model

S

Software Engineering
Institute (SEI)

source lines of code

spiral model

system testing

u

unit testing

LabVIEW Development Guidelines

Integration testing assures that individual components work together
correctly. Such testing may uncover, for example, a misunderstanding of
the interface between modules.

A model for software development, including steps to follow from the
initial concept through the release, maintenance, and upgrading of the
software.

A federally funded research and development center chartered to study
software engineering technology. The SEI islocated at Carnegie Mellon
University and is sponsored by the Defense Advanced Research Projects

Agency.

The measure of the number of lines of codethat make up aproject. Itisused
in some organi zations to measure the complexity and cost of aproject. How
the lines are counted depends on the organization. For example, some
organizations do not count blank lines and comment lines. Some count

C lines, and some count only the final assembly language lines.

A lifecycle model that emphasizes risk management through a series of
iterations in which risks are identified, evaluated, handled.

System testing begins after integration testing is complete. System testing
assures that all the individual components function correctly together and
constitute a product that meets the intended requirements. This stage often
uncovers performance, resource usage, and other problems.

Testing only a single component of a system, in isolation from the rest of
the system. Unit testing occurs before the module is incorporated into the
rest of the system.

G-2 www.ni.com

W

waterfall model

white box testing

wideband del phi
estimation

Glossary

A lifecycle model that consists of several non-overlapping stages,
beginning with the software concept and continuing through testing and
mai ntenance.

Unlike black box testing, white box testing creates tests that take into
account the particular implementation of the module. For example, white
box testing is used to verify all the paths of execution of the module have
been exercised.

Wideband delphi is a technique used by a group to estimate the amount of
effort a particular project will take.

© National Instruments Corporation G-3 LabVIEW Development Guidelines

Index

A

aphatesting, 2-9
B

beta testing, 2-9

bibliography, A-1

black box testing, 2-6

block diagram
checklist, 6-17
comments, 6-11
left-to-right layouts, 6-11

memory and speed optimization, 6-9

sizing and positioning, 6-11
style considerations, 6-9
top-down design, 3-2
wiring techniques, 6-9
bottom-up design, 3-6
Build Array function, avoiding, 6-10

C

Capability Maturity Model (CMM)
standards, 2-14

change control. See configuration management.

CINs, documenting, 6-12

CMM (Capability Maturity Model)
standards, 2-14

COCOMO (Constructive Cost Model)
estimation, 4-6

code and fix model, 1-4

Code Interface Nodes, documenting, 6-12

code walkthroughs, 2-11

coercion dots, avoiding, 6-11

color style guidelines, 6-3

comments, in block diagrams, 6-11
common operations, identifying, 3-11

© National Instruments Corporation

configuration management, 2-2
change control, 2-4
definition, 2-2
managing project-related files, 2-3
retrieving old versions of files, 2-3
source code control, 2-2
tracking changes, 2-4
connector pane style considerations, 6-14
Constructive Cost Model (COCOMO)
estimation, 4-6
controls and indicators
color, 6-3
default values and ranges, 6-7
descriptions, as documentation, 5-4
dialog boxes, 6-8
enumerations vs. rings, 6-6
font and text styles, 6-3
graphics and custom controls, 6-4
keyboard navigation, 6-8
labels, 6-6
layout, 6-5
performance considerations, 6-9
property nodes, 6-7
sizing and positioning, 6-5
style considerations, 6-3
conventions used in manual, ix
custom controls and graphics, 6-4
Customer Education, B-1

D

data acquisition system design example, 3-3
data types, choosing, 6-10

decorations, for visua grouping of objects, 6-5
default values for controls, 6-7

design reviews, 2-11

LabVIEW Development Guidelines

Index

design techniques, 3-1. See also development
models.
bottom-up design, 3-6
data acquisition system (example), 3-3
defining requirements for application, 3-1
front panel prototyping, 3-9
identifying common operations, 3-11
instrument driver (example), 3-7
multiple developer considerations, 3-8
performance benchmarking, 3-10
top-down design, 3-2
design-related documentation, 5-1
development models, 1-1. See also design
techniques; prototyping.
code and fix model, 1-4
common pitfals, 1-1
lifecycle models, 1-4
modified waterfall model, 1-7
prototyping for clarification, 1-7
spiral model, 1-9
waterfall model, 1-5
dialog boxes for front panels, 6-8
directories
naming, 6-1
style considerations, 6-2
V| search path, 6-2
documentation for LabVIEW Devel opment
Guidelines
conventions used in manual, ix
references, A-1
related documentation, x
documentation of applications, 5-1
design-related documentation, 5-1
help files, 5-3
LabVIEW features, 5-2
overview, 5-1
user documentation, 5-2
application documentation, 5-3
library of Vs, 5-2

