
User Manual
LabVIEW User Manual

July 2000 Edition
Part Number 320999C-01

Worldwide Technical Support and Product Information

www.ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06,
Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

© Copyright 1992, 2000 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of
or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL

INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
ComponentWorks™, DAQPad™, DataSocket™, HiQ™, HiQ-Script™, IVI™, LabVIEW™, National Instruments™, ni.com™,
NI-DAQ™, PXI™, and SCXI™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v LabVIEW User Manual

Contents

About This Manual
Organization of This Manual ...xvii
Conventions ...xviii

PART I
LabVIEW Concepts

Chapter 1
Introduction to LabVIEW

LabVIEW Documentation Resources..1-1
LabVIEW Example VIs and Tools ..1-3

LabVIEW Example VIs ..1-3
LabVIEW Tools ..1-3

Chapter 2
Introduction to Virtual Instruments

Front Panel ...2-1
Block Diagram...2-2

Terminals...2-3
Nodes...2-3
Wires..2-4
Structures...2-4

Icon and Connector Pane ...2-4
Using and Customizing VIs and SubVIs ...2-5

Chapter 3
LabVIEW Environment

Controls Palette..3-1
Functions Palette..3-1
Navigating the Controls and Functions Palettes ..3-2
Tools Palette ..3-2
Menus and the Toolbar ..3-3

Menus ..3-3
Shortcut Menus..3-3

Shortcut Menus in Run Mode ...3-3
Toolbar ..3-3

Contents

LabVIEW User Manual vi www.ni.com

Customizing Your Work Environment ... 3-4
Customizing the Controls and Functions Palettes... 3-4

Adding VIs and Controls to the User Library and the
Instrument Library ... 3-4

Creating and Editing Palette Views.. 3-5
How LabVIEW Stores Views .. 3-5

Building ActiveX Subpalettes .. 3-5
Representing Toolsets in the Palettes ... 3-5

Setting Work Environment Options.. 3-6
How LabVIEW Stores Options .. 3-6

Windows... 3-6
Macintosh ... 3-6
UNIX.. 3-7

Chapter 4
Building the Front Panel

Configuring Objects on the Front Panel .. 4-1
Showing and Hiding Optional Elements... 4-1
Changing Controls to Indicators and Vice Versa.. 4-2
Replacing Front Panel Objects.. 4-2
Setting Keyboard Shortcuts for Controls .. 4-3

Controlling Button Behavior with Key Navigation.......................... 4-3
Setting the Navigation Order of Front Panel Objects....................... 4-3

Coloring Objects ... 4-4
Using Imported Graphics .. 4-4
Grouping and Locking Objects ... 4-5
Resizing Objects ... 4-5
Scaling Front Panel Objects .. 4-5
Adding Space to Front Panel without Resizing Window 4-7

Front Panel Controls and Indicators .. 4-7
3D and Classic Controls and Indicators .. 4-7
Slides, Knobs, Dials, and Digital Displays ... 4-8

Slide Controls and Indicators ... 4-8
Rotary Controls and Indicators... 4-8
Digital Controls and Indicators... 4-8
Color Boxes .. 4-9
Color Ramps ... 4-9

Buttons, Switches, and Lights... 4-10
Text Entry Boxes, Labels, and Path Displays ... 4-10

String Controls and Indicators .. 4-10
Path Controls and Indicators... 4-10

Invalid Paths... 4-11
Empty Paths.. 4-11

Contents

© National Instruments Corporation vii LabVIEW User Manual

Array and Cluster Controls and Indicators..4-11
Tab Controls and Indicators ..4-11

Listboxes..4-12
Ring and Enumerated Type Controls and Indicators4-12

Ring Controls ..4-13
Enumerated Type Controls ...4-13

Advanced Enumerated Type Controls and Indicators4-13
I/O Name Controls and Indicators...4-14
References to Objects or Applications ..4-14
Dialog Controls ...4-15

Labeling ...4-15
Captions...4-16

Text Characteristics ...4-16
Designing User Interfaces..4-17

Using Front Panel Controls and Indicators ...4-18
Designing Dialog Boxes..4-18
Selecting the Screen Size...4-18

Chapter 5
Building the Block Diagram

Relationship between Front Panel Objects and Block Diagram Terminals...................5-1
Block Diagram Objects..5-1

Block Diagram Terminals ...5-1
Control and Indicator Data Types ...5-2
Constants ...5-3

Universal Constants ..5-4
User-Defined Constants..5-4

Block Diagram Nodes ...5-5
Functions Overview...5-6

Numeric Functions ..5-6
Boolean Functions ...5-6
String Functions...5-7
Array Functions ...5-7
Cluster Functions...5-7
Comparison Functions...5-8
Time and Dialog Functions ...5-8
File I/O Functions..5-8
Waveform Functions ...5-8
Application Control Functions ..5-9
Advanced Functions ..5-9
Adding Terminals to Block Diagram Functions ...5-9

Using Wires to Link Block Diagram Objects ..5-9
Automatically Wiring Objects...5-11

Contents

LabVIEW User Manual viii www.ni.com

Manually Wiring Objects.. 5-11
Selecting Wires ... 5-12
Removing Broken Wires... 5-12
Coercion Dots ... 5-12

Polymorphic VIs and Functions .. 5-13
Polymorphic VIs ... 5-13

Building Polymorphic VIs.. 5-13
Polymorphic Functions ... 5-15

Handling Variant Data... 5-15
Numeric Units and Strict Type Checking ... 5-17

Units and Strict Type Checking.. 5-17
Block Diagram Data Flow... 5-19

Data Dependency and Artificial Data Dependency .. 5-19
Missing Data Dependencies ... 5-20

Data Flow and Managing Memory ... 5-20
Designing the Block Diagram ... 5-21

Chapter 6
Running and Debugging VIs

Running VIs... 6-1
Configuring How a VI Runs ... 6-1

Correcting Broken VIs .. 6-2
Finding Causes for Broken VIs... 6-2
Common Causes of Broken VIs.. 6-2

Debugging Techniques.. 6-3
Execution Highlighting ... 6-3
Single-Stepping... 6-4
Probe Tool... 6-4
Breakpoints ... 6-4
Suspending Execution... 6-5

Determining the Current Instance of a SubVI 6-5
Commenting Out Sections of Block Diagrams... 6-6

Disabling Debugging Tools... 6-6
Undefined or Unexpected Data ... 6-6

Unexpected and Default Data in Loops .. 6-7
For Loops.. 6-7
While Loops ... 6-7

Default Data in Arrays .. 6-7
Preventing Undefined Data ... 6-8

Error Checking and Error Handling .. 6-8
Checking for Errors... 6-8
Error Handling .. 6-9

Error Clusters.. 6-9

Contents

© National Instruments Corporation ix LabVIEW User Manual

Using While Loops for Error Handling ..6-10
Using Case Structures for Error Handling ..6-10

Chapter 7
Creating VIs and SubVIs

Planning and Designing Your Project ...7-1
Designing Projects with Multiple Developers...7-2

Using Built-In VIs and Functions ..7-2
Building Instrument Control and Data Acquisition VIs and Functions7-2
Building VIs That Access Other VIs...7-3
Building VIs That Communicate with Other Applications.............................7-3

SubVIs ...7-4
Watching for Common Operations ...7-4
Setting up the Connector Pane ..7-6

Setting Required, Recommended, and Optional Inputs
and Outputs ..7-7

Creating an Icon ..7-8
Creating SubVIs from Portions of a VI...7-8
Designing SubVIs..7-8
Viewing the Hierarchy of VIs ...7-9

Saving VIs..7-9
Advantages of Saving VIs as Individual Files ..7-10
Advantages of Saving VIs as Libraries ...7-10
Managing VIs in Libraries...7-10
Naming VIs ...7-11
Saving for a Previous Version...7-11

Distributing VIs ...7-11
Building Stand-Alone Applications and Shared Libraries ..7-12

PART II
Building and Editing VIs

Chapter 8
Loop and Case Structures

For Loop and While Loop Structures ..8-2
For Loops...8-2
While Loops ..8-2

Avoiding Infinite While Loops ...8-3
Auto-Indexing Loops...8-4

Auto-Indexing to Set the For Loop Count ..8-4
Auto-Indexing with While Loops ...8-5

Contents

LabVIEW User Manual x www.ni.com

Shift Registers in Loops.. 8-5
Controlling Timing ... 8-6

Case and Sequence Structures ... 8-6
Case Structures.. 8-6

Case Selector Values and Data Types .. 8-7
Input and Output Tunnels ... 8-8
Using Case Structures for Error Handling.. 8-8

Sequence Structures .. 8-8
Avoiding Overusing Sequence Structures .. 8-9

Chapter 9
Grouping Data Using Strings, Arrays, and Clusters

Strings.. 9-1
Strings on the Front Panel ... 9-2

String Display Types .. 9-2
Tables .. 9-2
Programmatically Editing Strings... 9-3
Formatting Strings... 9-4

Format Specifiers.. 9-4
Numerics and Strings .. 9-5

Grouping Data with Arrays and Clusters .. 9-5
Arrays.. 9-5

Indexes.. 9-6
Examples of Arrays .. 9-6
Restrictions for Arrays.. 9-8
Creating Array Controls, Indicators, and Constants......................... 9-8
Array Index Display ... 9-9
Array Functions .. 9-10

Automatically Resizing Array Functions........................... 9-10
Clusters.. 9-11

Chapter 10
Local and Global Variables

Local Variables.. 10-1
Creating Local Variables .. 10-1

Global Variables .. 10-2
Creating Global Variables... 10-2

Read and Write Variables.. 10-3
Using Local and Global Variables Carefully .. 10-4

Initializing Local and Global Variables .. 10-4
Race Conditions .. 10-4
Memory Considerations when Using Local Variables 10-5
Memory Considerations when Using Global Variables 10-5

Contents

© National Instruments Corporation xi LabVIEW User Manual

Chapter 11
Graphs and Charts

Types of Graphs and Charts...11-1
Graph and Chart Options ...11-2

Multiple X- and Y-Scales on Graphs and Charts ..11-2
Anti-Aliased Line Plots for Graphs and Charts...11-2
Customizing Graph and Chart Appearance...11-2
Customizing Graphs ..11-3

Graph Cursors ...11-4
Scale Options ..11-4

Waveform Graph Scale Legend ...11-4
Graph Scale Formatting ..11-4
Using Smooth Updates..11-5

Customizing Charts ...11-5
Chart History Length ..11-5
Chart Update Modes ...11-5
Overlaid Versus Stacked Plots ..11-6

Waveform and XY Graphs ..11-6
Single-Plot Waveform Graph Data Types ..11-7
Multiplot Waveform Graph ..11-7
Single-Plot XY Graph Data Types..11-8
Multiplot XY Graph Data Types ..11-9

Waveform Charts ...11-9
Intensity Graphs and Charts...11-10

Color Mapping...11-11
Intensity Chart Options..11-12
Intensity Graph Options ..11-12

Digital Graphs..11-12
Masking Data...11-14

3D Graphs ..11-14
Waveform Data Type...11-15

Chapter 12
Graphics and Sound VIs

Using the Picture Indicator ..12-1
Picture Plots VIs ..12-3

Using the Polar Plot VI as a SubVI ...12-3
Using the Waveform Plot VI as a SubVI ..12-3
Using the Smith Plot VIs as SubVIs..12-4

Picture Functions VIs...12-5
Creating and Modifying Colors with the Picture Functions VIs.....................12-6

Contents

LabVIEW User Manual xii www.ni.com

Graphics Formats VIs.. 12-6
Sound VIs .. 12-7

Chapter 13
File I/O

Basics of File I/O... 13-1
Choosing a File I/O Format... 13-2

When to Use Text Files... 13-2
When to Use Binary Files ... 13-3
When to Use Datalog Files ... 13-4

Using High-Level File I/O VIs.. 13-5
Using Low-Level and Advanced File I/O VIs and Functions....................................... 13-6

Disk Streaming.. 13-7
Creating Text and Spreadsheet Files ... 13-8

Formatting and Writing Data to Files ... 13-8
Scanning Data from Files.. 13-9

Creating Binary Files... 13-9
Creating Datalog Files... 13-10
Writing Waveforms to Files .. 13-10
Reading Waveforms from Files... 13-11
Flow-Through Parameters ... 13-12
Creating Configuration Files ... 13-12

Using Configuration Settings Files ... 13-13
Windows Configuration Settings File Format .. 13-13

Logging Front Panel Data ... 13-15
Automatic and Interactive Front Panel Datalogging....................................... 13-15
Viewing the Logged Front Panel Data Interactively 13-16

Deleting a Record ... 13-16
Clearing the Log-File Binding.. 13-16
Changing the Log-File Binding .. 13-17

Retrieving Front Panel Data Programmatically .. 13-17
Retrieving Front Panel Data Using a SubVI 13-17

Specifying Records .. 13-18
Retrieving Front Panel Data Using File I/O Functions 13-18

Chapter 14
Documenting and Printing VIs

Documenting VIs... 14-1
Creating VI and Object Descriptions .. 14-2
Setting up the VI Revision History ... 14-2

Revision Numbers .. 14-2

Contents

© National Instruments Corporation xiii LabVIEW User Manual

Printing Documentation...14-3
Saving to HTML or RTF Files..14-3

Selecting Graphic Formats for HTML Files.......................14-4
Naming Conventions for Graphic Files..............................14-4

Creating Your Own Help Files ...14-4
Windows Help Files ...14-5

Printing VIs..14-5
Printing the Active Window..14-5
Printing Reports...14-6
Printing Programmatically...14-6

Printing at Completion ..14-6
Using a SubVI to Selectively Print at Completion14-7

Additional Printing Techniques...14-7

Chapter 15
Customizing VIs

Configuring the Appearance and Behavior of VIs ..15-1
Customizing Menus ...15-2

Creating Menus ...15-2
Menu Selection Handling ..15-3

Chapter 16
Programmatically Controlling VIs

Capabilities of the VI Server ...16-1
Building VI Server Applications ...16-2

Application and VI References ...16-3
Editing Application and VI Settings ..16-3

Property Nodes ..16-3
Implicitly Linked Property Nodes...16-4

Invoke Nodes...16-4
Manipulating Application Class Properties and Methods16-4
Manipulating VI Class Properties and Methods..16-5
Manipulating Application and VI Class Properties and Methods16-6

Dynamically Loading and Calling VIs ..16-6
Call By Reference Nodes and Strictly Typed VI Refnums.............................16-7

Editing and Running VIs on Remote Computers ..16-8
Control Refnums..16-8

Strictly Typed and Weakly Typed Control Refnums16-8

Contents

LabVIEW User Manual xiv www.ni.com

Chapter 17
Networking in LabVIEW

Choosing among File I/O, VI Server, ActiveX, and Networking 17-1
LabVIEW as a Network Client and Server ... 17-2
Using DataSocket Technology .. 17-2

Specifying a URL.. 17-3
Data Formats Supported by DataSocket ... 17-4
Using DataSocket on the Front Panel ... 17-5
Reading and Writing Live Data through the Block Diagram 17-6

DataSocket and Variant Data.. 17-7
Publishing VIs on the Web.. 17-9

Web Server Options .. 17-9
Creating HTML Documents ... 17-9
Publishing Front Panel Images ... 17-10

Front Panel Image Formats... 17-10
Low-Level Communications Applications.. 17-10

TCP and UDP.. 17-10
DDE (Windows) ... 17-11
Apple Events and PPC Toolbox (Macintosh) ... 17-11
Pipe VIs (UNIX) ... 17-11
Executing System-Level Commands (Windows and UNIX) 17-11

Chapter 18
ActiveX

ActiveX Objects, Properties, Methods, and Events .. 18-1
ActiveX VIs, Functions, Controls, and Indicators .. 18-2

LabVIEW as an ActiveX Client .. 18-3
Accessing an ActiveX-Enabled Application... 18-3
Inserting an ActiveX Control or Document on the Front Panel 18-4

LabVIEW as an ActiveX Server ... 18-4
Using Constants to Set Parameters in ActiveX VIs .. 18-4

Chapter 19
Calling Code from Text-Based Programming Languages

Call Library Function.. 19-1
Code Interface Node ... 19-1

Contents

© National Instruments Corporation xv LabVIEW User Manual

Chapter 20
Formulas and Equations

Methods for Using Equations in LabVIEW ..20-1
Formula Nodes...20-2

Using the Formula Node ...20-2
Variables in the Formula Node..20-3

Expression Nodes ..20-3
Polymorphism in Expression Nodes ...20-4

Using HiQ with LabVIEW ..20-4
HiQ and MATLAB Script Nodes ..20-5

Programming Suggestions for HiQ and MATLAB Scripts20-6
HiQ Support Files Required with a LabVIEW Application ..20-7

Appendix A
Organization of LabVIEW

Organization of the LabVIEW Directory Structure...A-1
Libraries...A-1
Structure and Support ..A-2
Learning and Instruction..A-2
Documentation ..A-2
Miscellaneous File...A-2
Macintosh ..A-2

Suggested Location for Saving Files ...A-3

Appendix B
Polymorphic Functions

Numeric Conversion ..B-1
Polymorphism for Numeric Functions ..B-2
Polymorphism for Boolean Functions ...B-4
Polymorphism for Array Functions ...B-5
Polymorphism for String Functions...B-5

Polymorphism for String Conversion Functions...B-5
Polymorphism for Additional String to Number FunctionsB-5

Polymorphism for Cluster Functions ...B-6
Polymorphism for Comparison Functions ...B-6
Polymorphism for Log Functions ..B-7

Contents

LabVIEW User Manual xvi www.ni.com

Appendix C
Comparison Functions

Comparing Boolean Values... C-1
Comparing Strings... C-1
Comparing Numerics... C-2
Comparing Arrays and Clusters .. C-2

Arrays.. C-2
Compare Elements Mode ... C-2
Compare Aggregates Mode .. C-3

Clusters.. C-3
Compare Elements Mode ... C-3
Compare Aggregates Mode .. C-3

Appendix D
Masking Digital Data

Appendix E
Technical Support Resources

Glossary

Index

© National Instruments Corporation xvii LabVIEW User Manual

About This Manual

This manual describes the LabVIEW graphical programming environment
and techniques for building applications in LabVIEW, such as test and
measurement, data acquisition, instrument control, datalogging,
measurement analysis, and report generation applications.

Use this manual to learn about LabVIEW programming features, including
the LabVIEW user interface and programming work spaces, and the
LabVIEW palettes, tools, and dialog boxes. This manual does not include
specific information about each palette, tool, menu, dialog box, control, or
built-in VI or function. Refer to the LabVIEW Help for more information
about these items and for detailed, step-by-step instructions for using
LabVIEW features and for building specific applications. Refer to the
LabVIEW Documentation Resources section of Chapter 1, Introduction to
LabVIEW, for more information about the LabVIEW Help and accessing it.

The LabVIEW User Manual is also available in Portable Document Format
(PDF). You can install the PDF version or access it from the Installation
CD. If you select the Complete install option, LabVIEW installs PDF
versions of all LabVIEW manuals. You must have Adobe Acrobat
Reader 3.0 or later installed to view the PDFs. Refer to the Adobe Systems
Incorporated Web site at www.adobe.com to download Acrobat Reader.

You can access the PDFs from the LabVIEW Help, but you must install the
PDFs to do so. This functionality is available only in Windows. Refer to the
LabVIEW Release Notes or LabVIEW Upgrade Notes for more information
about installing PDF versions of the LabVIEW manuals. Refer to the
LabVIEW Documentation Resources section of Chapter 1, Introduction to
LabVIEW, for information about accessing the PDFs in the LabVIEW
Library PDF.

Organization of This Manual
The LabVIEW User Manual includes two sections. Part I, LabVIEW
Concepts, describes programming concepts for building applications in
LabVIEW. The chapters in this section introduce you to the LabVIEW
programming environment and help you plan your application.

Part II, Building and Editing VIs, describes LabVIEW features, VIs, and
functions you can use to make your applications operate in specific ways.

About This Manual

LabVIEW User Manual xviii www.ni.com

The chapters in this section describe the usefulness of each LabVIEW
feature and outline each class of VIs and functions.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names, controls and buttons on the front panel, dialog boxes, sections of
dialog boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

About This Manual

© National Instruments Corporation xix LabVIEW User Manual

right-click (Macintosh) Press <Command>-click to perform the same action as a
right-click.

© National Instruments Corporation I-1 LabVIEW User Manual

Part I

LabVIEW Concepts

This part describes programming concepts for building applications in
LabVIEW. The chapters in this section introduce you to the LabVIEW
programming environment and help you plan your application.