LabVIEW Development Guidelines -2

V1 and control descriptions, 5-4
control and indicator
descriptions, 5-5
self-documenting front panels, 5-4
VI description, 5-4

E

effort estimation, 4-4. See also estimation.
enumerations vs. rings, 6-6
estimation, 4-1
COCOMO estimation, 4-6
effort estimation, 4-4
feature creep, 4-1
function point estimation, 4-5
mapping estimates to schedules, 4-6
overview, 4-1
problems with size-based metrics, 4-3
source lines of code/number of nodes, 4-2
wideband delphi estimation, 4-4

F

FDA (U.S. Food & Drug Administration)
standards, 2-14
feature creep, 4-1
file management
change control, 2-4
managing project-related files, 2-3
previous versions of files, 2-3
tracking changes, 2-4
filenames for directories, V1 libraries, and
Vls, 6-2
font style guidelines, 6-3
Food & Drug Administration (FDA)
standards, 2-14
front panels
color, 6-3
default values and ranges, 6-7
dialog boxes, 6-8
enumerations vs. rings, 6-6

www.ni.com

fonts and text styles, 6-3

graphics and custom controls, 6-4

keyboard navigation, 6-8

labels, 6-6

layout, 6-5

property nodes, 6-7

prototyping, 3-9

self-documenting, 5-4

sizing and positioning, 6-5

style checklist, 6-16

style considerations, 6-3
function point estimation, 4-5

G

global variables, avoiding, 6-10
graphics and custom controls, 6-4

H
help files
creating, 5-3
help compilers, 5-3
linking to Vs, 5-4
hierarchical organization of files, 6-1
directories (folders), 6-1
naming VIs, VI libraries, and
directories, 6-2
History window, 5-2

icon style considerations, 6-13

|EEE (Institute of Electrical and Electronic
Engineers) standards, 2-16

indicators. See controls and indicators.

Ingtitute of Electrical and Electronic Engineers
(IEEE) standards, 2-16

instrument driver design example, 3-7

integration testing, 2-8

© National Instruments Corporation -3

Index

International Organization for Standards
(1SO) 9000, 2-13

K
keyboard navigation, 6-8

L

labels
block diagram documentation, 6-11
controls and indicators, 6-6
font usage, 6-3
layout of front panels, 6-5
left-to-right layouts, 6-11
libraries. See VI libraries.
lifecycle models, 1-4
code and fix model, 1-4
definition, 1-4
LabVIEW prototyping methods, 1-8
modified waterfall model, 1-7
prototyping, 1-7
spiral model, 1-9
waterfall model, 1-5
lines of code. See Source Lines of Codes
(SLOCs) metric.
local variables, avoiding, 6-10

manual. See documentation for LabVIEW
Devel opment Guidelines.
memory and speed optimization, 6-9
metrics. See size-based metrics.
milestones
responding to missed milestones, 4-7
tracking schedules using milestones, 4-7
modified waterfall model, 1-7
multiple devel opers, design
considerations, 3-8

LabVIEW Development Guidelines

Index

naming VIs, VI libraries, and directories, 6-2
National Instruments Web support, B-1
NI Developer Zone, B-1
nodes
definition, 4-2
source lines of code/number of nodes
estimation, 4-2

P

performance
benchmarking, 3-10
memory and speed optimization, 6-9
positioning. See sizing and positioning.
postmortem evaluation, 2-12
Print dialog box, 5-2
project tracking. See scheduling and project
tracking.
property nodes, 6-7
prototyping. See also design techniques.
development model, 1-7
front panel prototyping, 3-9
LabVIEW prototyping methods, 1-8