Part I, LabVIEW Concepts, contains the following chapters:

• Chapter 1, Introduction to LabVIEW, describes LabVIEW, its
extensive documentation, and tools to help you design and build VIs.

• Chapter 2, Introduction to Virtual Instruments, describes the
components of virtual instruments, or VIs.

• Chapter 3, LabVIEW Environment, describes the LabVIEW palettes,
tools, and menus you use to build the front panels and block diagrams
of VIs. This chapter also describes how to customize the LabVIEW
palettes and set several work environment options.

• Chapter 4, Building the Front Panel, describes how to build the front
panel of a VI.

• Chapter 5, Building the Block Diagram, describes how to build the
block diagram of a VI.

• Chapter 6, Running and Debugging VIs, describes how to configure
how a VI runs and to identify problems with block diagram
organization or with the data passing through the block diagram.

• Chapter 7, Creating VIs and SubVIs, describes how to create your own
VIs and subVIs, distribute VIs, and build stand-alone applications and
shared libraries.

© National Instruments Corporation 1-1 LabVIEW User Manual

1
Introduction to LabVIEW

LabVIEW is a graphical programming language that uses icons instead of
lines of text to create applications. In contrast to text-based programming
languages, where instructions determine program execution, LabVIEW
uses dataflow programming, where the flow of data determines execution.

In LabVIEW, you build a user interface by using a set of tools and objects.
The user interface is known as the front panel. You then add code using
graphical representations of functions to control the front panel objects.
The block diagram contains this code. In some ways, the block diagram
resembles a flowchart.

You can purchase several add-on software toolsets for developing
specialized applications. All the toolsets integrate seamlessly in LabVIEW.
Refer to the National Instruments Web site at www.ni.com for more
information about these toolsets.

LabVIEW Documentation Resources
LabVIEW includes extensive documentation for new and experienced
LabVIEW users. All LabVIEW manuals and Application Notes are also
available as PDFs. Refer to the National Instruments Web site at
www.ni.com for updated documentation resources.

• Getting Started with LabVIEW—Use this manual to familiarize
yourself with the LabVIEW graphical programming environment and
the basic LabVIEW features you use to build data acquisition and
instrument control applications.

• LabVIEW Tutorial—Use this tutorial to learn basic LabVIEW
concepts. The tutorial guides you through several activities to
familiarize you with graphical programming. Access the LabVIEW
Tutorial by selecting Help»Contents and Index or by clicking the
LabVIEW Tutorial button in the LabVIEW dialog box.

• LabVIEW Quick Reference Card—Use this card to get started with
LabVIEW quickly. The card describes general editing, wiring, and
debugging techniques, and the LabVIEW palettes.

Chapter 1 Introduction to LabVIEW

LabVIEW User Manual 1-2 www.ni.com

• LabVIEW User Manual—Use this manual to learn about LabVIEW
programming concepts, techniques, features, VIs, and functions you
can use to create test and measurement, data acquisition, instrument
control, datalogging, measurement analysis, and report generation
applications.

• LabVIEW Help—Use this help file as a reference for information
about LabVIEW palettes, menus, tools, VIs, and functions. The
LabVIEW Help also includes step-by-step instructions for using
LabVIEW features. Access the LabVIEW Help by selecting
Help»Contents and Index.

The LabVIEW Help includes links to the following resources:

– LabVIEW Tutorial

– Example VIs

– LabVIEW Library PDF, which includes PDF versions of all the
LabVIEW manuals and Application Notes

Note (Macintosh and UNIX) The LabVIEW Help does not link to the LabVIEW Library PDF,
but you can access the LabVIEW Library PDF in LabVIEW by selecting Help»View
Printed Manuals.

– Technical support resources on the National Instruments Web site,
such as the Developer Zone, the KnowledgeBase, and the Product
Manuals Library

• LabVIEW Measurements Manual—Use this manual to learn more
about building data acquisition and instrument control applications in
LabVIEW. If you are a new LabVIEW user, read the Getting Started
with LabVIEW manual and the LabVIEW User Manual before you
read this manual.

• LabVIEW Library PDF—Use this PDF to search PDF versions of all
the LabVIEW manuals and Application Notes. Access the LabVIEW
Library PDF by selecting Help»View Printed Manuals.

• LabVIEW Development Guidelines—Use this manual to learn how
to build VIs that are easy to understand, use, and revise. The manual
describes project tracking, design, and documentation techniques.

Note The LabVIEW Development Guidelines manual is available only in the LabVIEW
Professional Development System.

• Using External Code in LabVIEW—Use this manual to learn how to
use Code Interface Nodes and external subroutines to import code

Chapter 1 Introduction to LabVIEW

© National Instruments Corporation 1-3 LabVIEW User Manual

written in text-based programming languages. The manual includes
information about shared external subroutines, libraries of functions,
memory and file manipulation routines, and diagnostic routines. The
manual also includes information about calling DLLs.

Note The Using External Code in LabVIEW manual is available only as a PDF.

• LabVIEW Application Notes—Use the LabVIEW Application
Notes to learn about advanced LabVIEW concepts and applications.
Refer to the National Instruments Web site at www.ni.com for new
and updated Application Notes.

• LabVIEW VXI VI Reference Manual—Use this manual to learn
about the VXI VIs for LabVIEW. This manual is a companion guide to
the NI-VXI Programmer Reference Manual that comes with the
VXI hardware.

Note The LabVIEW VXI VI Reference Manual is available only as a PDF.

LabVIEW Example VIs and Tools
Use the LabVIEW example VIs and tools to help you design and build VIs.

LabVIEW Example VIs
LabVIEW includes hundreds of example VIs you can use and incorporate
into your own VIs. You can modify an example to fit your application, or
you can copy and paste from one or more examples into your own VI.
Access example VIs by selecting Help»Examples. Refer to the Developer
Zone on the National Instruments Web site at zone.ni.com or the
Example Programs Database at www.ni.com/support/epd for
additional example VIs.

LabVIEW Tools
LabVIEW includes many tools to help you quickly configure your
measurement devices, including the following. You can access these tools
in the Tools menu.

• (Windows) Measurement & Automation Explorer helps you configure
National Instruments hardware and software.

• (Macintosh) The NI-DAQ Configuration Utility helps you configure
National Instruments DAQ hardware.

Chapter 1 Introduction to LabVIEW

LabVIEW User Manual 1-4 www.ni.com

• (Macintosh) The DAQ Channel Wizard helps you define what type of
device is connected to the DAQ hardware channels. After you define a
channel, the DAQ Channel Wizard remembers the settings.

• (Windows and Macintosh) The DAQ Channel Viewer lists the configured
DAQ channels.

• (Windows and Macintosh) The DAQ Solution Wizard helps you find
solutions for common DAQ applications. You can choose from
example VIs or create custom VIs.

© National Instruments Corporation 2-1 LabVIEW User Manual

2
Introduction to Virtual
Instruments

LabVIEW programs are called virtual instruments, or VIs, because
their appearance and operation imitate physical instruments, such as
oscilloscopes and multimeters. Every VI uses functions that manipulate
input from the user interface or other sources and display that information
or move it to other files or other computers.

A VI contains the following three components:

• Front panel—Serves as the user interface.

• Block diagram—Contains the graphical source code that defines the
functionality of the VI.

• Icon and connector pane—Identifies the VI so that you can use the
VI in another VI. A VI within another VI is called a subVI. A subVI
corresponds to a subroutine in text-based programming languages.

For more information…

Refer to the LabVIEW Help for more information about creating VIs and subVIs.

Front Panel
The front panel is the user interface of the VI. Figure 2-1 shows an example
of a front panel.

Chapter 2 Introduction to Virtual Instruments

LabVIEW User Manual 2-2 www.ni.com

Figure 2-1. Example of a Front Panel

You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input devices. Indicators are graphs,
LEDs, and other displays. Controls simulate instrument input devices and
supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.
Refer to Chapter 4, Building the Front Panel, for more information about
the front panel.

Block Diagram
After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. The block
diagram contains this graphical source code. Front panel objects appear as
terminals on the block diagram. You cannot delete a terminal from the
block diagram. The terminal disappears only after you delete its
corresponding object on the front panel. Refer to Chapter 5, Building the
Block Diagram, for more information about the block diagram.

The VI in Figure 2-2 shows several primary block diagram
objects—terminals, functions, and wires.

Chapter 2 Introduction to Virtual Instruments

© National Instruments Corporation 2-3 LabVIEW User Manual

Figure 2-2. Example of a Block Diagram and Corresponding Front Panel

Terminals
The terminals represent the data type of the control or indicator. For
example, a DBL terminal, shown at left, represents a double-precision,
floating-point numeric control or indicator. Refer to the Control and
Indicator Data Types section of Chapter 5, Building the Block Diagram,
for more information about data types in LabVIEW and their graphical
representations.

Terminals are entry and exit ports that exchange information between the
front panel and block diagram. Data you enter into the front panel controls
(a and b in Figure 2-2) enter the block diagram through the control
terminals. The data then enter the Add and Subtract functions. When the
Add and Subtract functions complete their internal calculations, they
produce new data values. The data flow to the indicator terminals, where
they exit the block diagram, reenter the front panel, and appear in front
panel indicators.

Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. The Add and Subtract functions in Figure 2-2 are nodes. Refer

Chapter 2 Introduction to Virtual Instruments

LabVIEW User Manual 2-4 www.ni.com

to the Block Diagram Nodes section of Chapter 5, Building the Block
Diagram, for more information about nodes.

Wires
You transfer data among block diagram objects through wires. In
Figure 2-2, wires connect the control and indicator DBL terminals to the
Add and Subtract functions. Each wire has a single data source, but you can
wire it to many VIs and functions that read the data. Wires are different
colors, styles, and thicknesses, depending on their data types. A broken
wire appears as a dashed black line. Refer to the Using Wires to Link Block
Diagram Objects section of Chapter 5, Building the Block Diagram, for
more information about wires.

Structures
Structures are graphical representations of the loops and case statements of
text-based programming languages. Use structures in the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order. Refer to Chapter 8, Loop and Case Structures, for examples and
more information about structures.

Icon and Connector Pane
After you build a VI front panel and block diagram, build the icon and the
connector pane so you can use the VI as a subVI. Every VI displays an icon,
shown at left, in the upper right corner of the front panel and block diagram
windows. An icon is a graphical representation of a VI. It can contain text,
images, or a combination of both. If you use a VI as a subVI, the icon
identifies the subVI on the block diagram of the VI. Refer to the Creating
an Icon section of Chapter 7, Creating VIs and SubVIs, for more
information about icons.

You also need to build a connector pane, shown at left, to use the VI as a
subVI. The connector pane is a set of terminals that corresponds to the
controls and indicators of that VI, similar to the parameter list of a function
call in text-based programming languages. The connector pane defines the
inputs and outputs you can wire to the VI so you can use it as a subVI. A
connector pane receives data at its input terminals and passes the data to the
block diagram code through the front panel controls and receives the results
at its output terminals from the front panel indicators.

Chapter 2 Introduction to Virtual Instruments

© National Instruments Corporation 2-5 LabVIEW User Manual

When you view the connector pane for the first time, you see a connector
pattern. You can select a different pattern if you want. The connector pane
generally has one terminal for each control or indicator on the front panel.
You can assign up to 28 terminals to a connector pane. If you anticipate
changes to the VI that would require a new input or output, leave extra
terminals unassigned. Refer to the Setting up the Connector Pane section
of Chapter 7, Creating VIs and SubVIs, for more information about setting
up connector panes.

Note Try not to assign more than 16 terminals to a VI. Too many terminals can reduce the
readability and usability of the VI.

Using and Customizing VIs and SubVIs
After you build a VI and create its icon and connector pane, you can use it
as a subVI. Refer to the SubVIs section of Chapter 7, Creating VIs and
SubVIs, for more information about subVIs.

You can save VIs as individual files, or you can group several VIs together
and save them in a VI library. Refer to the Saving VIs section of Chapter 7,
Creating VIs and SubVIs, for more information about saving VIs in
libraries.

You can customize the appearance and behavior of a VI. You also can create
custom menus for every VI you build, and you can configure VIs to show
or hide menu bars. Refer to Chapter 15, Customizing VIs, for more
information about customizing a VI.

© National Instruments Corporation 3-1 LabVIEW User Manual

3
LabVIEW Environment

Use the LabVIEW palettes, tools, and menus to build the front panels and
block diagrams of VIs. You can customize the Controls and Functions
palettes, and you can set several work environment options.

For more information…

Refer to the LabVIEW Help for more information about using the palettes, menus,
and toolbar, and customizing your work environment.

Controls Palette
The Controls palette is available only on the front panel. Select Window»
Show Controls Palette or right-click the front panel workspace to display
the Controls palette. You can place the Controls palette anywhere on the
screen.

You can change the way the Controls palette appears. Refer to the
Customizing the Controls and Functions Palettes section of this chapter
for more information about customizing the Controls palette.

Functions Palette
The Functions palette is available only on the block diagram. Select
Window»Show Functions Palette or right-click the block diagram
workspace to display the Functions palette. You can place the Functions
palette anywhere on the screen.

You can change the way the Functions palette appears. Refer to the
Customizing the Controls and Functions Palettes section of this chapter
for more information about customizing the Functions palette.

Chapter 3 LabVIEW Environment

LabVIEW User Manual 3-2 www.ni.com

Navigating the Controls and Functions Palettes
Use the navigation buttons on the Controls and Functions palettes to
navigate and search for controls, VIs, and functions. When you click a
subpalette icon, the entire palette changes to the subpalette you selected.
You also can right-click a VI icon on the palette and select Open VI from
the shortcut menu to open the VI.

The Controls and Functions palettes contain the following navigation
buttons:

• Up—Takes you up one level in the palette hierarchy.

• Search—Changes the palette to search mode. In search mode, you can
perform text-based searches to locate controls, VIs, or functions in the
palettes.

• Options—Opens the Function Browser Options dialog box, from
which you can configure the appearance of the palettes.

Tools Palette
The Tools palette is available on the front panel and the block diagram.
A tool is a special operating mode of the mouse cursor. When you select a
tool, the cursor icon changes to the tool icon. Use the tools to operate and
modify front panel and block diagram objects.

Select Window»Show Tools Palette to display the Tools palette. You can
place the Tools palette anywhere on the screen.

Tip Press the <Shift> key and right-click to display a temporary version of the Tools
palette at the location of the cursor.

Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-3 LabVIEW User Manual

Menus and the Toolbar
Use the menu and toolbar items to operate and modify front panel and block
diagram objects. Use the toolbar buttons to run VIs.

Menus
The menus at the top of a VI window contain items common to other
applications, such as Open, Save, Copy, and Paste, and other items
specific to LabVIEW. Some menu items also list shortcut key
combinations.

(Macintosh) The menus appear at the top of the screen.

Note Some menu items are unavailable while a VI is in run mode.

Shortcut Menus
The most often-used menu is the object shortcut menu. All LabVIEW
objects and empty space on the front panel and block diagram have
associated shortcut menus. Use the shortcut menu items to change the look
or behavior of front panel and block diagram objects. To access the shortcut
menu, right-click the object, front panel, or block diagram.

(Macintosh) Press the <Command> key and click the object, front panel,
or block diagram.

Shortcut Menus in Run Mode
When a VI is running, or is in run mode, all front panel objects have an
abridged set of shortcut menu items. Use the abridged shortcut menu items
to cut, copy, or paste the contents of the object, to set the object to its default
value, or to read the description of the object.

Some of the more complex controls have additional options. For example,
the array shortcut menu includes items to copy a range of values or go to
the last element of the array.

Toolbar
Use the toolbar buttons to run and edit a VI. When you run a VI, buttons
appear on the toolbar that you can use to debug the VI.

Chapter 3 LabVIEW Environment

LabVIEW User Manual 3-4 www.ni.com

Customizing Your Work Environment
You can change the way the Controls and Functions palettes appear, and
you can use the Options dialog box to set other work environment options.

Customizing the Controls and Functions Palettes
You can customize the Controls and Functions palettes in the following
ways:

• Add VIs and controls to the palettes.

• Set up different views for different users, hiding some VIs and
functions to make LabVIEW easier to use for one user while providing
the full palettes for another user.

• Rearrange the built-in palettes to make the VIs and functions you use
frequently more accessible.

• Convert a set of ActiveX controls into custom controls and add them
to the palettes.

• Add toolsets to palettes.

Adding VIs and Controls to the User Library and the
Instrument Library
The simplest method for adding VIs and controls to the Controls and
Functions palettes is to save them in the user.lib directory. When you
restart LabVIEW, the Functions»User Libraries and Controls»User
Controls palettes contain subpalettes for each directory, VI library (.llb),
or menu (.mnu) file in user.lib, and icons for each file in user.lib.
LabVIEW automatically updates the palettes as you add files to or remove
files from specific directories.

The Functions»Instrument I/O palette corresponds to the instr.lib
directory. Save instrument drivers in this directory to make them easily
accessible on the Functions palette.

When you add VIs or controls to the Controls and Functions palettes using
this method, you cannot determine the exact location of the VIs or controls
on the palettes.

Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-5 LabVIEW User Manual

Creating and Editing Palette Views
To control the exact location of the VIs and controls you add to the
Controls and Functions palettes, you must create a palette view.
LabVIEW stores Controls and Functions palette information in the
labview\menus directory. The menus directory contains directories that
correspond to each view that you create or install. If you run LabVIEW on
a network, you can define individual menus directories for each user,
which makes it easy to transfer views to other people.

When you create a new view of a palette, LabVIEW copies the original
built-in palette located in the labview\menus directory before you make
any changes. The protection of the built-in palettes ensures that you can
experiment with the palettes without corrupting the original view.

How LabVIEW Stores Views
The .mnu files and .llb files contain one Controls palette and one
Functions palette each. In addition, each file contains an icon for the
Controls and Functions palettes. You must store each subpalette you
create in a separate .mnu file.

When you select a view, LabVIEW checks the menus directory for a
directory that corresponds to that view. It builds the top-level Controls and
Functions palettes and subpalettes from the root.mnu file in that
directory that LabVIEW automatically creates every time you create a
view.

For each VI or control, LabVIEW creates an icon on the palette. For each
subdirectory, .mnu file, or .llb file, LabVIEW creates a subpalette on the
palette.

Building ActiveX Subpalettes
If you use ActiveX controls on the front panel, select Tools»Advanced»
Import ActiveX Controls to convert a set of ActiveX controls to custom
controls and add them to the Controls palette. LabVIEW saves the controls
in the user.lib directory by default because all files and directories in
user.lib automatically appear in the palettes.

Representing Toolsets in the Palettes
Toolsets you install in vi.lib\addons automatically appear on the top
level of the Controls and Functions palettes after you restart LabVIEW.
If you have toolsets installed elsewhere, you can move the toolsets to the
addons directory for easier access.

Chapter 3 LabVIEW Environment

LabVIEW User Manual 3-6 www.ni.com

Caution Do not save your own VIs and controls in the vi.lib directory because
LabVIEW overwrites these files when you upgrade. Save your VIs and controls in the
user.lib directory to add them to the Controls and Functions palettes.

Setting Work Environment Options
Select Tools»Options to customize LabVIEW. Use the Options dialog
box to set options for paths, performance and disk issues, front panels,
block diagrams, undo, debugging tools, colors, fonts, printing, the History
window, time and date formats, and other LabVIEW features.

Use the top pull-down menu in the Options dialog box to select among the
different categories of options.

How LabVIEW Stores Options
You do not have to edit options manually or know its exact format because
the Options dialog box does it for you. LabVIEW stores options differently
on each platform.

Windows
LabVIEW stores options in a labview.ini file in the LabVIEW
directory. The file format is similar to other .ini files. It begins with a
LabVIEW section marker followed by the option name and the values, such
as offscreenUpdates=True.

If you want to use a different options file, specify the file in the shortcut you
use to start LabVIEW. For example, to use an options file on your computer
named lvrc instead of labview.ini, right-click the LabVIEW icon on
the desktop and select Properties. Click the Shortcut tab and type
labview -pref lvrc in the Target text box.

Macintosh
LabVIEW stores options in the LabVIEW Preferences text file in the
System»Preferences folder.

If you want to use a different options file, copy the LabVIEW
Preferences file to the LabVIEW folder and make options changes in
the Options dialog box. When you launch LabVIEW, it first looks for an
options file in the LabVIEW folder. If it does not find the file there, it looks
in the System folder. If it does not find the file there, it creates a new one
in the System folder. LabVIEW writes all changes you make in the
Options dialog box to the first LabVIEW Preferences file it finds.

Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-7 LabVIEW User Manual

UNIX
LabVIEW stores options in the .labviewrc file in your home directory.
If you change an option in the Options dialog box, LabVIEW writes the
change to the .labviewrc file. You can create a labviewrc file in the
program directory to store options that are the same for all users, such as
the VI search path. Use the .labviewrc file to store options that are
different for each user, such as font or color settings, because entries in the
.labviewrc file in your home directory override conflicting entries in the
program directory.

For example, if you installed the LabVIEW files in /opt/labview,
LabVIEW first reads options from /opt/labview/labviewrc. If you
change an option in the Options dialog box, such as the application font,
LabVIEW writes that change to the .labviewrc file. The next time you
start LabVIEW, it uses the application font option in the .labviewrc file
instead of the default application font defined in
/opt/labview/labviewrc.

Option entries consist of an option name followed by a colon and a value.
The option name is the executable followed by a period (.) and an option.
When LabVIEW searches for option names, the search is case sensitive.
You can enclose the option value in double or single quotation marks. For
example, to use a default precision of double, add the following entry to the
.labviewrc file in your home directory.

labview.defPrecision : double

If you want to use a different options file, specify the file on the command
line when you start LabVIEW. For example, to use a file named lvrc in
the test directory instead of .labviewrc, type labview -pref
/test/lvrc. LabVIEW writes all changes you make in the Options
dialog box to the lvrc options file. When you specify an options file on the
command line, LabVIEW still reads the labviewrc file in the program
directory, but the options file specified on the command line overrides
conflicting entries in the program directory.

© National Instruments Corporation 4-1 LabVIEW User Manual

4
Building the Front Panel

The front panel is the user interface of a VI. Generally, you design the front
panel first, then design the block diagram to perform tasks on the inputs and
outputs you create on the front panel. Refer to Chapter 5, Building the
Block Diagram, for more information about the block diagram.

You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input devices. Indicators are graphs,
LEDs, and other displays. Controls simulate instrument input devices and
supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

Select Window»Show Controls Palette to display the Controls palette,
then select controls and indicators from the Controls palette and place
them on the front panel.

For more information…

Refer to the LabVIEW Help for more information about designing and configuring
the front panel.

Configuring Objects on the Front Panel
You can customize the front panel by using the control and indicator
shortcut menus, by setting the order of front panel objects, and by using
imported graphics. You also can manually resize front panel objects and set
them to automatically resize when the window size changes.

Showing and Hiding Optional Elements
Front panel controls and indicators have optional elements you can show or
hide. View a list of the available elements by right-clicking an object and
selecting Visible Items from the shortcut menu. Most objects have a label
and a caption. Refer to the Labeling section of this chapter for more
information about labels and captions.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-2 www.ni.com

Changing Controls to Indicators and Vice Versa
LabVIEW initially configures objects in the Controls palette as controls or
indicators based on their typical use. For example, if you select a toggle
switch from the Controls»Boolean palette, it appears on the front panel as
a control because a toggle switch is usually an input device. If you select an
LED, it appears on the front panel as an indicator because an LED is usually
an output device.

Some palettes contain a control and an indicator for the same object. For
example, the Controls»Numeric palette contains a digital control and a
digital indicator.

You can change controls to indicators and vice versa by right-clicking the
object and selecting Change to Control or Change to Indicator from the
shortcut menu.

Replacing Front Panel Objects
You can replace a front panel object with a different control or indicator.
When you right-click an object and select Replace from the shortcut menu,
a temporary Controls palette appears, even if the Controls palette is
already open. Select a control or indicator from the temporary Controls
palette to replace the current object on the front panel.

Selecting Replace from the shortcut menu preserves as much information
as possible about the original object, such as its name, description, default
data, dataflow direction (control or indicator), color, size, and so on.
However, the new object retains its own data type. Wires from the terminal
of the object or local variables remain on the block diagram, but they might
be broken. For example, if you replace a numeric terminal with a string
terminal, the original wire remains on the block diagram, but is broken.

The more the new object resembles the object you are replacing, the more
original characteristics you can preserve. For example, if you replace a
slide with a different style slide, the new slide has the same height, scale,
value, name, description, and so on. If you replace the slide with a string
control instead, LabVIEW preserves only the name, description, and
dataflow direction because a slide does not have much in common with a
string control.

You also can paste objects from the clipboard to replace existing front panel
controls and indicators. This method does not preserve any characteristics
of the old object, but the wires remain connected to the object.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-3 LabVIEW User Manual

Setting Keyboard Shortcuts for Controls
You can assign keyboard shortcuts to controls so users can navigate the
front panel without a mouse. Right-click the control and select Advanced»
Key Navigation from the shortcut menu to open the Key Navigation
dialog box.

When a user enters the keyboard shortcut while running the VI, the
associated control receives the focus. If the control is a text control,
LabVIEW highlights the text so you can edit it. If the control is Boolean,
the state of the button changes.

The Advanced»Key Navigation shortcut menu item is dimmed for
indicators because you cannot enter data in an indicator.

Controlling Button Behavior with Key Navigation
You can associate function keys with various buttons that control the
behavior of a front panel. You can define a button in a VI to behave like a
dialog box so that pressing the <Enter> key becomes the same as clicking
the default button.

(Macintosh and Sun) Pressing the <Return> key becomes the same as
clicking the default button.

If you associate the <Enter> or the <Return> key with a dialog box button,
LabVIEW automatically draws that button with a thick border around it.

If you associate the <Enter> or the <Return> key with a control, no string
control on that front panel can receive a carriage return. Consequently, all
strings on that front panel are limited to a single line. You can use scroll bars
to navigate longer strings.

If you cycle to a Boolean control and press the <Enter> or the <Return>
key, the Boolean control changes, even if another control uses the <Enter>
or the <Return> key as its keyboard shortcut. The assigned <Enter> or
<Return> keyboard shortcut applies only when a Boolean control is not
selected.

Setting the Navigation Order of Front Panel Objects
You can set the navigation order of front panel objects by selecting Edit»
Set Tabbing Order. You can then use the <Tab> key to navigate those
objects while running the VI.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-4 www.ni.com

Controls and indicators on a front panel have an order, called panel order,
that is unrelated to their position on the front panel. The first control or
indicator you create on the front panel is element 0, the second is 1, and
so on. If you delete a control or indicator, the panel order adjusts
automatically.

The panel order determines the navigation order while a VI is running. The
panel order also determines the order in which the controls and indicators
appear in the records of datalog files you create when you log the front
panel data. Refer to the Logging Front Panel Data section of Chapter 13,
File I/O, for more information about logging data.

To prevent users from accessing a control using the <Tab> key while
running the VI, place a checkmark in the Skip this control when tabbing
checkbox in the Key Navigation dialog box.

Coloring Objects
You can change the color of many objects but not all of them. For example,
block diagram terminals of front panel objects and wires use specific colors
for the type and representation of data they carry, so you cannot change
them.

Use the Coloring tool and right-click an object or workspace to add or
change the color of front panel objects or the front panel and block diagram
workspaces. You also can change the default colors for most objects by
selecting Tools»Options and selecting Colors from the top pull-down
menu.

Using Imported Graphics
You can import graphics from other applications to use as front panel
backgrounds, items in ring controls, and parts of other controls and
indicators. Refer to the LabVIEW Custom Controls, Indicators, and Type
Definitions Application Note for more information about using graphics in
controls.

To import a graphic, copy it to the clipboard and paste it on the front panel.
You also can select Edit»Import Picture from File.

Refer to the examples\general\controls\custom.llb for examples
of controls with imported graphics.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-5 LabVIEW User Manual

Grouping and Locking Objects
Use the Positioning tool to select the front panel objects you want to group
and lock together. Click the Reorder button on the toolbar and select
Group or Lock from the pull-down menu. Grouped objects maintain their
relative arrangement, while locked objects maintain their location on the
front panel, and cannot be deleted. You can set objects to be grouped and
locked at the same time. Tools other than the Positioning tool work
normally with grouped or locked objects.

Resizing Objects
You can change the size of most front panel objects. When you move the
Positioning tool over a resizable object, resizing handles appear at the
corners of a rectangular object, and resizing circles appear on a circular
object. When you resize an object, the font size remains the same. Resizing
a group of objects resizes all the objects within the group.

Some objects change size only horizontally or vertically when you resize
them, such as digital numeric controls and indicators. Others keep the same
proportions when you resize them, such as knobs. The Positioning cursor
appears the same, but the dashed border that surrounds the object moves in
only one direction.

You can manually restrict the growth direction when you resize an object.
To restrict the growth vertically or horizontally or to maintain the current
proportions of the object, press the <Shift> key as you click the object and
drag it. To resize an object around its center point, press <Ctrl-Shift> and
click the resizing cursors.

(Macintosh) Press the <Option-Shift> keys. (Sun) Press the <Meta-Shift>
keys. (HP-UX and Linux) Press the <Alt-Shift> keys.

Scaling Front Panel Objects
You can set the front panel objects to scale, or automatically resize in
relation to the window size, when you resize the front panel window. You
can set one object on the front panel to scale, or you can set all objects on
the front panel to scale. However, you cannot set multiple objects to scale
on the front panel unless you set all of them to scale or unless you group the
objects first. To scale an object, select the object and select Edit»Scale
Object With Panel.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-6 www.ni.com

If you set a single front panel object to scale, the object resizes itself
automatically in relation to any change in the front panel window size. The
other objects on the front panel reposition themselves to remain consistent
with their previous placement on the front panel but do not scale to fit the
new window size of the front panel.

Immediately after you designate a single object on the front panel to scale
automatically, gray lines outline several regions on the front panel, as
shown in Figure 4-1. The regions define the positions of the other front
panel objects in relation to the object you want to scale. When you resize
the front panel window, the object you set to scale automatically resizes and
repositions itself relative to its original location. The gray lines disappear
when you run the VI.

Figure 4-1. Front Panel with Object Set to Scale

When LabVIEW scales objects automatically, it follows the same
conventions as when you resize an object manually. For example, some
objects can resize only horizontally or vertically, and the font size remains
the same when you resize an object.

After LabVIEW automatically scales an object, the object might not scale
back to its exact original size when you size the window back to its original
position. Before you save the VI, select Edit»Undo to restore the original
front panel window and object sizes.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-7 LabVIEW User Manual

You can set an array to scale or set the objects within an array to scale. If
you set the array to scale, you adjust the number of rows and columns you
can see within the array. If you set the objects within the array to scale, you
always see the same number of rows and columns—though different
sizes—within the array.

Adding Space to Front Panel without Resizing Window
You can add space to the front panel without resizing the window. To
increase the space between crowded or tightly grouped objects, press the
<Ctrl> key and use the Positioning tool to click the front panel workspace.
While holding the key combination, drag out a region the size you want to
insert.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key. (HP-UX and
Linux) Press the <Alt> key.

A rectangle marked by a dashed border defines where space will be
inserted. Release the key combination to add the space.

Front Panel Controls and Indicators
Use the front panel controls and indicators located on the Controls palette
to build the front panel. Controls are knobs, push buttons, dials, and other
input devices. Indicators are graphs, LEDs, and other displays. Controls
simulate instrument input devices and supply data to the block diagram of
the VI. Indicators simulate instrument output devices and display data the
block diagram acquires or generates.

3D and Classic Controls and Indicators
Many front panel objects have a high-color, three-dimensional appearance.
Set your monitor to display at least 16-bit color for optimal appearance of
the objects.

The 3D front panel objects also have corresponding low-color,
two-dimensional objects. Use the 2D controls and indicators located on the
Controls»Classic Controls palette to create VIs for 256-color and
16-color monitor settings.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-8 www.ni.com

Slides, Knobs, Dials, and Digital Displays
Use the numeric controls and indicators located on the Controls»Numeric
and Controls»Classic Controls»Numeric palettes to simulate slides,
knobs, dials, and digital displays. The palette also includes color boxes and
a color ramp for setting color values. Use numeric controls and indicators
to enter and display numeric data.

Slide Controls and Indicators
The slide controls and indicators include vertical and horizontal slides, a
tank, and a thermometer. Change the value of a slide control or indicator by
using the Operating tool to drag the slider to a new position, by clicking a
point of the slide object, or by using the optional digital display. If you drag
the slider to a new position and the VI is running during the change, the
control passes intermediate values to the VI, depending on how often the
VI reads the control.

Slide controls or indicators can display more than one value. Right-click
the object and select Add Slider from the shortcut menu to add more
sliders. The data type of a control with multiple sliders is a cluster that
contains each of the numeric values. Refer to the Clusters section of
Chapter 9, Grouping Data Using Strings, Arrays, and Clusters, for more
information about clusters.

Rotary Controls and Indicators
The rotary controls and indicators include knobs, dials, gauges, and meters.
The rotary objects operate similarly to the slide controls and indicators.
Change the value of a rotary control or indicator by moving the needles, by
clicking a point of the rotary object, or by using the optional digital display.

Rotary controls or indicators can display more than one value. Right-click
the object and select Add Needle from the shortcut menu to add new
needles. The data type of a control with multiple needles is a cluster that
contains each of the numeric values. Refer to the Clusters section of
Chapter 9, Grouping Data Using Strings, Arrays, and Clusters, for more
information about clusters.

Digital Controls and Indicators
Digital controls and indicators are the simplest way to enter and display
numeric data. You can resize these front panel objects horizontally to

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-9 LabVIEW User Manual

accommodate more digits. You can change the value of a digital control or
indicator by using the following methods:

• Use the Operating or Labeling tool to click inside the digital display
window and enter numbers from the keyboard.

• Use the Operating tool to click the increment or decrement arrow
buttons of a digital control.

• Use the Operating or Labeling tool to place the cursor to the right of
the digit you want to change and press the up or down arrow key on the
keyboard.

Color Boxes
A color box displays a color that corresponds to a specified value. For
example, you can use color boxes to indicate different conditions, such as
out-of-range values. The color value is expressed as a hexadecimal number
with the form RRGGBB. The first two digits control the red color value.
The second two digits control the green color value. The last two digits
control the blue color value.

Set the color of the color box by clicking it with the Operating or Coloring
tool to display the color picker.

Color Ramps
A color ramp uses color to display its numeric value. You configure a color
scale that consists of at least two arbitrary markers, each with a numeric
value and a corresponding display color. As the input value changes, the
color displayed changes to the color that corresponds to that value. Color
ramps are useful for visually indicating data ranges, such as a warning
range for when a gauge reaches dangerous values. For example, you can
use a color ramp to set the color scale for intensity charts and graphs. Refer
to the Intensity Graphs and Charts section of Chapter 11, Graphs and
Charts, for more information about intensity charts and graphs.

Right-click the color ramp and use the shortcut menu options to customize
the appearance, size, colors, and number of colors.

You also can add a color ramp to any knob, dial, or gauge on the front panel.
Meters have a visible color ramp by default.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-10 www.ni.com

Buttons, Switches, and Lights
Use the Boolean controls and indicators located on the Controls»Boolean
and Controls»Classic Controls»Boolean palettes to simulate buttons,
switches, and lights. Use Boolean controls and indicators to enter and
display Boolean (TRUE/FALSE) values. For example, if you are
monitoring the temperature of an experiment, you can place a Boolean
warning light on the front panel to indicate when the temperature goes
above a certain level.

Use the shortcut menu to customize the appearance of Boolean objects and
how they behave when you click them.

Text Entry Boxes, Labels, and Path Displays
Use the string and path controls and indicators located on the Controls»
String & Path and Controls»Classic Controls»String & Path palettes to
simulate text entry boxes and labels and to enter or return the location of a
file or directory.

String Controls and Indicators
Enter or edit text in a string control on the front panel by using the
Operating tool or the Labeling tool. By default, new or changed text does
not pass to the block diagram until you terminate the edit session. You
terminate the edit session by clicking elsewhere on the panel, changing to
a different window, clicking the Enter button on the toolbar, or pressing
the <Enter> key on the numeric keypad. Pressing the <Enter> key on the
keyboard enters a carriage return.

(Macintosh and Sun) Pressing the <Return> key on the keyboard enters a
carriage return.

Refer to the Strings on the Front Panel section of Chapter 9, Grouping
Data Using Strings, Arrays, and Clusters, for more information about the
string control and indicator.

Path Controls and Indicators
Use path controls and indicators to enter or return the location of a file or
directory. Path controls and indicators work similarly to string controls and
indicators, but LabVIEW formats the path using the standard syntax for the
platform you are using.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-11 LabVIEW User Manual

Invalid Paths
If a function that returns a path fails, the function returns an invalid path
value, Not a Path, in the indicator. Use the Not a Path value as the
default value for a path control, so you can detect when the user fails to
provide a path and display a file dialog box with options for selecting a
path. Use the File Dialog function to display a file dialog box.

Empty Paths
An empty path in a path control appears as an empty string on Windows
and Macintosh and as a slash (/) on UNIX. Use empty paths to prompt the
user to specify a path. When you wire an empty path to a file input/output
(I/O) function, the empty path refers to the list of drives mapped to the
computer.

(Macintosh) The empty path refers to the mounted volumes. (UNIX) The
empty path refers to the root directory.

Array and Cluster Controls and Indicators
Use the array and cluster controls and indicators located on the Controls»
Arrays & Cluster and Controls»Classic Controls»Array & Cluster
palettes to create arrays and clusters of other controls and indicators. Refer
to the Grouping Data with Arrays and Clusters section of Chapter 9,
Grouping Data Using Strings, Arrays, and Clusters for more information
about arrays and clusters.

The Array & Cluster palettes also contain standard error cluster controls
and indicators and tab controls and indicators. Refer to the Error Clusters
section of Chapter 6, Running and Debugging VIs, for more information
about error clusters.

Tab Controls and Indicators
Use tab controls to overlap front panel controls and indicators in a smaller
area. A tab control consists of pages and tabs. Place front panel objects on
each page of a tab control and use the tab as the selector for displaying
different pages. You can place an unlimited number of front panel objects
on a tab control.

Tab controls are useful when you have several front panel objects that are
used together or during a specific phase of operation. For example, you
might have a VI that requires the user to first configure several settings
before a test can start, then allows the user to modify aspects of the test as

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-12 www.ni.com

it progresses, and finally allows the user to display and store only pertinent
data.

On the block diagram, the tab control is an enumerated type control by
default. Terminals for controls and indicators placed on the tab control
appear as any other block diagram terminal. Refer to the Enumerated Type
Controls section of this chapter for more information about enumerated
type controls.

Listboxes
Use the listbox controls located on the Controls»List & Table and
Controls»Classic Controls»List & Table palettes to give users a list of
items from which to select.

Use the Property Node of the listbox control to modify list items and to
gather information about list items in the following ways:

• Set item strings.

• Add a symbol next to the list item, as in the Save dialog box, where
directories and files have different symbols.

• Disable individual items in the list.

• Insert separator lines between list items.

• Detect currently selected items by reading the value of the control.

• Detect which items, if any, the user double-clicked.

Refer to the Property Nodes section of Chapter 16, Programmatically
Controlling VIs, for more information about Property Nodes.

Listboxes support type completion, which means that you type the first few
characters and LabVIEW finds a matching item in the listbox. Press the
<Tab> key to move to the next matching item. Press the <Shift-Tab> keys
to move to the previous matching item.

Listboxes automatically have scroll bars, but the scroll bars are activated
only when the listbox includes more information than it can display.

Ring and Enumerated Type Controls and Indicators
Use the ring and enumerated type controls and indicators located on the
Controls»Ring & Enum and Controls»Classic Controls»Ring & Enum
palettes to create a list of strings you can cycle through.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-13 LabVIEW User Manual

Ring Controls
Ring controls are numeric objects that associate numeric values with
strings or pictures. Ring controls appear as pull-down menus that users can
cycle through to make selections.

Ring controls are useful for selecting mutually exclusive items, such as
trigger modes. For example, use a ring control for users to select from
continuous, single, and external triggering.

The order of the items in the ring control is based on the order you enter the
items. Each item has a numeric value that ranges from zero to n–1, where
n is the number of items. The ring control displays the last item if the user
enters any value greater than or equal to n–1 and the first item if the user
enters any value less than or equal to zero.

Ring controls support type completion, and the pull-down menus of ring
controls can have scroll bars.

Enumerated Type Controls
Use enumerated type controls to give users a list of actions from which to
select. An enumerated type control, or enum, is similar to a ring control of
strings. However, with an enumerated type control, the value is a string
instead of a number as with ring controls. For example, you can use an
enumerated type control to select the cases of a Case structure. Refer to the
Case Structures section of Chapter 8, Loop and Case Structures, for more
information about Case structures.

The enumerated type control data type is unsigned byte, unsigned word, or
unsigned long. Right-click the enumerated type control and select
Representation from the shortcut menu to change the data type of the
control.

Advanced Enumerated Type Controls and Indicators
All arithmetic functions except Increment and Decrement treat the
enumerated type control the same as an unsigned numeric. Increment
increments the last enumerated value to the first, and Decrement
decrements the first enumerated value to the last. When coercing a signed
integer to an enumerated type, negative numbers are changed to equal the
first enumerated value, and out-of-range positive numbers are changed to
equal the last enumerated value. Out-of-range unsigned integers are always
changed to equal the last enumerated value.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-14 www.ni.com

If you connect a floating-point value to an enumerated type indicator, the
number is converted to the closest enumeration item, which is one of the
values in the enumerated type indicator. LabVIEW handles out-of-range
numbers as previously described. If you connect an enumerated control to
any numeric value, the value is the enumerated type index. To wire an
enumerated type control to an enumerated type indicator, the enumeration
items must match. The indicator can have additional items beyond the items
in the control.

I/O Name Controls and Indicators
Use the I/O name controls and indicators located on the Controls»I/O or
Controls»Classic Controls»I/O palettes to pass DAQ channel names,
VISA resource names, and IVI logical names you configure to I/O VIs to
communicate with an instrument or a DAQ device.

I/O name constants are located on the Functions»Instrument and
Functions»DAQ palettes.

(Windows) Use Measurement & Automation Explorer, available from the
Tools menu, to configure DAQ channel names, VISA resource names, and
IVI logical names.

(Macintosh) Use the NI-DAQ Configuration Utility, available from the
Tools menu, to configure National Instruments DAQ hardware. Use the
DAQ Channel Wizard, available from the Tools menu, to configure DAQ
channel names.

(Macintosh and UNIX) Use the configuration utilities for your instrument to
configure VISA resource names and IVI logical names. Refer to the
documentation for your instrument for more information about the
configuration utilities.

References to Objects or Applications
Use the reference number controls and indicators located on the Controls»
Refnum and Controls»Classic Controls»Refnum palettes to work with
files, directories, devices, and network connections.

A reference number, or refnum, is a unique identifier for an object, such as
a file, device, or network connection. When you open a file, device, or
network connection, LabVIEW creates a refnum associated with that file,
device, or network connection. All operations you perform on open files,
devices, or network connections use the refnums to identify each object.
Use a refnum control or indicator to pass a refnum into or out of a VI. For

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-15 LabVIEW User Manual

example, use a refnum control or indicator to modify the contents of the file
that a refnum is referencing without closing and reopening the file.

Because a refnum is a temporary pointer to an open object, it is valid only
for the period during which the object is open. If you close the object,
LabVIEW disassociates the refnum with the object, and the refnum
becomes obsolete. If you open the object again, LabVIEW creates a new
refnum that is different from the first refnum.

LabVIEW remembers information associated with each refnum, such as
the current location for reading from or writing to the object and the degree
of user access, so you can perform concurrent but independent operations
on a single object. If a VI opens an object multiple times, each open
operation returns a different refnum.

Dialog Controls
Use the dialog controls located on the Controls»Dialog Controls palette
in dialog boxes you create. The dialog controls and indicators are designed
specifically for use in dialog boxes, and include ring controls, buttons,
tabbed dialog boxes, checkboxes, and radio buttons. These controls differ
from those that appear on the front panel only in terms of appearance.
These controls appear in the colors you have set up for your desktop.

Because the dialog controls change appearance depending on which
platform you run the VI, the appearance of controls in VIs you create is
compatible on all LabVIEW platforms. When you run the VI on a different
platform, the dialog controls adapt their color and appearance to match the
standard dialog box controls for that platform.

Select File»VI Properties and select Window Appearance from the
Category pull-down menu to hide the menu bar and scroll bars and to
create VIs that look and behave like standard dialog boxes for each
platform. Refer to the Configuring the Appearance and Behavior of VIs
section of Chapter 15, Customizing VIs, for more information about
configuring the appearance and behavior of VIs.

Labeling
Use labels to identify objects on the front panel and block diagram.

LabVIEW includes two kinds of labels—owned labels and free labels.
Owned labels belong to and move with a particular object and annotate that
object only. You can move an owned label independently, but when you

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-16 www.ni.com

move the object that owns the label, the label moves with the object. You
can hide owned labels, but you cannot copy or delete them independently
of their owners. You also can display a unit label for numeric controls by
selecting Visible Items»Unit Label from the shortcut menu. Refer to the
Numeric Units and Strict Type Checking section of Chapter 5, Building the
Block Diagram, for more information about numeric units.

Free labels are not attached to any object, and you can create, move, rotate,
or delete them independently. Use them to annotate front panels and block
diagrams.

Use the Labeling tool to create free labels or to edit either type of label.

Captions
Front panel objects also can have captions. Right-click the object and select
Visible Items»Caption from the shortcut menu to display the caption.
Unlike a label, a caption does not affect the name of the object, and you can
use it as a more descriptive object label. The caption does not appear on the
block diagram.

Text Characteristics
LabVIEW uses fonts already installed on your computer. Use the Text
Settings pull-down menu on the toolbar to change the attributes of text.
If you select objects or text before you make a selection from the Text
Settings pull-down menu, the changes apply to everything you select.
If you select nothing, the changes apply to the default font. Changing the
default font does not change the font of existing labels. It affects only those
labels you create from that point on.

Select Font Dialog from the Text Settings pull-down menu on the front
panel to apply specific font styles to text you have selected. If you do not
select any text, the Panel Default option contains a checkmark. If you
select Text Settings»Font Dialog from the block diagram without
selecting any objects, the Diagram Default option contains a checkmark.
You can set different fonts for the front panel and for the block diagram. For
example, you can have a small font on the block diagram and a large one
on the front panel.

Chapter 4 Building the Front Panel

© National Instruments Corporation 4-17 LabVIEW User Manual

The Text Settings pull-down menu contains the following built-in fonts:

• Application Font—Default font used for Controls and Functions
palettes and text in new controls

• System Font—Used for menus

• Dialog Font—Used for text in dialog boxes

When you transfer a VI that contains one of these built-in fonts to another
platform, the fonts correspond as closely as possible.

The Text Settings pull-down menu also has Size, Style, Justify, and Color
submenu items.

Font selections you make from any of these submenus apply to objects you
selected. For example, if you select a new font while you have a knob and
a graph selected, the labels, scales, and digital displays all change to the
new font.

LabVIEW preserves as many font attributes as possible when you make a
change. For example, if you change several objects to the Courier font, the
objects retain their size and styles if possible. When you use the Text
Settings dialog box, LabVIEW changes the objects you select to the text
characteristics you select. If you select one of the built-in fonts or the
current font, LabVIEW changes the selected objects to the font and size
associated with that font.

When you work with objects that have multiple pieces of text, like slides,
font changes you make affect the objects or text you currently have
selected. For example, if you select the entire slide and select Style»Bold
from the Text Settings pull-down menu, the scale, digital display, and label
all change to a bold font. If you select only the label and select Bold, only
the label changes to a bold font. If you select text from a scale marker and
select Bold, all the markers change to a bold font.

Designing User Interfaces
If a VI serves as a user interface or a dialog box, front panel appearance and
layout are important. Design the front panel so users easily can identify
what actions to perform. You can design front panels that look similar to
instruments or other devices.

Chapter 4 Building the Front Panel

LabVIEW User Manual 4-18 www.ni.com

Using Front Panel Controls and Indicators
Controls and indicators are the main components of the front panel. When
you design the front panel, consider how users interact with the VI and
group controls and indicators logically. If several controls are related, add
a decorative border around them or put them in a cluster.

Do not place front panel objects too closely together. Try to leave some
blank space to make the front panel easier to read. Blank space also
prevents users from accidentally clicking the wrong control or button.

Assign specific names to buttons and use common terminology. Use names
like Start, Stop, and Save instead of OK. Specific names make it easier for
users to use the VI.

Use the default LabVIEW fonts and colors. LabVIEW replaces the built-in
fonts with comparable font families on different platforms. If you select a
different font, LabVIEW substitutes the closest match if the font is
unavailable on a computer. LabVIEW handles colors similarly to fonts. If
a color is not available on a computer, LabVIEW replaces it with the closest
match.

Avoid placing objects on top of other objects. Placing a label or any other
object over or partially covering a control or indicator slows down screen
updates and can make the control or indicator flicker.

Designing Dialog Boxes
If a VI contains consecutive dialog boxes that appear in the same screen
location, organize them so that the buttons in the first dialog box do not
directly line up with the buttons in the next dialog box. Users might
double-click a button in the first dialog box and unknowingly click a button
in the subsequent dialog box. Refer to the Dialog Controls section of this
chapter for more information about the dialog controls.

Selecting the Screen Size
When you design a VI, consider whether the front panel can display on
computers with different screen resolutions. Select File»VI Properties,
select Window Size in the Category pull-down menu, and place a
checkmark in the Maintain Proportions of Window for Different
Monitor Resolutions checkbox to maintain front panel window
proportions relative to the screen resolution.

© National Instruments Corporation 5-1 LabVIEW User Manual

5
Building the Block Diagram

After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. The block
diagram contains this graphical source code.

For more information…

Refer to the LabVIEW Help for more information about designing and configuring
the block diagram.

Relationship between Front Panel Objects and Block
Diagram Terminals

Front panel objects appear as terminals on the block diagram. Double-click
a block diagram terminal to highlight the corresponding control or indicator
on the front panel. You cannot delete a terminal from the block diagram.
The terminal disappears only after you delete its corresponding object on
the front panel.

Terminals are entry and exit ports that exchange information between the
front panel and block diagram. Data you enter into the front panel controls
enter the block diagram through the control terminals. When the VI finishes
running, the output data flow to the indicator terminals, where they exit the
block diagram, reenter the front panel, and appear in front panel indicators.

Block Diagram Objects
Objects on the block diagram include terminals, nodes, and functions. You
build block diagrams by connecting the objects with wires.

Block Diagram Terminals
Block diagram terminals represent the data type of the front panel control
or indicator. For example, a DBL terminal, shown at left, represents a
double-precision, floating-point numeric control or indicator.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-2 www.ni.com

A terminal is any point to which you can attach a wire, other than to another
wire. LabVIEW has control and indicator terminals, node terminals,
constants, and specialized terminals on structures, such as the input and
output terminals on the Formula Node. You use wires to connect terminals
and pass data to other terminals. Right-click a block diagram object and
select Visible Items»Terminals from the shortcut menu to view the
terminals. Right-click the object and select Visible Items»Terminals
again to hide the terminals. This shortcut menu item is not available for
expandable functions.

Control and Indicator Data Types
Table 5-1 shows the symbols for the different types of control and indicator
terminals. The color and symbol of each terminal indicate the data type of
the control or indicator. Control terminals have a thicker border than
indicator terminals.

Table 5-1. Control and Indicator Terminals

Control Indicator Data Type Color

Single-precision floating-point numeric Orange

Double-precision floating-point numeric Orange

Extended-precision floating-point numeric Orange

Complex single-precision floating-point numeric Orange

Complex double-precision floating-point numeric Orange

Complex extended-precision floating-point numeric Orange

Signed 8-bit integer numeric Blue

Signed 16-bit integer numeric Blue

Signed 32-bit integer numeric Blue

Unsigned 8-bit integer numeric Blue

Unsigned 16-bit integer numeric Blue

Unsigned 32-bit integer numeric Blue

Enumerated type Blue

Boolean Green

String Pink

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-3 LabVIEW User Manual

Many data types have a corresponding set of functions that can manipulate
the data. Refer to the Functions Overview section of this chapter for
information about which functions to use with each data type.

Constants
Constants are terminals on the block diagram that supply fixed data values
to the block diagram. Universal constants are constants with fixed values,

Array—Encloses the data type of its elements in square
brackets and takes the color of that data type.

Varies

Cluster—Encloses several data types. Cluster data types
are brown if the elements of the cluster are the same type
or pink if the elements of the cluster are different types.

Brown or
Pink

Path Aqua

Waveform Brown

Reference number (refnum) Aqua

Variant—Includes the control or indicator name, the data
type information, and the data itself. Refer to the Handling
Variant Data section of this chapter for more information
about the variant data type.

Purple

Polymorphic—Indicates that a VI or function accepts
more than one kind of data type. Refer to the Polymorphic
VIs and Functions section of this chapter for more
information about polymorphism VIs and functions.

Purple

I/O name—Passes DAQ channel names, VISA resource
names, and IVI logical names you configure to I/O VIs to
communicate with an instrument or a DAQ device. Refer
to the I/O Name Controls and Indicators section of
Chapter 4, Building the Front Panel, for more information
about the I/O name data type.

Purple

Picture—Displays pictures that can contain lines, circles,
text, and other types of graphic shapes. Refer to the Using
the Picture Indicator section of Chapter 12, Graphics and
Sound VIs, for more information about the picture data
type.

Blue

Table 5-1. Control and Indicator Terminals (Continued)

Control Indicator Data Type Color

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-4 www.ni.com

such as pi (π) and infinity (∞). User-defined constants are constants you
define and edit before you run the VI.

Label a constant by right-clicking the constant and selecting Visible
Items»Label from the shortcut menu. Universal constants have
predetermined values for their labels that you can edit by using the
Operating tool or the Labeling tool.

Most constants are located at the bottom or top of their palettes.

Universal Constants
Use universal constants for mathematical computations and formatting
strings or paths. LabVIEW includes the following types of universal
constants:

• Universal numeric constants—A set of high-precision and
commonly used mathematical and physical values, such as the natural
logarithm base (e) and the speed of light. The universal numeric
constants are located on the Functions»Numeric»Additional
Numeric Constants palette.

• Universal string constants—A set of commonly used
non-displayable string characters, such as line feed and carriage return.
The universal string constants are located on the Functions»String
palette.

• Universal file constants—A set of commonly used file path values,
such as Not a Path, Not a Refnum, and Default Directory. The universal
file constants are located on the Functions»File I/O»File Constants
palette.

User-Defined Constants
The Functions palette includes constants organized by type, such as
Boolean, numeric, ring, enumerated type, color box, listbox, string, array,
cluster, and path constants.

The easiest way to create a user-defined constant is to right-click the input
or output terminal of a VI or function and select Create Constant from the
shortcut menu. When you create a constant using the Create Constant
menu item, LabVIEW highlights the value of the constant so you can enter
the value you want. You cannot change the value of user-defined constants
when the VI is running.

You also can create a constant by dragging a front panel control to the block
diagram. The resulting constant contains the value of the front panel control

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-5 LabVIEW User Manual

at the time you drag it to the block diagram. The front panel control remains
on the front panel. Changing the value of the control on the front panel does
not affect the constant and vice versa.

To set or change the value of a user-defined constant, click the constant with
the Operating tool or the Labeling tool and enter the new value. Increment
or decrement a numeric constant by clicking the constant with the
Operating tool and then pressing the up or down arrow keys on the
keyboard.

User-defined constants resize automatically as you enter information. After
you resize or change the shape of a label or string constant, you can
right-click it and select Size to Text from the shortcut menu to resize the
constant or label to fit its contents.

Block Diagram Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. LabVIEW includes the following types of nodes:

• Functions—Built-in execution elements, comparable to an operator,
function, or statement. Refer to the Functions Overview section of this
chapter for more information about the functions available in
LabVIEW.

• SubVIs—VIs used in the block diagram of another VI, comparable to
subroutines. Refer to the SubVIs section of Chapter 7, Creating VIs
and SubVIs, for more information about using subVIs in the block
diagram.

• Structures—Process control elements, such as Sequence structures,
Case structures, For Loops, or While Loops. Refer to Chapter 8, Loop
and Case Structures, for more information about using structures.

• Formula Nodes—Resizable structures for entering equations directly
into a block diagram. Refer to the Formula Nodes section of
Chapter 20, Formulas and Equations, for more information about
using Formula Nodes.

• Property Nodes—Sets or finds properties of a class. Refer to the
Property Nodes section of Chapter 16, Programmatically
Controlling VIs, for more information about using Property Nodes.

• Invoke Nodes—Executes methods of a class. Refer to the Invoke
Nodes section of Chapter 16, Programmatically Controlling VIs,
for more information about using Invoke Nodes.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-6 www.ni.com

• Code Interface Nodes (CINs)—Calls code from text-based
programming languages. Refer to the Code Interface Node section of
Chapter 19, Calling Code from Text-Based Programming Languages,
for more information about calling code from text-based programming
languages.

After you build a VI front panel and block diagram, build the connector
pane, shown at left, so you can use the VI as a subVI. The connector pane
is a set of terminals that corresponds to the controls and indicators of that
VI, similar to the parameter list of a function call in text-based
programming languages. The connector pane defines the inputs and outputs
you can wire to the VI so you can use it as a subVI. Refer to the Setting up
the Connector Pane section of Chapter 7, Creating VIs and SubVIs, for
more information about setting up connector panes.

Functions Overview
Functions are the essential operating elements of LabVIEW. Function
icons on the Functions palette have pale yellow backgrounds. Functions do
not have front panels or block diagrams but do have connector panes.

The Functions palette also includes the VIs that ship with LabVIEW.
VI icons on the Functions palette have white backgrounds. Use these
VIs as subVIs when you build data acquisition, instrument control,
communication, and other VIs. Refer to the Using Built-In VIs and
Functions section of Chapter 7, Creating VIs and SubVIs, for more
information about using the built-in VIs.

Numeric Functions
Use the Numeric functions located on the Functions»Numeric palette
to create and perform arithmetic, trigonometric, logarithmic, and complex
mathematical operations on numbers and to convert numbers from one data
type to another.

Boolean Functions
Use the Boolean functions located on the Functions»Boolean palette to
perform logical operations on single Boolean values or arrays of Boolean
values, such as the following tasks:

• Change a TRUE value to a FALSE value and vice versa.

• Determine which Boolean value to return if you receive two or more
Boolean values.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-7 LabVIEW User Manual

• Convert a Boolean value to a number (either 1 or 0).

• Perform compound arithmetic on two or more Boolean values.

String Functions
Use the String functions located on the Functions»String palette
to perform the following tasks:

• Concatenate two or more strings.

• Extract a subset of strings from a string.

• Convert data into strings.

• Format a string for use in a word processing or spreadsheet application.

Refer to the Strings section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about using the String
functions.

Array Functions
Use the Array functions located on the Functions»Array palette to create
and manipulate arrays, such as the following tasks:

• Extract individual data elements from an array.

• Add individual data elements to an array.

• Split arrays.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about using the Array
functions.

Cluster Functions
Use the Cluster functions located on the Functions»Cluster palette
to create and manipulate clusters, such as the following tasks:

• Extract individual data elements from a cluster.

• Add individual data elements to a cluster.

• Break a cluster out into its individual data elements.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about using the Cluster
functions.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-8 www.ni.com

Comparison Functions
Use the Comparison functions located on the Functions»Comparison
palette to compare Boolean values, strings, numerics, arrays, and clusters.

Refer to Appendix C, Comparison Functions, for more information about
using the Comparison functions.

Time and Dialog Functions
Use the Time and Dialog functions located on the Functions»Time &
Dialog palette to perform the following tasks:

• Manipulate the speed at which an operation executes.

• Retrieve time and date information from your computer clock.

• Create dialog boxes to prompt users with instructions.

This palette also includes the Error Handler VIs. Refer to the Error
Checking and Error Handling section of Chapter 6, Running and
Debugging VIs, for more information about using the Error Handler VIs.

File I/O Functions
Use the File I/O functions located on the Functions»File I/O palette
to perform the following tasks:

• Open and close files.

• Read from and write to files.

• Create directories and files you specify in the path control.

• Retrieve directory information.

• Write strings, numbers, arrays, and clusters to files.

The File I/O palette also includes VIs that perform common file I/O tasks.
Refer to Chapter 13, File I/O, for more information about using the File I/O
VIs and functions.

Waveform Functions
Use the Waveform functions located on the Functions»Waveform palette
to build waveforms that include the waveform values, channel information,
and timing information. The Waveform palette includes VIs that perform
common waveform tasks. Refer to Part II, DAQ Basics, of the LabVIEW
Measurements Manual for more information about creating and using
waveforms in VIs.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-9 LabVIEW User Manual

Application Control Functions
Use the Application Control functions located on the
Functions»Application Control palette to programmatically control VIs
and LabVIEW applications on your local computer or across a network.
Refer to Chapter 16, Programmatically Controlling VIs, for more
information about using the Application Control functions.