Q

quality control, 2-1

code wakthroughs, 2-11

configuration management, 2-2
change contral, 2-4
managing project-related files, 2-3
retrieving old versions of files, 2-3
source code control, 2-2
tracking changes, 2-4

design reviews, 2-11

postmortem evaluation, 2-12

requirements, 2-1

software quality standards, 2-13
CMM, 2-14
FDA standards, 2-14

LabVIEW Development Guidelines -4

IEEE, 2-16
SO 9000, 2-13
style guidelines, 2-10
testing guidelines, 2-5
black box and white box testing, 2-6
formal methods of verification, 2-9
integration testing, 2-8
system testing, 2-9
unit testing, 2-6

R

ranges of values for controls, 6-7
references, A-1

rings vs. enumerations, 6-6

risk management. See spiral model.

S

safeguarding applications, 2-1. See also
quality control.
scheduling and project tracking, 4-1
estimation, 4-1
COCOMO estimation, 4-6
effort estimation, 4-4
function point estimation, 4-5
problems with size-based
metrics, 4-3
source lines of code/number of
nodes, 4-2
wideband delphi estimation, 4-4
mapping estimates to schedules, 4-6
tracking schedul es using milestones, 4-7
missed milestones, 4-7
size-based metrics
problems, 4-3
source lines of codes/number of
nodes, 4-2
sizing and positioning
block diagrams, 6-11
front panels, 6-6

www.ni.com

SLOCs. See source lines of code (SLOCs)
metric.
software quality standards, 2-13
Capability Maturity Model (CMM), 2-14
Ingtitute of Electrical and Electronic
Engineers (IEEE), 2-16
International Organization for
Standardization SO 9000, 2-13
U.S. Food and Drug Administration
(FDA), 2-14
source code control tools
change control, 2-4
managing project-related files, 2-3
previous versions of files, 2-3
purpose and use, 2-3
quality control considerations, 2-2
tracking changes, 2-4
source lines of code (SLOCs) metric
in estimation, 4-2
problems with, 4-3
speed and memory optimization, 6-9
spiral model, 1-9
standards. See software quality standards.
stub Vls, 3-9
style guidelines, 6-1
block diagram, 6-9
left-to-right layouts, 6-11
memory and speed optimization, 6-9
sizing and positioning, 6-11
wiring techniques, 6-9
connector panes, 6-14
front panels, 6-3
color, 6-3
default values and ranges, 6-7
descriptions, 6-6
enumerations vs. rings, 6-6
fonts and text, 6-3
graphics and custom controls, 6-4
keyboard navigation, 6-8
labels, 6-6
layout, 6-5

© National Instruments Corporation -5

Index

property nodes, 6-7
sizing and positioning, 6-5
hierarchical organization of files, 6-1
directories (folders), 6-1
naming VIs, VI libraries, and
directories, 6-2
icons, 6-13
inconsistent devel oper styles, 2-10
style checklist, 6-14
block diagram, 6-17
front panel, 6-16
Vls, 6-14
subVI library, documenting, 5-2
system integration, B-1
system testing, 2-9

T

technical support resources, B-1

testing guidelines, 2-5
black box and white box testing, 2-6
formal methods of verification, 2-9
integration testing, 2-8
system testing, 2-9
unit testing, 2-6

text style guidelines, 6-3

top-down design, 3-2

tracking changes, 2-4

tracking projects. See scheduling and project

tracking.

u

unit testing, 2-6

U.S. Food & Drug Administration (FDA)
standards, 2-14

user documentation. See documentation of
applications.

LabVIEW Development Guidelines

Index

v

verification methods, 2-9. See also testing
guidelines.