Advanced Functions
Use the Advanced functions located on the Functions»Advanced palette
to call code from libraries, such as dynamic link libraries (DLLs), to
manipulate LabVIEW data for use in other applications, and to call a
portion of code from text-based programming languages. Refer to the
Using External Code in LabVIEW manual for more information about
using the Advanced functions.

Adding Terminals to Block Diagram Functions
You can change the number of terminals for some functions. For example,
to build an array with 10 elements, you must add 10 terminals.

You can add terminals to expandable functions by using the Positioning
tool to drag the corner of the function. You also can use the Positioning tool
to remove terminals from expandable functions, but you cannot remove a
terminal that is already wired. You must first delete the existing wire to
remove the terminal.

You also can add or remove terminals by right-clicking one of the terminals
on the icon and selecting Add Input, Add Output, Remove Input, or
Remove Output from the shortcut menu. Depending on the function, you
can add terminals for inputs, outputs, or refnum controls. The Add Input
and Add Output shortcut menu items add a terminal immediately after the
terminal you right-clicked. The Remove Input and Remove Output
shortcut menu items remove the terminal you right-clicked. If you use the
shortcut menu items to remove a wired terminal, LabVIEW removes the
terminal and disconnects the wire.

Using Wires to Link Block Diagram Objects
You transfer data among block diagram objects through wires. Each wire
has a single data source, but you can wire it to many VIs and functions that
read the data. Wires are different colors, styles, and thicknesses depending
on their data types. A broken wire appears as a dashed black line. Refer to

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-10 www.ni.com

the LabVIEW Quick Reference Card for more information about wire data
types.

Wire stubs are the truncated wires that appear around the VI or function
icon when you move the Wiring tool over the icon. They indicate the data
type of each terminal. A tip strip also appears, listing the name of the
terminal. A dot at the end of a wire stub indicates an input. Output wire
stubs do not have dots. When you properly wire a terminal, the wire stub
disappears for that terminal.

A wire segment is a single horizontal or vertical piece of wire. A bend in a
wire is where two segments join. The point at which three or four wire
segments join is a junction. A wire branch contains all the wire segments
from junction to junction, terminal to junction, or terminal to terminal if
there are no junctions in between. Figure 5-1 shows a wire segment, bend,
and junction.

Figure 5-1. Wire Segment, Bend, and Junction

You can wire terminals vertically or horizontally depending on the
direction in which you first move the Wiring tool. The wire connects to the
center of the terminal, regardless of where you click the terminal. After you
click the terminal, switch between horizontal and vertical direction by
pressing the spacebar.

While you are wiring a terminal, bend the wire at a 90 degree angle once
by moving the cursor in either a vertical or horizontal direction. To bend a
wire in multiple directions, click the mouse button to set the wire and then
drag the wire in the new direction. You can repeatedly set the wire and drag
it in new directions.

1 Segment 2 Bend 3 Junction

1

13

2

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-11 LabVIEW User Manual

To undo the last point where you set the wire, press the <Ctrl> key and
click.

(Macintosh) Press the <Option> key and click. (UNIX and Linux) Press the
middle mouse button and click.

When you cross wires, a small gap appears in the first wire you drew to
indicate that the first wire is under the second wire.

Caution Crossing wires can clutter a block diagram and make the block diagram difficult
to debug.

Automatically Wiring Objects
If you have automatic wiring enabled, LabVIEW automatically wires
objects as you place them on the block diagram. You also can automatically
wire objects already on the block diagram. LabVIEW connects the
terminals that best match and leaves terminals that do not match
unconnected.

As you move a selected object close to other objects on the block diagram,
LabVIEW draws temporary wires to show you valid connections. When
you release the mouse button to place the object on the block diagram,
LabVIEW automatically connects the wires.

Toggle automatic wiring by pressing the space bar while you move an
object using the Positioning tool.

By default, automatic wiring is enabled when you select an object from the
Functions palette or when you copy an object already on the block diagram
by pressing the <Ctrl> key and dragging the object. Automatic wiring is
disabled by default when you use the Positioning tool to move an object
already on the block diagram.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key.
(HP-UX and Linux) Press the <Alt> key.

Manually Wiring Objects
Use the Wiring tool to manually connect the terminals on one block
diagram node to the terminals on another block diagram node. The cursor
point of the tool is the tip of the unwound wire spool. When you move the
Wiring tool over a node, the terminal blinks, and, on VIs and functions, the
name of the terminal appears in a tip strip.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-12 www.ni.com

Select Help»Show Context Help to display the Context Help window,
which lists each terminal of the VI or function to show you exactly where
wires must connect. The Context Help window does not display terminals
for expandable functions, such as the Build Array function.

Selecting Wires
Select wires by using the Positioning tool to single-click, double-click, or
triple-click them. Single-clicking a wire selects one segment of the wire.
Double-clicking a wire selects a branch. Triple-clicking a wire selects the
entire wire.

Removing Broken Wires
A broken wire appears as a dashed black line. Broken wires occur for a
variety of reasons, such as when you try to wire two objects with
incompatible data types. Move the Wiring tool over a broken wire to view
the tip strip that describes why the wire is broken. Triple-click the wire with
the Positioning tool and press the <Delete> key to remove a broken wire.

Note Do not confuse a dashed black wire with a dotted green wire. A dotted green wire
represents a Boolean data type.

You can remove all broken wires by selecting Edit»Remove Broken
Wires.

Caution Use caution when removing all broken wires. Sometimes a wire appears broken
because you are not finished wiring the block diagram.

Coercion Dots
Coercion dots appear on block diagram nodes to alert you that you wired
two different data types together. The dot means that LabVIEW converted
the value passed into the node to a different representation. For example, if
you wire a control with a double-precision floating-point representation
value of 3.02 into an indicator with an integer representation, a coercion
dot appears on the indicator, and the indicator is 3.

The block diagram places a coercion dot on the border of a terminal where
the conversion takes place to indicate that automatic numeric conversion
occurred.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-13 LabVIEW User Manual

Because VIs and functions can have many terminals, a coercion dot can
appear inside an icon if you wire through one terminal to another terminal,
as shown in the following example.

Coercion dots can cause a VI to use more memory and increase its run time.
Try to keep data types consistent in your VIs.

Polymorphic VIs and Functions
Polymorphic VIs and functions can adjust to input data of different data
types. Most LabVIEW structures are polymorphic, as are some VIs and
functions.

Polymorphic VIs
Polymorphic VIs accept different data types for a single input or output
terminal. A polymorphic VI is a collection of subVIs with the same
connector pane patterns. Each subVI is an instance of the polymorphic VI.

For example, the Read Key VI is polymorphic. Its default value terminal
accepts Boolean, double-precision floating-point numeric, signed 32-bit
integer numeric, path, string, or unsigned 32-bit integer numeric data.

Building Polymorphic VIs
Build your own polymorphic VIs when you perform the same operation on
different data types.

For example, if you want to perform the same mathematical operation on a
single-precision floating-point numeric, an array of numerics, or a
waveform, you could create three separate VIs—Compute Number,
Compute Array, and Compute Waveform. When you need to perform the
operation, you place one of these VIs in the block diagram, depending on
the data type you use as an input.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-14 www.ni.com

Instead of manually placing a version of the VI on the block diagram, you
can create and use a single polymorphic VI. The polymorphic Compute VI
contains three instances of the VI, as shown in Figure 5-2.

Figure 5-2. Example of a Polymorphic VI

The Compute VI statically links the correct instance of the VI based on the
data type you wire to the Compute subVI on the block diagram, as shown
in Figure 5-3.

Figure 5-3. Polymorphic VI Calling a SubVI

Polymorphic VIs differ from most VIs in that they do not have a block
diagram or a front panel.

1 Compute 2 Compute Number 3 Compute Array 4 Compute Waveform

1 Compute 2 Compute Number 3 Compute Array 4 Compute Waveform

1

2 3 4

1

2 3 4

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-15 LabVIEW User Manual

Consider the following issues when you build polymorphic VIs:

• All VIs you include in the polymorphic VI must have the same
connector pane pattern, because the connector pane of the
polymorphic VI matches the connector pane of the VIs you use to
create the polymorphic VI.

• The inputs and outputs on the connector pane of each instance of the
VI must correspond to the inputs and outputs on the connector pane of
the polymorphic VI.

• The VIs you use to build polymorphic VIs do not have to consist of the
same subVIs and functions.

• Each of the front panels of the VIs do not have to have the same
number of objects. However, each front panel must have at least the
same number of controls and indicators that make up the connector
pane of the polymorphic VI.

• You can create an icon for a polymorphic VI.

• You cannot use polymorphic VIs in other polymorphic VIs.

When you create complete documentation for a VI that includes a
polymorphic subVI, the polymorphic VI and the VIs it invokes appear in
the List of SubVIs.

Polymorphic Functions
Functions are polymorphic to varying degrees—none, some, or all of their
inputs may be polymorphic. Some function inputs accept numerics or
Boolean values. Some accept numerics or strings. Some accept not only
scalar numerics but also arrays of numerics, clusters of numerics, arrays of
clusters of numerics, and so on. Some accept only one-dimensional arrays
although the array elements can be of any type. Some functions accept all
types of data, including complex numerics. Refer to Appendix B,
Polymorphic Functions, for more information about polymorphic
functions.

Handling Variant Data
Variant data do not conform to a specific data type and they contain
attributes, such as channel names and channel units. LabVIEW represents
variant data with the variant data type. The variant data type differs from
other data types because it includes the control or indicator name, the data
type information, and the data itself.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-16 www.ni.com

Use the Variant functions located on the Functions»Advanced»Data
Manipulation»Variant palette to create and manipulate variant data. You
can convert any LabVIEW data type to the variant data type to use variant
data in other VIs and functions. For example, if you convert a string to
variant data, the variant data type stores the text and indicates that the text
is a string.

Use the variant data type when it is important to manipulate data
independently of data type. You also can represent data independently of
type without using the variant data type by flattening the data into strings.
For example, the Get All Control Values method returns information
about the controls and indicators from a VI as an array of clusters. Each
cluster in the array contains the data type and value of each control or
indicator. The cluster contains the name of the control or indicator as a
string, the data type as an array of 16-bit integers, and the data as flattened
strings, as shown in Figure 5-4.

Figure 5-4. Cluster of Flattened Numeric Data

However, using flattened data has limitations, because LabVIEW cannot
coerce flattened data. Also, attempting to unflatten a flattened integer as an
extended-precision floating-point number fails. Use the variant data type to
work with data independently of data type instead of flattening the data.
Refer to the Flattened Data section of the LabVIEW Data Storage
Application Note for more information about flattening and unflattening
data.

You can add attributes to further identify the variant data. For example, an
attribute to the variant data type can identify from which data acquisition
device channel the data came.

Variant data also are useful when you write to or read from memory in
LabVIEW and perform operations that involve stacks (last-in-first-out),
queues (first-in-first-out), smart buffers, or trees. These kinds of operations
treat data independently of the data types.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-17 LabVIEW User Manual

Numeric Units and Strict Type Checking
You can associate physical units of measure, such as meters or
kilometers/second, with any numeric control that has floating-point
representation.

Units for a control appear in a separate owned label, called the unit label.
Display the unit label by right-clicking the control and selecting Visible
Items»Unit Label from the shortcut menu.

When LabVIEW displays the unit label, you can enter a unit using standard
abbreviations such as m for meters, ft for feet, s for seconds, and so on.

Note You cannot use units in Formula Nodes.

Units and Strict Type Checking
When you associate units with an object, you can wire only objects that
have compatible units. LabVIEW uses strict type checking to verify that
units are compatible. If you wire two objects with incompatible units,
LabVIEW returns an error. For example, LabVIEW returns an error if you
wire an object with mile as its unit type to an object with liter as its unit
type, because a mile is a unit of distance and a liter is a unit of volume.

Figure 5-5 shows wiring objects with compatible units. In this figure,
LabVIEW automatically scales the distance indicator to display kilometers
instead of meters because kilometers is the unit for the indicator.

Figure 5-5. Wiring Objects with Compatible Units

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-18 www.ni.com

An error occurs in Figure 5-6 because distance has a unit type of seconds.
To correct the error, change seconds to a unit of distance, such as
kilometers, as shown in Figure 5-5.

Figure 5-6. Wiring Objects with Incompatible Units Results in Broken Wires

To view the error, move the Wiring tool over the broken wire until a tip
appears or right-click the broken wire and select List Errors from the
shortcut menu. The Error list window lists the following error:

You have connected numeric data types that have

incompatible units.

Some VIs and functions are ambiguous with respect to units. You cannot
use these VIs and functions with other terminals that have units. For
example, the Increment function is ambiguous with respect to units. If you
use distance units, the Increment function cannot tell whether to add one
meter, one kilometer, or one foot. Because of this ambiguity, you cannot use
the Increment function and other functions that increment or decrement
values with data that have associated units.

To avoid ambiguity in this example, use a numeric constant with the proper
unit and the Add function to create your own increment unit function, as
shown in Figure 5-7.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-19 LabVIEW User Manual

Figure 5-7. Creating an Increment Function with Units

Block Diagram Data Flow
LabVIEW follows a dataflow model for running VIs. A block diagram
node executes when all its inputs are available. When a node completes
execution, it supplies data to its output terminals and passes the output data
to the next node in the dataflow path.

Visual Basic, C++, JAVA, and most other text-based programming
languages follow a control flow model of program execution. In control
flow, the sequential order of program elements determines the execution
order of a program.

In LabVIEW, because the flow of data rather than the sequential order of
commands determines the execution order of block diagram elements, you
can create block diagrams that have simultaneous operations. LabVIEW is
a multitasking and multithreaded system, running multiple execution
threads and multiple VIs simultaneously. Refer to the Using LabVIEW to
Create Multithreaded VIs for Maximum Performance and Reliability
Application Note for more information about performing tasks
simultaneously in LabVIEW.

Data Dependency and Artificial Data Dependency
The control flow model of execution is instruction driven. Dataflow
execution is data driven, or data dependent. A node that receives data from
another node always executes after the other node completes execution.

Block diagram nodes not connected by wires can execute in any order.
Although the LabVIEW Development Guidelines manual recommends
using a left-to-right and top-to-bottom layout, nodes do not necessarily
execute in left-to-right, top-to-bottom order.

A Sequence structure is one way to control execution order when natural
data dependency does not exist. Refer to the Sequence Structures section
of Chapter 8, Loop and Case Structures, for more information about
Sequence structures. You also can use flow-through parameters to control

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-20 www.ni.com

execution order. Refer to the Flow-Through Parameters section of
Chapter 13, File I/O, for more information about flow-through parameters.

Another way to control execution order is to create an artificial data
dependency, in which the receiving node does not actually use the data
received. Instead, the receiving node uses the arrival of data to trigger its
execution. Refer to the Timing Template (data dep) VI in the
examples\general\structs.llb for an example of using artificial
data dependency.

Missing Data Dependencies
Do not assume left-to-right or top-to-bottom execution when no data
dependency exists. Make sure you explicitly define the sequence of events
when necessary by wiring the dataflow.

In the following example, no dependency exists between the Read File
function and the Close File function because the Read File function is not
wired to the Close File function. This example might not work as expected
because there is no way to determine which function runs first. If the
Close File function runs first, the Read File function does not work.

The following block diagram establishes a dependency by wiring an output
of the Read File function to the Close File function. The Close File function
does not run until it receives the output of the Read File function.

Data Flow and Managing Memory
Dataflow execution makes managing memory easier than the control flow
model of execution. In LabVIEW, you do not allocate variables or assign
values to them. Instead, you create a block diagram with wires that
represent the transition of data.

Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-21 LabVIEW User Manual

VIs and functions that generate data automatically allocate the memory for
that data. When the VI or function no longer uses the data, LabVIEW
deallocates the associated memory. When you add new data to an array or
a string, LabVIEW allocates enough memory to manage the new data.

Because LabVIEW automatically handles memory management, you have
less control over when memory is allocated or deallocated. If your VI
works with large sets of data, you need to understand when memory
allocation takes place. Understanding the principles involved can help you
write VIs with significantly smaller memory requirements. Minimizing
memory usage can help you increase the speed at which VIs run. Refer to
the LabVIEW Performance and Memory Management Application Note
for more information about memory allocation.

Designing the Block Diagram
Use the following guidelines to design block diagrams:

• Use a left-to-right and top-to-bottom layout. Although the positions of
block diagram elements do not determine execution order, avoid
wiring from right to left to keep the block diagram organized and easy
to understand. Only wires and structures determine execution order.

• Avoid creating a block diagram that occupies more than one or two
screens. If a block diagram becomes large and complex, it can be
difficult to understand or debug.

• Decide if you can reuse some components of the block diagram in
other VIs or if a section of the block diagram fits together as a logical
component. If so, divide the block diagram into subVIs that perform
specific tasks. Using subVIs helps you manage changes and debug the
block diagrams quickly. Refer to the SubVIs section of Chapter 7,
Creating VIs and SubVIs, for more information about subVIs.

• Use the error handling VIs, functions, and parameters to manage errors
in the block diagram. Refer to the Error Checking and Error Handling
section of Chapter 6, Running and Debugging VIs, for more
information about handling errors.

• Improve the appearance of the block diagram by wiring efficiently.
Poor wire organization might not produce errors, but it can make the
block diagram difficult to read or debug, or make the VI appear to do
things it does not do.

• Avoid wiring under a structure border or between overlapped objects,
because LabVIEW might hide some segments of the resulting wire.

Chapter 5 Building the Block Diagram

LabVIEW User Manual 5-22 www.ni.com

• Avoid placing objects on top of wires. Wires connect only those
objects you click. Placing a terminal or icon on top of a wire makes it
appear as if a connection exists when it does not.

• Use the Coloring tool and right-click the block diagram workspace to
add or change the color of the workspace.

• Increase the space between crowded or tightly grouped objects by
pressing the <Ctrl> key and use the Positioning tool to click the block
diagram workspace. While holding the key combination, drag out a
region the size you want to insert.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key.
(HP-UX and Linux) Press the <Alt> key.

A rectangle marked by a dashed border defines where space will be
inserted. Release the key combination to add the space.

© National Instruments Corporation 6-1 LabVIEW User Manual

6
Running and Debugging VIs

To run a VI, you must wire all the subVIs, functions, and structures with the
data types the terminals expect. Sometimes a VI produces data or runs in a
way you do not expect. You can use LabVIEW to configure how a VI runs
and to identify problems with block diagram organization or with the data
passing through the block diagram.

For more information…

Refer to the LabVIEW Help for more information about debugging VIs.

Running VIs
Running a VI executes the operation for which you designed the VI. You
can run a VI if the Run button on the toolbar appears as a solid white arrow,
shown at left. The solid white arrow also indicates you can use the VI as a
subVI if you create a connector pane for the VI.

A VI runs when you click the Run or Run Continuously buttons or the
single-stepping buttons on the block diagram toolbar. Clicking the Run
button runs the VI once. The VI stops when the VI completes its data flow.
Clicking the Run Continuously button runs the VI continuously until you
click the Stop button on the VI. Clicking the single-stepping buttons runs
the VI in incremental steps. Refer to the Single-Stepping section of this
chapter for more information about using the single-stepping buttons to
debug a VI.

Configuring How a VI Runs
Select File»VI Properties and select Execution from the Category
pull-down menu to configure how a VI runs. For example, you can
configure a VI to run immediately when it opens or to pause when called
as a subVI. You also can configure the VI to run at different priorities. For
example, if it is crucial that a VI runs without waiting for another operation
to complete, configure the VI to run at time-critical (highest) priority. Refer
to the Using LabVIEW to Create Multithreaded VIs for Maximum
Performance and Reliability Application Note for more information about

Chapter 6 Running and Debugging VIs

LabVIEW User Manual 6-2 www.ni.com

creating multithreaded VIs. Refer to Chapter 15, Customizing VIs, for more
information about configuring how VIs run.

Correcting Broken VIs
If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
often appears broken, shown at left, when you create or edit a VI. If it is still
broken when you finish wiring the block diagram, the VI is broken and will
not run.

Finding Causes for Broken VIs
Click the broken Run button or select Window»Show Error List to find
out why a VI is broken. The Error list window lists all the errors. The VI
List section lists the names of all VIs in memory that have errors. The
errors and warnings section lists the errors and warnings for the VI you
select in the VI List section. The Details section describes the errors and in
some cases recommends how to correct the errors or how to find more
information about them. Choose Help to open an online help file that lists
LabVIEW errors and their descriptions.

Click the Show Error button or double-click the error description to
display the relevant block diagram or front panel and highlight the object
that contains the error.

The toolbar includes the Warning button, shown at left, if a VI includes a
warning and you placed a checkmark in the Show Warnings checkbox in
the Error list window.

Configure LabVIEW to always show warnings in the Error list window by
selecting Tools»Options, selecting Debugging from the top pull-down
menu, and placing a checkmark in the Show warnings in error box by
default checkbox. You can make this change with the Error list window
open and see the change immediately.

Warnings do not prevent you from running a VI. They are designed to help
you avoid potential problems in VIs.

Common Causes of Broken VIs
The following list contains common reasons why a VI is broken while you
edit it:

• The block diagram contains a broken wire because of a mismatch of
data types or a loose, unconnected end. Refer to the Using Wires to

Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-3 LabVIEW User Manual

Link Block Diagram Objects section of Chapter 5, Building the Block
Diagram, for more information about wiring block diagram objects.

• A required block diagram terminal is unwired. Select Help»Show
Context Help or refer to the LabVIEW Help to see which parameters
a block diagram node requires.

• A subVI is broken or you edited its connector pane after you placed its
icon on the block diagram of the VI. Refer to the SubVIs section of
Chapter 7, Creating VIs and SubVIs, for more information about
subVIs.

Debugging Techniques
If a VI is not broken, but you get unexpected data, you can use the
following techniques to identify and correct problems with the VI or the
block diagram data flow:

• Wire the error in and error out parameters at the bottom of most
built-in VIs and functions. These parameters detect errors encountered
in each node on the block diagram and indicate if and where an error
occurred. You also can use these parameters in the VIs you build. Refer
to the Error Handling section of this chapter for more information
about using these parameters.

• Use execution highlighting to watch the data move through the block
diagram.

• Single-step through the VI to view each action of the VI on the block
diagram.

• Use the Probe tool to check intermediate values as a VI runs.

• Use breakpoints to pause execution, so you can single-step or insert
probes.

• Suspend the execution of a subVI to edit values of controls and
indicators, to control the number of times it runs, or to go back to the
beginning of the execution of the subVI.

• Comment out a section of the block diagram to determine if the VI
performs better without it.

Execution Highlighting
View an animation of the execution of the block diagram by clicking the
Highlight Execution button, shown at left. Execution highlighting shows
the movement of data on the block diagram from one node to another using
bubbles that move along the wires. Use execution highlighting in

Chapter 6 Running and Debugging VIs

LabVIEW User Manual 6-4 www.ni.com

conjunction with single-stepping to see how data move from node to node
through a VI.

Note Execution highlighting greatly reduces the speed at which the VI runs.

Single-Stepping
Single-step through a VI to view each action of the VI on the block diagram
as the VI runs. The single-stepping buttons affect execution only in a VI or
subVI in single-step mode. Enter single-step mode by clicking the Step
Over or Step Into button on the block diagram toolbar. Move the cursor
over the Step Over, Step Into, or Step Out button to view a tip strip that
describes the next step if you click that button. You can single-step through
subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an
execution glyph, shown at left, appears on the icons of the subVIs that are
currently running.

Probe Tool
Use the Probe tool, shown at left, to check intermediate values on a wire as
a VI runs. Use the Probe tool if you have a complicated block diagram with
a series of operations, any one of which might return incorrect data. Use the
Probe tool with execution highlighting, single-stepping, and breakpoints to
determine if and where data are incorrect. If data are available, the probe
immediately updates during single-stepping or when you pause at a
breakpoint. When execution pauses at a node because of single-stepping or
a breakpoint, you also can probe the wire that just executed to see the value
that flowed through that wire.

You also can create a custom probe to specify which indicator you use to
view the probed data. For example, if you are viewing numeric data, you
can choose to see that data in a chart within the probe.

Breakpoints
Use the Breakpoint tool, shown at left, to place a breakpoint on a VI, node,
or wire on the block diagram and pause execution at that location. When
you set a breakpoint on a wire, execution pauses after data pass through the
wire. Place a breakpoint on the block diagram workspace to pause
execution after all nodes on the block diagram execute.

Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-5 LabVIEW User Manual

When you reach a breakpoint during execution, you can take the following
actions:

• Single-step through execution using the single-stepping buttons.

• Probe wires to check intermediate values.

• Continue running to the next breakpoint or until the VI finishes
running.

LabVIEW saves breakpoints with a VI, but they are active only when you
run the VI.

Suspending Execution
Suspend execution of a subVI to edit values of controls and indicators, to
control the number of times it runs before returning to the caller, or to go
back to the beginning of the execution of the subVI. You can cause all calls
to a subVI to start with execution suspended, or you can suspend a specific
call to a subVI.

To suspend all calls to a subVI, open the subVI and select
Operate»Suspend when Called. The subVI automatically suspends when
another VI calls it. If you select this menu item when single-stepping, the
subVI does not suspend immediately. The subVI suspends when it is called.

To suspend a specific subVI call, right-click the subVI node on the block
diagram and select SubVI Node Setup from the shortcut menu. Place a
checkmark in the Suspend when called checkbox to suspend execution
only at that instance of the subVI.

The Hierarchy Window, which you display by selecting Browse»Show
VI Hierarchy, indicates whether a VI is paused or suspended. An arrow
glyph indicates a VI that is running regularly or single-stepping. A pause
glyph indicates a paused or suspended VI. A green pause glyph, or a hollow
glyph in black and white, indicates a VI that pauses when called. A red
pause glyph, or a solid glyph in black and white, indicates a VI that is
currently paused. An exclamation point glyph indicates that the subVI is
suspended. A VI can be suspended and paused at the same time.

Determining the Current Instance of a SubVI
When you pause a subVI, the Call Chain pull-down menu lists the chain
of callers from the top-level VI down to the subVI. This is not the same list
you see when you select Browse»This VI's Callers, which lists all calling
VIs regardless of whether they are currently running. Use the Call Chain
menu to determine the current instance of the subVI if the block diagram

Chapter 6 Running and Debugging VIs

LabVIEW User Manual 6-6 www.ni.com

contains more than one instance. When you select a VI from the Call
Chain menu, its block diagram opens, and LabVIEW highlights the VI that
called the current subVI.

Commenting Out Sections of Block Diagrams
You can run a VI with a section of the block diagram disabled, similar to
commenting out a section of code in a text-based programming language.
Disable a section of the block diagram to determine if the VI performs
better without it.

Place the section you want to disable inside a Case structure and use a
Boolean constant to run both cases. Refer to the Case Structures section of
Chapter 8, Loop and Case Structures, for more information about using
Case structures. You also can create a copy of the VI and delete that section
of the block diagram from the copy. Discard the version of the VI you
decide not to use.

Disabling Debugging Tools
You can disable the debugging tools to reduce memory requirements and
to increase performance slightly. Right-click the connector pane and select
VI Properties. Select Execution in the Category pull-down menu and
remove the checkmark from the Allow Debugging checkbox.

Undefined or Unexpected Data
Undefined data, which are NaN (not a number) or Inf (infinity), invalidate
all subsequent operations. Floating-point operations return the following
two symbolic values that indicate faulty computations or meaningless
results:

• NaN (not a number) represents a floating-point value that invalid
operations produce, such as taking the square root of a negative
number.

• Inf (infinity) represents a floating-point value that operations
produce, such as dividing a number by zero.

LabVIEW does not check for overflow or underflow conditions on integer
values. Overflow and underflow for floating-point numbers is in
accordance with IEEE 754, Standard for Binary Floating-Point Arithmetic.

Floating-point operations propagate NaN and Inf faithfully. When you
explicitly or implicitly convert NaN or Inf to integers or Boolean values,

Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-7 LabVIEW User Manual

the values become meaningless. For example, dividing 1 by zero produces
Inf. Converting Inf to a 16-bit integer produces the value 32,767, which
appears to be a normal value. Refer to the Numeric Conversion section of
Chapter B, Polymorphic Functions, for more information about converting
numeric values.

Before you convert data to integer data types, use the Probe tool to check
intermediate floating-point values for validity. Check for NaN by wiring the
Comparison function Not A Number/Path/Refnum? to the value you
suspect is invalid.

Unexpected and Default Data in Loops
For Loops produce unexpected values when the iteration count is zero for
an auto-indexed For Loop. While Loops produce default data when the
shift register is not initialized.

For Loops
For Loops produce unexpected values if you enter 0 for the iteration count
of the For Loop or if you wire an empty array to the For Loop at an input
with auto-indexing enabled. Refer to the For Loops section of Chapter 8,
Loop and Case Structures, for more information about For Loops. Refer to
the Auto-Indexing Loops section of Chapter 8, Loop and Case Structures,
for more information about auto-indexing. The output for any tunnel you
constructed on the border with indexing turned off is an empty array.

While Loops
If you do not initialize a shift register on a While Loop, the output is the
default value for the parameter (0, FALSE, empty string, and so on) or the
last value loaded into the shift register when you last ran the VI.

Default Data in Arrays
Indexing beyond the bounds of an array produces the default value for the
array element parameter. You can use the Array Size function to determine
the size of the array. Refer to the Arrays section of Chapter 9, Grouping
Data Using Strings, Arrays, and Clusters, for more information about
arrays. Refer to the Auto-Indexing Loops section of Chapter 8, Loop and
Case Structures, for more information about indexing. You can index
beyond the bounds of an array inadvertently by indexing an array past the
last element using a While Loop, by supplying too large a value to the
index input of an Index Array function, or by supplying an empty array to
an Index Array function.

Chapter 6 Running and Debugging VIs

LabVIEW User Manual 6-8 www.ni.com

Preventing Undefined Data
Do not rely on special values such as NaN, Inf, or empty arrays to
determine if a VI produces undefined data. Instead, confirm that the VI
produces defined data by making the VI report an error if it encounters a
situation that is likely to produce undefined data.

For example, if you create a VI that uses an incoming array to auto-index a
For Loop, determine what you want the VI to do when the input array is
empty. Either produce an output error code or substitute defined data for the
values that the loop creates.

Error Checking and Error Handling
Debugging, which is enabled automatically in LabVIEW, checks the block
diagram nodes for errors. You can verify the debugging setting by selecting
File»VI Properties and selecting Execution in the Category pull-down
menu. The Allow Debugging contains a checkmark by default. Each error
has a numeric code and a corresponding error message. Use the LabVIEW
error handling VIs, functions, and parameters to manage errors. For
example, if LabVIEW encounters an error, you can display the error
message in a dialog box. Use error handling in conjunction with the
debugging tools to find and manage errors. National Instruments strongly
recommends error handling.

Checking for Errors
No matter how confident you are in the VI you create, you cannot predict
every problem a user can encounter. Without a mechanism to check for
errors, you know only that the VI does not work properly. Error checking
tells you why and where errors occur.

When you perform any kind of input and output (I/O), consider the
possibility that errors might occur. Almost all I/O functions return error
information. Include error checking in VIs, especially for I/O operations
(file, serial, instrumentation, data acquisition, and communication), and
provide a mechanism to handle errors appropriately.

Checking for errors in VIs can help you identify the following problems:

• You initialized communications incorrectly or wrote improper data to
an external device.

• An external device lost power, is broken, or is working improperly.

Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-9 LabVIEW User Manual

• You upgraded the operating system software, which changed the path
to a file or the functionality of a VI or library. You might notice a
problem in a VI or a system program.

Error Handling
LabVIEW does not handle errors automatically. Instead, you choose the
error handling method you want to use. For example, if an I/O VI in the
block diagram times out, you might not want the entire application to stop.
You also might want the VI to retry for a certain period of time. In
LabVIEW, you can make these error handling decisions on the block
diagram of the VI.

VIs and functions return errors in one of two ways—with numeric error
codes or with an error cluster. Typically, functions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs. Refer to
the Error Clusters section of this chapter for more information about error
clusters.

Error handling in LabVIEW follows the dataflow model. Just as data flow
through a VI, so can error information. Wire the error information from the
beginning of the VI to the end. Include an error handler VI at the end of the
VI to determine if the VI ran without errors. Use the error in and error out
clusters in each VI you use or build to pass the error information through
the VI.

As the VI runs, LabVIEW tests for errors at each execution node.
If LabVIEW does not find any errors, the node executes normally. If
LabVIEW detects an error, the node passes the error to the next node
without executing. The next node does the same thing, and so on. At the end
of the execution flow, LabVIEW reports the error.

Error Clusters
The error clusters located on the Controls»Array & Cluster palette
includes the following components of information:

• status is a Boolean value that reports TRUE if an error occurred.

• code is a signed 32-bit integer that identifies the error numerically.
A non-zero error code coupled with a status of FALSE signals a
warning rather than a fatal error.

• source is a string that identifies where the error occurred.

Chapter 6 Running and Debugging VIs

LabVIEW User Manual 6-10 www.ni.com

Using While Loops for Error Handling
You can wire an error cluster to the conditional terminal of a While Loop
to stop the iteration of the While Loop. When you wire the error cluster to
the conditional terminal, only the TRUE or FALSE value of the status
parameter of the error cluster is passed to the terminal. When an error
occurs, the While Loop stops.

When an error cluster is wired to the conditional terminal, the shortcut
menu items Stop if True and Continue if True change to Stop if Error
and Continue while Error.

Using Case Structures for Error Handling
When you wire an error cluster to the Selector terminal of a Case structure,
the case selector identifier displays two cases, Error and No Error, and
the border of the Case structure changes color—red for Error and green
for No Error. When an error occurs, the Case structure executes the
appropriate case subdiagram. Refer to the Case Structures section of
Chapter 8, Loop and Case Structures, for more information about using
Case structures.

© National Instruments Corporation 7-1 LabVIEW User Manual

7
Creating VIs and SubVIs

After you learn how to build a front panel and block diagram, you can
create your own VIs and subVIs, distribute VIs, and build stand-alone
applications and shared libraries.

Refer to the LabVIEW Development Guidelines manual for more
information about planning your project, including information about
common development pitfalls and tools you can use to develop your
project.

For more information…

Refer to the LabVIEW Help for more information about creating and using subVIs,
saving VIs, and building stand-alone applications and shared libraries.

Planning and Designing Your Project
Before you develop your own VIs, create a list of tasks your users will need
to perform. Determine the user interface components and the number and
type of controls and indicators you need for data analysis, displaying
analysis results, and so on. Think about and discuss with prospective users
or other project team members how and when the user will need to access
functions and features. Create sample front panels to show to prospective
users or project team members and determine if the front panel helps your
users accomplish their tasks. Use this interactive process to refine the user
interface as necessary.

Divide your application into manageable pieces at logical places. Begin
with a high-level block diagram that includes the main components of your
application. For example, the block diagram could include a block for
configuration, a block for acquisition, a block for analysis of the acquired
data, a block for displaying analysis results, a block for saving the data to
disk, and a block to handle errors.

After you design the high-level block diagram, define the inputs and
outputs. Then, design the subVIs that make up the main components of the
high-level block diagram. Using subVIs makes the high-level block

Chapter 7 Creating VIs and SubVIs

LabVIEW User Manual 7-2 www.ni.com

diagram easy to read, debug, understand, and maintain. You also can create
subVIs for common or frequent operations that you can reuse. Test subVIs
as you create them. You can create higher level test routines, but catching
errors in a small module is easier than testing a hierarchy of several VIs.
You might find that the initial design of the high-level block diagram is
incomplete. Using subVIs to accomplish low-level tasks makes it easier to
modify or reorganize your application. Refer to the SubVIs section of this
chapter for more information about subVIs.

Select Help»Examples for examples of block diagrams and subVIs.

Designing Projects with Multiple Developers
If multiple developers work on the same project, define programming
responsibilities, interfaces, and coding standards up front to ensure the
development process and the application work well.

Keep master copies of the project VIs on a single computer and institute a
source code control policy. Consider using the LabVIEW Professional
Development System, which includes source code control tools that
simplify file sharing. The tools also include a utility to compare VIs and
view the changes that were made between versions of VIs. Refer to the
Source Code Control section of Chapter 2, Incorporating Quality into the
Development Process, in the LabVIEW Development Guidelines manual
for more information about using source code control.

Using Built-In VIs and Functions
LabVIEW includes VIs and functions to help you build specific
applications, such as data acquisition VIs and functions, VIs that access
other VIs, and VIs that communicate with other applications. You can use
these VIs as subVIs in your application to aid in development time. Refer
to the SubVIs section of this chapter for more information about subVIs.

Building Instrument Control and Data Acquisition VIs and Functions
You can use the built-in VIs and functions to control external instruments,
such as oscilloscopes, and to acquire data, such as readings from a
thermocouple.

Use the Instrument I/O VIs and functions located on the
Functions»Instrument I/O palette to control external instruments. To
control instruments in LabVIEW, you must have the correct hardware
installed, powered on, and operating on your computer. The VIs and

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-3 LabVIEW User Manual

functions you use to control instruments depend on the instrumentation
communication protocols your hardware supports. Refer to the LabVIEW
Measurements Manual for more information about building VIs to control
instruments.

Use the Data Acquisition VIs and functions located on the Functions»Data
Acquisition palette to acquire data from DAQ devices. To use these VIs,
you must have the NI-DAQ driver software and DAQ hardware installed.
Refer to the LabVIEW Measurements Manual for more information about
installing the NI-DAQ driver software and DAQ hardware and building VIs
to acquire data. After you acquire data, you can use the built-in Analyze,
Report Generation, and Mathematics VIs and functions to analyze,
generate reports, and perform mathematical operations on that data.

Building VIs That Access Other VIs
Use the Application Control VIs and functions located on the
Functions»Application Control palette to control how VIs behave when
called as subVIs or run by the user. You can use these VIs and functions to
configure multiple VIs at the same time. Also, if you are on a network with
other LabVIEW users, you can use these VIs and functions to access and
control VIs remotely. Refer to Chapter 16, Programmatically
Controlling VIs, for more information about controlling VIs remotely.

Building VIs That Communicate with Other Applications
Use the File I/O VIs and functions located on the Functions»File I/O
palette to write data to or read data from other applications, such as
Microsoft Excel. You can use these VIs and functions to generate reports
or incorporate data from another application in the VI. Refer to Chapter 13,
File I/O, for more information about passing data to and from other
applications.

Use the Communication VIs and functions located on the
Functions»Communication palette to transfer LabVIEW data across the
Web using a communication protocol such as FTP and to build
client-server applications using communication protocols. Refer to
Chapter 17, Networking in LabVIEW, for more information about
communicating with other applications on the network or on the Web.

(Windows) Use the ActiveX functions located on the
Functions»Communication»ActiveX palette to add ActiveX objects to
VIs or to control ActiveX-enabled applications. Refer to Chapter 18,
ActiveX, for more information about using ActiveX technology.

Chapter 7 Creating VIs and SubVIs

LabVIEW User Manual 7-4 www.ni.com

SubVIs
After you build a VI and create its icon and connector pane, you can
use it in another VI. A VI within another VI is called a subVI. A subVI
corresponds to a subroutine in text-based programming languages.
A subVI node corresponds to a subroutine call in text-based programming
languages. The node is not the subVI itself, just as a subroutine call
statement in a program is not the subroutine itself. A block diagram that
contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the
block diagram of the calling VI. Select VIs on the Functions»Select a VI
palette and place them on the block diagram to create a subVI call to
that VI.

Note Before you can use a VI as a subVI, you must set up a connector pane. Refer to the
Setting up the Connector Pane section of this chapter for more information about setting
up a connector pane.

Watching for Common Operations
As you create VIs, you might find that you perform a certain operation
frequently. Consider using subVIs or loops to perform that operation
repetitively. For example, the following block diagram contains two
identical operations.

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-5 LabVIEW User Manual

You can create a subVI that performs that operation and call the subVI
twice, as shown in the following block diagram.

Chapter 7 Creating VIs and SubVIs

LabVIEW User Manual 7-6 www.ni.com

You also can reuse the subVI in other VIs. Refer to Chapter 8, Loop and
Case Structures, for more information about using loops to combine
common operations.

Setting up the Connector Pane
To use a VI as a subVI, you need to build a connector pane, shown at left.
The connector pane is a set of terminals that corresponds to the controls and
indicators of that VI, similar to the parameter list of a function call in
text-based programming languages. The connector pane defines the inputs
and outputs you can wire to the VI so you can use it as a subVI. Refer to
the Icon and Connector Pane section of Chapter 2, Introduction to Virtual
Instruments, for more information about connector panes.