VI libraries
documenting, 5-2
hierarchical organization, 6-1

VI Metricstool, 4-2

V1 Search Path, 6-2

Vis
description, as documentation, 5-4
hierarchical organization, 6-1
linking to help files, 5-4
memory and speed optimization, 6-9
style checklist, 6-14

LabVIEW Development Guidelines

-6

W

Wait function, adding to While loops, 6-9
waterfall model, 1-5
modified, 1-7
Web support from National Instruments, B-1
white box testing, 2-6
wideband delphi estimation, 4-4
wiring techniques, 6-9
Worldwide technical support, B-2

www.ni.com

	Development Guidelines
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Development Models
	Common Development Pitfalls
	Lifecycle Models
	Code and Fix Model
	Waterfall Model
	Modified Waterfall Model
	Prototyping
	LabVIEW Prototyping Methods

	Spiral Model

	Summary

	Chapter 2 Incorporating Quality into the Development Process
	Quality Requirements
	Configuration Management
	Source Code Control
	Managing Project-Related Files
	Retrieving Old Versions of Files
	Tracking Changes
	Change Control

	Testing Guidelines
	Black Box and White Box Testing
	Unit, Integration, and System Testing
	Unit Testing
	Integration Testing
	System Testing

	Formal Methods of Verification

	Style Guidelines
	Design Reviews
	Code Walkthroughs
	Postmortem Evaluation
	Software Quality Standards
	International Organization for Standardization ISO�9000
	U.S. Food and Drug Administration Standards
	Capability Maturity Model (CMM)
	Institute of Electrical and Electronic Engineers (IEEE) Standards

	Chapter 3 Prototyping and Design Techniques
	Clearly Define the Requirements of the Application
	Top-Down Design
	Data Acquisition System Example

	Bottom-Up Design
	Designing for Multiple Developers
	Instrument Driver Example

	Front Panel Prototyping
	Performance Benchmarking
	Identify Common Operations

	Chapter 4 Scheduling and Project Tracking
	Estimation
	Source Lines of Code/Number of Nodes Estimation
	Problems with Source Lines of Code and�Number�of�Nodes

	Effort Estimation
	Wideband Delphi Estimation
	Other Estimation Techniques

	Mapping Estimates to Schedules
	Tracking Schedules Using Milestones
	Responding to Missed Milestones

	Chapter 5 Creating Documentation
	Design and Development Documentation
	Developing User Documentation
	Documentation for a Library of VIs
	Documentation for an Application

	Creating Help Files
	VI and Control Descriptions
	VI Description
	Self-Documenting Front Panels
	Control and Indicator Descriptions

	Chapter 6 LabVIEW Style Guide
	Organization
	Front Panel Style
	Fonts and Text Styles
	Color
	Graphics and Custom Controls
	Layout

	Sizing and Positioning
	Labels
	Enums versus Rings
	Default Values and Ranges
	Property Nodes
	Key Navigation
	Dialog Boxes

	Block Diagram Style
	Good Wiring Techniques
	Memory and Speed Optimization
	Sizing and Positioning
	Left-to-Right Layouts

	Block Diagram Comments

	Icon and Connector Style
	Icon
	Connector

	Style Checklist
	VI Checklist
	Front Panel Checklist
	Block Diagram Checklist

	Appendix A References
	Appendix B Technical Support Resources
	Glossary
	B-F
	I-U
	W

	Index
	A-D
	E-F
	G_M
	N-S
	T-U
	V-W

	Figures
	Figure 1-1. Waterfall Lifecycle Model
	Figure 1-2. Spiral Lifecycle Model
	Figure 2-1. Capability Maturity Model
	Figure 3-1. Flowchart of a Data Acquisition System
	Figure 3-2. Mapping Pseudocode into a LabVIEW Data Structure
	Figure 3-3. Mapping Pseudocode into Actual LabVIEW Code
	Figure 3-4. Data Flow for a Generic Data Acquisition Program
	Figure 3-5. VI Hierarchy for the Tektronix 370A
	Figure 3-6. Operations Run Independently
	Figure 3-7. Loop Performs Operation Three Times
	Figure 6-1. Directory Hierarchy
	Figure 6-2. Example of Imported Graphics Used in a Pict Ring
	Figure 6-3. Example of Using Decorations to Visually Group Objects Together
	Figure 6-4. Free Labels on a Boolean Control
	Figure 6-5. While Loop with 50 Second Delay
	Figure 6-6. Example: Queue VIs

	Table
	Table 1-1. Risk Exposure Analysis Example