Define connections by assigning a front panel control or indicator to each
of the connector pane terminals. To define a connector pane, right-click the
icon in the upper right corner of the front panel window and select Show
Connector from the shortcut menu. The connector pane replaces the icon.
Each rectangle on the connector pane represents a terminal. Use the
rectangles to assign inputs and outputs. The number of terminals LabVIEW
displays on the connector pane depends on the number of controls and
indicators on the front panel.

The connector pane has, at most, 28 terminals. If your front panel contains
more than 28 controls and indicators that you want to use
programmatically, group some of them into a cluster and assign the cluster
to a terminal on the connector pane. Refer to the Clusters section of
Chapter 9, Grouping Data Using Strings, Arrays, and Clusters, for more
information about grouping data using clusters.

Note Try not to assign more than 16 terminals to a VI. Too many terminals can reduce the
readability and usability of the VI.

Select a different terminal pattern for a VI by right-clicking the connector
pane and selecting Patterns from the shortcut menu. Select a connector
pane pattern with extra terminals. You can leave the extra terminals
unconnected until you need them. This flexibility enables you to make
changes with minimal effect on the hierarchy of the VIs.

If you create a group of subVIs that you use together often, give the subVIs
a consistent connector pane with common inputs in the same location to
help you remember where to locate each input. If you create a subVI that
produces an output another subVI uses as the input, align the input and
output connections to simplify the wiring patterns. Place the error in

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-7 LabVIEW User Manual

clusters on the lower left corner of the front panel and the error out clusters
on the lower right corner.

Figure 7-1 shows examples of improperly and properly aligned error
clusters.

Figure 7-1. Improperly and Properly Aligned Error Clusters

Setting Required, Recommended, and Optional
Inputs and Outputs
You can designate which inputs and outputs are required, recommended,
and optional to prevent users from forgetting to wire subVI connections.

Right-click a terminal in the connector pane and select This Connection Is
from the shortcut menu. A checkmark indicates the terminal setting. Select
Required, Recommended, or Optional.

When an input or output is required, you cannot run the VI as a subVI
without wiring it correctly. When an input or output is recommended, you
can run the VI, but LabVIEW reports a warning in the Window»Show
Error List window if you placed a checkmark in the Show Warnings
checkbox in the Error list window. LabVIEW uses the default value for
unwired optional inputs and outputs and does not report any warnings.

Inputs and outputs of VIs in vi.lib are already marked as Required,
Recommended, or Optional. LabVIEW sets inputs and outputs of VIs you
create to Recommended by default. Set a terminal setting to required only
if the VI must have the input or output to run properly.

In the Context Help window, required connections are bold, recommended
connections are plain text, and optional connections are dimmed if you
have the Detailed view selected or do not appear if you have the Simple
view selected.

1 Improper 2 Proper

1 2

Chapter 7 Creating VIs and SubVIs

LabVIEW User Manual 7-8 www.ni.com

Creating an Icon
Every VI displays an icon, shown at left, in the upper right corner of the
front panel and block diagram windows. An icon is a graphical
representation of a VI. It can contain text, images, or a combination of both.
If you use a VI as a subVI, the icon identifies the subVI on the block
diagram of the VI.

The default icon contains a number that indicates how many new VIs you
have opened since launching LabVIEW. Create custom icons to replace the
default icon by right-clicking the icon in the upper right corner of the front
panel or block diagram and selecting Edit Icon from the shortcut menu or
by double-clicking the icon in the upper right corner of the front panel.

Depending on the type of monitor you use, you can design a separate icon
for monochrome, 16-color, and 256-color mode. LabVIEW uses the
monochrome icon for printing unless you have a color printer.

Creating SubVIs from Portions of a VI
Convert a portion of a VI into a subVI by using the Positioning tool to select
the section of the block diagram you want to reuse and selecting
Edit»Create SubVI. An icon for the new subVI replaces the selected
section of the block diagram. LabVIEW creates controls and indicators for
the new subVI and wires the subVI to the existing wires.

Creating a subVI from a selection is convenient but still requires careful
planning to create a logical hierarchy of VIs. Consider which objects to
include in the selection and avoid changing the functionality of the
resulting VI.

Designing SubVIs
If users do not need to view the front panel of a subVI, you can spend less
time on its appearance, including colors and fonts. However, front panel
organization still is important because you might need to view the front
panel while you debug the VI.

Place the controls and indicators as they appear in the connector pane. Place
the controls on the left of the front panel and the indicators on the right.
Place the error in clusters on the lower left of the front panel and the error
out clusters on the lower right. Refer to the Setting up the Connector Pane
section of this chapter for more information about setting up a connector
pane.

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-9 LabVIEW User Manual

If a control has a default value, put the default value in parentheses as part
of the control name. Also include measurement units, if applicable, in the
control name. For example, if a control sets the high limit temperature and
has a default value of 75 ºF, name the control high limit temperature
(75 degF). If you will use the subVI on multiple platforms, avoid using
special characters in control names. For example, use degF instead of ºF.

Name Boolean controls so users can determine what the control does in the
TRUE state. Use names like Cancel, Reset, and Initialize that describe the
action taken.

Viewing the Hierarchy of VIs
The Hierarchy Window displays a graphical representation of the calling
hierarchy for all VIs in memory, including type definitions and global
variables. Select Browse»Show VI Hierarchy to display the Hierarchy
Window. Use this window to view the subVIs and other nodes that make
up the current VI.

As you move the Operating tool over objects in the Hierarchy Window,
LabVIEW displays the name of each VI. You can use the Positioning tool
to drag a VI or subVI from the Hierarchy Window to the block diagram
to use the VI or subVI as a subVI in another VI. You also can select and
copy a node or several nodes to the clipboard and paste them on other block
diagrams. Double-click a VI or subVI node in the Hierarchy Window to
display the front panel of that VI.

A VI that contains subVIs has an arrow button on its border. Click this
arrow button to show or hide subVIs. A red arrow button appears when all
subVIs are hidden. A black arrow button appears when all subVIs are
displayed.

Saving VIs
You can save VIs as individual files or you can group several VIs together
and save them in a VI library. VI library files end with the extension .llb.
National Instruments recommends that you save VIs as individual files,
organized in directories, especially if multiple developers are working on
the same project.

Chapter 7 Creating VIs and SubVIs

LabVIEW User Manual 7-10 www.ni.com

Advantages of Saving VIs as Individual Files
The following list describes reasons to save VIs as individual files:

• You can use the file system to manage the individual files.

• You can use subdirectories.

• You can store VIs and controls in individual files more robustly than
you can store your entire project in the same file.

• You can use the Professional Development System built-in source code
control tools or third-party source code control tools.

Advantages of Saving VIs as Libraries
The following list describes reasons to save VIs as libraries:

• You can use up to 255 characters to name your files.

(Macintosh) MacOS 9.x or earlier limits you to 31 characters for
filenames.

• You can transfer a VI library to other platforms more easily than you
can transfer multiple individual VIs.

• You can slightly reduce the file size of your project because VI
libraries are compressed to reduce disk space requirements.

Note LabVIEW stores many of its built-in VIs and examples in VI libraries to ensure
consistent storage locations on all platforms.

If you use VI libraries, consider dividing your application into multiple
VI libraries. Put the high-level VIs in one VI library and set up other
libraries to contain VIs separated by function.

Managing VIs in Libraries
Use the VI Library Manager, which you access by selecting Tools»VI
Library Manager, to simplify copying, renaming, and deleting files
within VI libraries. You also can use this tool to create new VI libraries and
directories and convert VI libraries to and from directories. Creating new
VI libraries and directories and converting VI libraries to and from
directories is important if you need to manage your VIs with source code
control tools.

Before you use the VI Library Manager, close all VIs that might be affected
to avoid performing a file operation on a VI already in memory.

Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-11 LabVIEW User Manual

Naming VIs
When you save VIs, use descriptive names. Descriptive names, such as
Temperature Monitor.vi and Serial Write & Read.vi, make it
easy to identify a VI and know how you use it. If you use ambiguous names,
such as VI#1.vi, you might find it difficult to identify VIs, especially if
you have saved several VIs.

Consider whether your users will run the VIs on another platform. Avoid
using characters that some operating systems reserve for special purposes,
such as \ : / ? * < > and #.

(Macintosh) Keep VI names less than 31 characters if your users might run
them on MacOS 9.x or earlier.

Saving for a Previous Version
You can save VIs for a previous version of LabVIEW to make upgrading
LabVIEW convenient and to help you maintain the VIs in two versions of
LabVIEW when necessary. If you upgrade to a new version of LabVIEW,
you can go back to the last version of the VIs.

When you save a VI for the previous version, LabVIEW converts not just
that VI but all the VIs in its hierarchy, excluding vi.lib files.

Often a VI uses functionality not available in the previous version of
LabVIEW. In such cases, LabVIEW saves as much of the VI as it can and
produces a report of what it cannot convert. The report appears immediately
in the Warnings dialog box. Click OK to acknowledge these warnings and
close the dialog box. Click Save to save the warnings to a text file to review
later.

Distributing VIs
If you want to distribute VIs to other computers or to other users, consider
if you want to include block diagram source code users can edit or if you
want to hide or remove the block diagram. Select File»Save With Options
to save VIs without the block diagrams to reduce the file size and prevent
users from changing the source code. Saving a VI without the block
diagram also prevents users from moving the VI to another platform or
from upgrading the VI to a future version of LabVIEW.

Caution If you save VIs without block diagrams, do not overwrite the original versions of
the VIs. Save the VIs in different directories or use different names.

Chapter 7 Creating VIs and SubVIs

LabVIEW User Manual 7-12 www.ni.com

Instead of removing the block diagram, you can assign password protection
to the block diagrams. The block diagram is still available, but users must
enter a password to view or edit the block diagram.

Another option for distributing VIs is to create a stand-alone application or
shared library. A stand-alone application or shared library is appropriate
when you do not expect your users to edit the VIs. Users can run your
application or use the shared library, but they cannot edit or view the block
diagrams. Stand-alone applications contain simplified menus.

Building Stand-Alone Applications and Shared Libraries
Select Tools»Build Application or Shared Library (DLL) to use the
Application Builder to create stand-alone applications and installers or
shared libraries (DLLs) for VIs. Use shared libraries if you want to call the
VIs in the shared library using text-based programming languages.

Note The LabVIEW Professional Development System includes the Application Builder.
If you use the LabVIEW Base Package or Full Development System, you can purchase the
Application Builder separately.

Use the tabs in the Build Application or Shared Library (DLL) dialog
box to configure various settings for the application or shared library you
want to build. After you define these settings, save them in a script so you
can easily rebuild the application if necessary.

Users can run your application or use the shared library, but they cannot edit
or view the block diagrams.

Refer to the LabVIEW Application Builder Release Notes for more
information about installing the Application Builder.

© National Instruments Corporation II-1 LabVIEW User Manual

Part II

Building and Editing VIs

This part describes LabVIEW features, VIs, and functions you can use to
make your applications operate in specific ways. The chapters in this
section describe the usefulness of each LabVIEW feature and outline each
class of VIs and functions.

Part II, Building and Editing VIs, contains the following chapters:

• Chapter 8, Loop and Case Structures, describes how to use structures
in the block diagram to repeat blocks of code and to execute code
conditionally or in a specific order.

• Chapter 9, Grouping Data Using Strings, Arrays, and Clusters,
describes how to use strings, arrays, and clusters to group data.

• Chapter 10, Local and Global Variables, describes how to use local
and global variables pass information between locations in your
application that you cannot connect with a wire.

• Chapter 11, Graphs and Charts, describes how to use graphs and
charts to display plots of data in a graphical form.

• Chapter 12, Graphics and Sound VIs, describes how to display or
modify graphics and sound in VIs.

• Chapter 13, File I/O, describes how to perform file I/O operations.

• Chapter 14, Documenting and Printing VIs, describes how to
document and print VIs.

• Chapter 15, Customizing VIs, describes how to configure VIs and
subVIs to work according to your application needs.

• Chapter 16, Programmatically Controlling VIs, describes how to
communicate with VIs and other instances of LabVIEW so you can
programmatically control VIs and LabVIEW.

Part II Building and Editing VIs

LabVIEW User Manual II-2 www.ni.com

• Chapter 17, Networking in LabVIEW, describes how to use VIs to
communicate, or network, with other processes, including those that
run on other applications or on remote computers.

• Chapter 18, ActiveX, describes how to provide a public set of objects,
commands, and functions that other Windows applications can access.

• Chapter 19, Calling Code from Text-Based Programming Languages,
describes how to call code from text-based programming languages
and use DLLs.

• Chapter 20, Formulas and Equations, describes how to use equations
in VIs.

© National Instruments Corporation 8-1 LabVIEW User Manual

8
Loop and Case Structures

Structures are graphical representations of the loops and case statements of
text-based programming languages. Use structures in the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order.

Like other nodes, structures have terminals that connect them to other block
diagram nodes, execute automatically when input data are available, and
supply data to output wires when execution completes.

Each structure has a distinctive, resizable border to enclose the section of
the block diagram that executes according to the rules of the structure. The
section of the block diagram inside the structure border is called a
subdiagram. The terminals that feed data into and out of structures are
called tunnels. A tunnel is a connection point on a structure border.

For more information…

Refer to the LabVIEW Help for more information about using structures.

Use the following structures located on the Functions»Structures palette
to control how a block diagram executes processes:

• For Loop—Executes a subdiagram a set number of times.

• While Loop—Executes a subdiagram until a condition is met.

• Case structure—Contains multiple subdiagrams, only one of which
executes depending on the input value passed to the structure.

• Sequence structure—Contains one or more subdiagrams, which
execute in sequential order.

• Formula Node—Performs mathematical operations based on numeric
input. Refer to the Formula Nodes section of Chapter 20, Formulas
and Equations, for information about using Formula Nodes.

Right-click the border of the structure to display the shortcut menu.

Chapter 8 Loop and Case Structures

LabVIEW User Manual 8-2 www.ni.com

For Loop and While Loop Structures
Use the For Loop and the While Loop to control repetitive operations.

For Loops
A For Loop, shown at left, executes a subdiagram a set number of times.

The value in the count terminal (an input terminal), shown at left, indicates
how many times to repeat the subdiagram. Set the count explicitly by
wiring a value from outside the loop to the left or top side of the count
terminal, or set the count implicitly with auto-indexing. Refer to the
Auto-Indexing to Set the For Loop Count section of this chapter for more
information about setting the count implicitly.

The iteration terminal (an output terminal), shown at left, contains the
number of completed iterations. The iteration count always starts at zero.
During the first iteration, the iteration terminal returns 0.

Both the count and iteration terminals are signed long integers with a range
of 0 to 231–1. If you wire a floating-point number to the count terminal,
LabVIEW rounds it and coerces it to within range. If you wire 0 to the
count terminal, the loop does not execute.

Add shift registers to the For Loop to pass data from the current iteration to
the next iteration. Refer to the Shift Registers in Loops section of this
chapter for more information about adding shift registers to a loop.

While Loops
Similar to a Do Loop or a Repeat-Until Loop in text-based programming
languages, a While Loop, shown at left, executes a subdiagram until a
condition is met.

The While Loop executes the subdiagram until the conditional terminal, an
input terminal, receives a specific Boolean value. The default behavior and
appearance of the conditional terminal is Continue If True, shown at left.
When a conditional terminal is Continue If True, the While Loop executes
its subdiagram until the conditional terminal receives a FALSE value. You
can change the behavior and appearance of the conditional terminal by
right-clicking the terminal or the border of the While Loop and selecting
Stop If True, shown at left. When a conditional terminal is Stop If True,
the While Loop executes its subdiagram until the conditional terminal
receives a TRUE value. Because the VI checks the conditional terminal at

Chapter 8 Loop and Case Structures

© National Instruments Corporation 8-3 LabVIEW User Manual

the end of each iteration, the While Loop always executes at least one time.
The VI does not run if you do not wire the conditional terminal.

You also can perform basic error handling using the conditional terminal of
a While Loop. When you wire an error cluster to the conditional terminal,
only the TRUE or FALSE value of the status parameter of the error cluster
passes to the terminal. Also, the Stop If True and Continue If True
shortcut menu items change to Stop If Error and Continue while Error.
Refer to the Error Checking and Error Handling section of Chapter 6,
Running and Debugging VIs, for more information about error clusters and
error handling.

The iteration terminal (an output terminal), shown at left, contains the
number of completed iterations. The iteration count always starts at zero.
During the first iteration, the iteration terminal returns 0.

Add shift registers to the While Loop to pass data from the current iteration
to the next iteration. Refer to the Shift Registers in Loops section of this
chapter for more information about adding shift registers to a loop.

Avoiding Infinite While Loops
If you place the terminal of the Boolean control outside the While Loop,
as shown in Figure 8-1, and the control is set to FALSE if the conditional
terminal is Stop If True when the loop starts, you cause an infinite loop.
You also cause an infinite loop if the control outside the loop is set to TRUE
and the conditional terminal is Continue If True.

Figure 8-1. Infinite While Loop

Changing the value of the control does not stop the infinite loop because the
value is only read once, before the loop starts. To stop an infinite loop, you
must abort the VI by clicking the Abort button on the toolbar.

Chapter 8 Loop and Case Structures

LabVIEW User Manual 8-4 www.ni.com

Auto-Indexing Loops
If you wire an array to a For Loop or While Loop, you can read and process
every element in that array by enabling auto-indexing. Refer to Chapter 9,
Grouping Data Using Strings, Arrays, and Clusters, for more information
about arrays.

When you wire an array to an input tunnel on the loop border and enable
auto-indexing on the input tunnel, elements of that array enter the loop one
at a time, starting with the first element. Right-click the tunnel at the loop
border and select Enable Indexing or Disable Indexing from the shortcut
menu to enable or disable auto-indexing. When auto-indexing is disabled,
the entire array is passed into the loop. Auto-indexing for While Loops is
disabled by default.

The loop indexes scalar elements from 1D arrays, 1D arrays from
2D arrays, and so on. The opposite occurs at output tunnels. Scalar
elements accumulate sequentially into 1D arrays, 1D arrays accumulate
into 2D arrays, and so on.

Auto-Indexing to Set the For Loop Count
If you enable auto-indexing on an array wired to a For Loop, you do not
need to wire the count terminal explicitly. Because you can use For Loops
to process arrays an element at a time, LabVIEW enables auto-indexing by
default for every array you wire to a For Loop. Disable auto-indexing if you
do not need to process arrays an element at a time.

If you enable auto-indexing for more than one tunnel or if you also set the
count explicitly, the count becomes the smaller of the choices. For example,
if two auto-indexed arrays enter the loop, with 10 and 20 elements
respectively, and you wire a value of 15 to the count terminal, the loop
executes 10 times, and the loop indexes only the first 10 elements of the
second array. If you plot data from two sources on one graph and you want
to plot the first 100 elements, wire 100 to the count terminal. If one of the
data sources includes only 50 elements, the loop executes 50 times and
indexes only the first 50 elements. Use the Array Size function to determine
the size of arrays.

When you auto-index an array output tunnel, the output array receives a
new element from every iteration of the loop. Therefore, auto-indexed
output arrays are always equal in size to the number of iterations. For
example, if the loop executes 10 times, the output array has 10 elements.
If you disable auto-indexing on an output tunnel, only the element from the
last iteration of the loop passes to the next node in the block diagram. The

Chapter 8 Loop and Case Structures

© National Instruments Corporation 8-5 LabVIEW User Manual

thickness of the wire between the output tunnel and the next node indicates
if the loop is using auto-indexing. The wire is thicker when you use
auto-indexing because the wire contains an array, instead of a scalar.

Auto-Indexing with While Loops
If you enable auto-indexing for an array entering a While Loop, the
While Loop indexes the array the same way a For Loop does. However, the
number of iterations a While Loop executes is not limited by the size of the
array because the While Loop iterates until a specific condition is met.
When a While Loop indexes past the end of the input array, the default
value for the array element type passes into the loop. You can prevent the
default value from passing into the While Loop by using the Array Size
function. The Array Size function indicates how many elements are in the
array. Set up the While Loop to stop executing when it has iterated the same
number of times as the array size. When you auto-index an array output
tunnel, the output array receives a new element from every iteration of the
loop. Therefore, auto-indexed output arrays are always equal in size to the
number of iterations.

Caution Because you cannot determine the size of the output array in advance, enabling
auto-indexing for the output of a For Loop is more efficient than with a While Loop.
Iterating too many times can cause your system to run out of memory. If you have limited
memory, consider using a For Loop.

Shift Registers in Loops
Use shift registers on For Loops and While Loops to transfer values from
one loop iteration to the next.

A shift register appears as a pair of terminals, shown at left, directly
opposite each other on the vertical sides of the loop border. The right
terminal contains an up arrow and stores data on the completion of an
iteration. LabVIEW transfers the data connected to the right side of the
register to the next iteration. Create a shift register by right-clicking the left
or right border of a loop and selecting Add Shift Register from the shortcut
menu.

A shift register transfers any data type and automatically changes to the
data type of the first object wired to the shift register. The data you wire to
the terminals of each shift register must be the same type. You can create
multiple shift registers on a structure, and you can have more than one left
terminal to remember more than one previous value.

Chapter 8 Loop and Case Structures

LabVIEW User Manual 8-6 www.ni.com

After the loop executes, the last value stored in the shift register remains at
the right terminal. If you wire the right terminal outside the loop, the wire
transfers the last value stored in the shift register.

If you do not initialize the register, the loop uses the value written to the
register when the loop last executed or the default value for the data type if
the loop has never executed.

Use a loop with an uninitialized shift register to run a VI repeatedly so that
each time the VI runs, the initial output of the shift register is the last value
from the previous execution. Leave the input to the left shift register
terminal unwired for an uninitialized shift register to preserve state
information between subsequent executions of a VI.

Controlling Timing
You might want to control the speed at which a process executes, such as
the speed at which data are plotted to a chart. You can use the Wait function
in the loop to wait an amount of time in milliseconds you want to wait
before the loop re-executes.

Case and Sequence Structures
Case and Sequence structures contain multiple subdiagrams, only one of
which is visible at a time. A Case structure executes one subdiagram
depending on the input value passed to the structure. A Sequence structure
executes all its subdiagrams in sequential order.

Case Structures
A Case structure, shown at left, has two or more subdiagrams, or cases.
Only one subdiagram is visible at a time, and the structure executes only
one case at a time. An input value determines which subdiagram executes.

The case selector identifier at the top of the Case structure, shown at left,
contains the case selector identifier in the center and decrement and
increment buttons on each side. Use the decrement and increment buttons
to scroll through the available cases.

Wire an input value, or selector, to the selector terminal, shown at left, to
determine which case executes. You must wire an integer, Boolean value,
string, or enumerated type value to the selector terminal. You can position
the selector terminal anywhere on the left border of the Case structure.

Chapter 8 Loop and Case Structures

© National Instruments Corporation 8-7 LabVIEW User Manual

You can specify a default case for the Case structure. You must specify a
default case to handle out-of-range values or explicitly list every possible
input value. For example, if you specified cases for 1, 2, and 3 but you get
an input of 4, the Case structure executes the default case.

Case Selector Values and Data Types
Specify a single value or lists and ranges of values to select the case. For
lists, use commas to separate values. Specify a range as 10..20, meaning
all numbers from 10 to 20 inclusively. You also can use open-ended ranges.
For example, ..100 represents all numbers less than or equal to 100. You
also can combine lists and ranges, for example ..5, 6, 7..10, 12,
13, 14. When you enter a selector that contains overlapping ranges, the
Case structure redisplays the selector in a more compact form. The
previous example redisplays as ..10, 12..14.

When you use string and enumerated values in a case selector, the values
display in quotation marks, for example “red”, “green”, and “blue”.
However, you do not need to type the quotation marks when you enter the
values unless the string or enumerated value contains a comma or range
symbol (“,” or “..”). In a string case selector, use special backslash codes
for non-alphanumeric characters, such as \r for a carriage return, \n for a
line feed, and \t for a tab. Refer to the LabVIEW Help for a list of these
backslash codes.

If you change the data type of the wire connected to the selector terminal
of a Case structure, the Case structure automatically converts the case
selector values to the new data type when possible. If you convert a numeric
value, for example 19, to a string, the string value is “19”. If you convert a
string to a numeric value, LabVIEW converts only those selector strings
that represent a number. The other values remain strings. If you convert a
number to a Boolean value, LabVIEW converts 0 to FALSE and 1 to
TRUE, and all other numeric values become strings.

If you enter a selector value that is not the same type as the object wired to
the selector terminal, the value appears red to indicate that you must delete
or edit the value before the structure can execute, and the VI will not run.
Also, because of the possible round-off error inherent in floating-point
arithmetic, you cannot use floating-point numerics as case selector values.
If you wire a floating-point value to the case, LabVIEW rounds the value
to the nearest even integer. If you type a floating-point value in the case
selector, the value appears red to indicate that you must delete or edit the
value before the structure can execute.

Chapter 8 Loop and Case Structures

LabVIEW User Manual 8-8 www.ni.com

Input and Output Tunnels
You can create multiple input and output tunnels for a Case structure.
Inputs are available to all subdiagrams, but subdiagrams do not need to use
each input. However, you must define each output tunnel for each case.
When you create an output tunnel in one case, tunnels appear at the same
position on the border in all the other cases. Unwired output tunnels appear
as white squares. You can define a different data source for the same output
tunnel in each case, but the data types must be compatible.

Using Case Structures for Error Handling
When you wire an error cluster to the Selector terminal of a Case structure,
the case selector identifier displays two cases, Error and No Error, and
the border of the Case structure changes color—red for Error and green
for No Error. When an error occurs, the Case structure executes the
appropriate case subdiagram. Refer to the Error Handling section of
Chapter 6, Running and Debugging VIs, for more information about
handling errors.

Sequence Structures
A Sequence structure, shown at left, contains one or more subdiagrams, or
frames, which execute in sequential order. A Sequence structure executes
frame 0, then frame 1, then frame 2, until the last frame executes. The
Sequence structure does not complete execution or return any data until the
last frame executes.

Use the Sequence structure to control the execution order when natural data
dependency does not exist. A node that receives data from another node
depends on the other node for data and always executes after the other node
completes execution.

Within each frame of a Sequence structure, as in the rest of the block
diagram, data dependency determines the execution order of nodes. Refer
to the Data Dependency and Artificial Data Dependency section of
Chapter 5, Building the Block Diagram, for more information about data
dependency.

The tunnels of Sequence structures can have only one data source, unlike
Case structures. The output can emit from any frame, but data leave the
Sequence structure only when all frames complete execution, not when the
individual frames complete execution. As with Case structures, data at
input tunnels are available to all frames.

Chapter 8 Loop and Case Structures

© National Instruments Corporation 8-9 LabVIEW User Manual

To pass data from one frame to any subsequent frame, use a sequence local
terminal, shown at left. An outward-pointing arrow appears in the sequence
local terminal of the frame that contains the data source. The terminal in
subsequent frames contains an inward-pointing arrow, indicating that the
terminal is a data source for that frame. You cannot use the sequence local
terminal in frames that precede the first frame where you wired the
sequence local.

Avoiding Overusing Sequence Structures
To take advantage of the inherent parallelism in LabVIEW, avoid
overusing Sequence structures. Sequence structures guarantee the order of
execution and prohibit parallel operations. For example, asynchronous
tasks that use I/O devices, such as PXI, GPIB, serial ports, and DAQ
devices, can run concurrently with other operations if Sequence structures
do not prevent them from doing so. Sequence structures also hide sections
of the block diagram and interrupt the natural left-to-right flow of data.

When you need to control the execution order, consider establishing data
dependency between the nodes. For example, you can use error I/O to
control the execution order of I/O. Refer to the Error Handling section
of Chapter 6, Running and Debugging VIs, for more information about
error I/O.

Refer to the examples\general\structs.llb for examples of using
Sequence structures.

© National Instruments Corporation 9-1 LabVIEW User Manual

9
Grouping Data Using Strings,
Arrays, and Clusters

Use strings, arrays, and clusters to group data. Strings group sequences of
ASCII characters. Arrays group data elements of the same type. Clusters
group data elements of mixed types.

For more information…

Refer to the LabVIEW Help for more information about grouping data using
strings, arrays, and clusters.

Strings
A string is a sequence of displayable or non-displayable ASCII characters.
Strings provide a platform-independent format for information and data.
Some of the more common applications of strings include the following:

• Creating simple text messages.

• Passing numeric data as character strings to instruments and then
converting the strings to numerics.

• Storing numeric data to disk. To store numerics in an ASCII file, you
must first convert numerics to strings before writing the numerics to a
disk file.

• Instructing or prompting the user with dialog boxes.

On the front panel, strings appear as tables, text entry boxes, and labels.
Edit and manipulate strings with the String functions on the block diagram.
You format strings for use in other applications, such as word processing
applications and spreadsheets, or for use within other VIs and functions.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW User Manual 9-2 www.ni.com

Strings on the Front Panel
Use the string control and indicator located on the Controls»String &
Path palette to simulate text entry boxes and labels. Refer to the String
Controls and Indicators section of Chapter 4, Building the Front Panel,
for more information about string controls and indicators.

String Display Types
Right-click a string control or indicator on the front panel to select from the
display types shown in Table 9-1. The table also shows an example
message in each display type.

Tables
Use the table control located on the Controls»List & Table palette to
create a table on the front panel. Each cell in a table is a string, and each
cell resides in a column and a row. Therefore, a table is a display for a 2D
array of strings. Figure 9-1 shows a table and all its parts. Refer to the
Arrays section of this chapter for more information about arrays.

Table 9-1. String Display Types

Display Type Description Message

Normal
Display

Displays printable characters using the
font of the control. Non-printable
characters display as boxes.

There are four display types.

\ is a backslash.

‘\’ Codes
Display

Displays backslash codes for all
non-printable characters.

There\sare\sfour\sdisplay\st
ypes.\n\\\sis\sa\sbackslash.

Password
Display

Displays an asterisk (*) for each
character including spaces.

*

Hex Display Displays the ASCII value of each
character in hex instead of the
character itself.

5468 6572 6520 6172 6520 666F
7572 2064 6973 706C 6179 2074
7970 6573 2E0A 5C20 6973 2061
2062 6163 6B73 6C61 7368 2E

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-3 LabVIEW User Manual

Figure 9-1. Parts of a Table

Programmatically Editing Strings
Use the String functions located on the Functions»String palette to edit
strings in the following ways:

• Search for, retrieve, and replace characters or substrings within a
string.

• Change all text in a string to upper case or lower case.

• Find and retrieve matching patterns within a string.

• Retrieve a line from a string.

• Rotate and reverse text within a string.

• Concatenate two or more strings.

• Delete characters from a string.

Refer to the examples\general\strings.llb for examples of using
the String functions to edit strings.

1 Cell indicated by index values
2 Column headings
3 Vertical scroll bar
4 Horizontal scroll bar

5 Row headings
6 Horizontal index
7 Vertical index

7

6

5

4

3

21

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW User Manual 9-4 www.ni.com

Formatting Strings
To use data in another VI, function, or application, you often must convert
the data to a string and then format the string in a way that the VI, function,
or application can read. For example, Microsoft Excel expects strings that
include delimiters, which Excel uses to segregate numbers or words into
cells.

For example, to write a 1D array of numerics to a spreadsheet using the
Write File function, you must format the array into a string and separate
each numeric with a delimiter, such as a tab. To write an array of numerics
to a spreadsheet using the Write to Spreadsheet File VI, you must format
the array with the Array to Spreadsheet String function and specify a format
and a delimiter.

Use the String functions, located on the Functions»String palette,
to perform the following tasks:

• Concatenate two or more strings.

• Extract a subset of strings from a string.

• Convert data into strings.

• Format a string for use in a word processing or spreadsheet application.

Use the File I/O VIs and functions located on the Functions»File I/O
palette to save strings to text and spreadsheet files.

Format Specifiers
In many cases, you must enter one or more format specifiers in the format
string parameter of a String function to format a string. A format specifier
code that indicates how to convert data to or from a string. LabVIEW uses
conversion codes to determine the textual format of the parameter. For
example, a format specifier of %x converts a hex integer to or from a string.

The Format Into String and Scan From String functions can use multiple
format specifiers in the format string parameter, one for each input or
output to the expandable function.

The Array To Spreadsheet String and Spreadsheet String To Array
functions use only one format specifier in the format string parameter
because these functions have only one input to convert. LabVIEW treats
any extra specifiers you insert into these functions as literal strings with no
special meaning.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-5 LabVIEW User Manual

Numerics and Strings
Numeric data and string data differ because string data are ASCII
characters and numeric data are not. Text and spreadsheet files accept
strings only. To write numeric data to a text or spreadsheet file, you must
first convert the numeric data to a string.

To add a set of numerics to an existing string, convert the numeric data to a
string and use the Concatenate Strings or another String function to add the
new string to the existing string. Use the String/Number Conversion
functions located on the Functions»String»String/Number Conversion
palette to convert numerics to strings.

A string can include a set of numerics you display in a graph or chart. For
example, you can read a text file that includes a set of numerics that you
want to plot to a chart. However, those numerics are in ASCII text, so you
must read the numerics as a string and then format the string into a set of
numerics before you plot the numerics to a chart.

Figure 9-2 shows a string that includes a set of numerics, converts the string
to numerics, builds an array of numerics, and plots the numerics to a graph.

Figure 9-2. Converting a String to Numerics

Grouping Data with Arrays and Clusters
Use the array and cluster controls and functions located on the
Controls»Array & Cluster, Functions»Array, and Functions»Cluster
palettes to group data. Arrays group data elements of the same type.
Clusters group data elements of mixed types.

Arrays
An array consists of elements and dimensions. Elements are the data that
make up the array. A dimension is the length, height, or depth of an array.
An array can have one or more dimensions and as many as 231 – 1 elements
per dimension, memory permitting.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW User Manual 9-6 www.ni.com

You can build arrays of numeric, Boolean, path, string, waveform, and
cluster data types. Consider using arrays when you work with a collection
of similar data and when you perform repetitive computations. Arrays are
ideal for storing data you collect from waveforms or data generated in
loops, where each iteration of a loop produces one element of the array.

You cannot create arrays of arrays. However, you can create an array of
clusters where each cluster contains one or more arrays. Refer to the
Restrictions for Arrays section of this chapter for more information about
the types of elements an array can contain. Refer to the Clusters section for
more information about clusters.

Indexes
To locate a particular element in an array requires one index per dimension.
In LabVIEW, indexes let you navigate through an array and retrieve
elements, rows, columns, and pages from an array on the block diagram.

Examples of Arrays
An example of a simple array is a text array that lists the nine planets of our
solar system. LabVIEW represents this as a 1D array of strings with nine
elements.

Array elements are ordered, just as the nine planets have an established
order in relation to their distance from the sun. An array uses an index so
you can readily access any particular element. The index is zero-based,
which means it is in the range 0 to n – 1, where n is the number of elements
in the array. In this example, n = 9 for the nine planets, so the index ranges
from 0 to 8. Earth is the third planet, so it has an index of 2.

Another example of an array is a waveform represented as a numeric array
in which each successive element is the voltage value at successive time
intervals, as shown in Figure 9-3.

Figure 9-3. Waveform in an Array of Numerics

volts 0.4 0.9 1.4 0.8 –0.1 –0.7 –0.3 0.3 0.2
index 0 1 2 3 4 5 6 7 8

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-7 LabVIEW User Manual

A more complex example of an array is a graph represented as an array of
points where each point is a cluster containing a pair of numerics that
represent the X and Y coordinates, as shown in Figure 9-4.

Figure 9-4. Graph in an Array of Points

The previous examples use 1D arrays. A 2D array stores elements in a grid.
It requires a column index and a row index to locate an element, both of
which are zero-based. Figure 9-5 shows an 6 column by 4 row 2D array,
which contains 6 × 4 = 24 elements.

Figure 9-5. 6-Column by 4-Row 2D Array

For example, a chessboard has eight columns and eight rows for a total of
64 positions. Each position can be empty or have one chess piece. You can
represent a chessboard as a 2D array of strings. Each string is the name of
the piece that occupies the corresponding location on the board, or an
empty string if the location is empty.

You can generalize the 1D array examples in Figures 9-3 and 9-4 to two
dimensions by adding a row to the array. Figure 9-6 shows a collection of
waveforms represented as a 2D array of numerics. The row index selects
the waveform, and the column index selects the point on the waveform.

X coord 0.4 2.2 3.3 3.2 2.4 1.8 1.9

Y coord 0.2 0.5 1.3 2.3 2.6 1.9 1.2

index 0 1 2 3 4 5 6

Column Index

0
1
2
3

Row Index

0 1 2 3 4 5

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW User Manual 9-8 www.ni.com

Figure 9-6. Multiple Waveforms in a 2D Array of Numerics

Refer to the examples\general\arrays.llb for more examples of
arrays.

Restrictions for Arrays
You can create an array of almost any data type, with the following
exceptions:

• You cannot create an array of arrays. However, you can use a
multidimensional array or create an array of clusters where each
cluster contains one or more arrays.

• You cannot create an array of non-XY graphs because a graph is an
array data type and an array cannot contain another array. However,
you can have an array of non-XY graphs if the graph is in a cluster.

• You cannot create an array of charts.

Creating Array Controls, Indicators, and Constants
Create an array control or indicator on the front panel by placing an array
shell, as shown in Figure 9-7, and dragging a data object or element, which
can be a numeric, Boolean, string, path, refnum, or cluster control or
indicator, into the array shell.

Figure 9-7. Array Shell

The array shell automatically resizes to accommodate the new object,
whether a small Boolean control or a large 3D graph.

0 0.4 0.9 1.4 0.8 –0.1 –0.7 –0.3 0.3 0.2
1 –0.1 0.6 0.4 0.2 0.8 1.6 1.4 0.9 1.1
2 1.6 1.4 0.7 0.5 –0.5 –0.6 –0.2 0.3 0.5

0 1 2 3 4 5 6 7 8

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-9 LabVIEW User Manual

To display a particular element on the front panel, either type the index
number in the index display or use the arrows on the index display to
navigate to that number.

To create an array constant on the block diagram, select
Functions»Array»Array Constant to place the array shell, then place a
string constant, numeric constant, or cluster constant in the array shell. You
can use an array constant as a basis for comparison with another array.

Array Index Display
A 2D array contains rows and columns. As shown in Figure 9-8, the upper
display of the two boxes on the left is the row index and the lower display
is the column index. The combined display to the right of the row and
column displays shows the value at the specified position. Figure 9-8
shows that the value at row 6, column 13, is 66.

Figure 9-8. Array Control

Rows and columns are zero-based, meaning the first column is column 0,
the second column is column 1, and so on. Changing the index display for
the following array to row 1, column 2 displays a value of 6.

If you try to display a column or row that is out of the range of the array
dimensions, the array control is dimmed to indicate that there is no value
defined, and LabVIEW displays the default value of the data type. The
default value of the data type depends on the data type of the array.

Use the Positioning tool to show more than one row or column at a time.

1 Row 2 Column 3 Value at row, column

0 1 2 3

4 5 6 7

8 9 10 11

1

2

3

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW User Manual 9-10 www.ni.com

Array Functions
Use the Array functions located on the Functions»Array palette to create
and manipulate arrays, such as the following tasks:

• Extract individual data elements from an array.

• Insert, delete, or replace data elements in an array.

• Split arrays.

Automatically Resizing Array Functions
The Index Array, Replace Array Subset, Insert Into Array, Delete From
Array, and Array Subset functions automatically resize to match the
dimensions of the input array you wire. For example, if you wire a 1D array
to one of these functions, the function shows a single index input. If you
wire a 2D array to the same function, it shows two index inputs—one for
the row and one for the column.

You can access more than one element, or subarray (row, column, or page)
with these functions by using the Positioning tool to manually resize the
function. When you expand one of these functions, the functions expand in
increments determined by the dimensions of the array wired to the function.
If you wire a 1D array to one of these functions, the function expands by a
single index input. If you wire a 2D array to the same function, the function
expands by two index inputs—one for the row and one for the column.

The index inputs you wire determine the shape of the subarray you want to
access or modify. For example, if the input to an Index Array function is a
2D array and you wire only the row input, you extract a complete 1D row
of the array. If you wire only the column input, you extract a complete 1D
column of the array. If you wire the row input and the column input, you
extract a single element of the array. Each input group is independent and
can access any portion of any dimension of the array.

The block diagram shown in Figure 9-9 uses the Index Array function to
retrieve a row and an element from a 2D array.

Figure 9-9. Indexing a 2D Array

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-11 LabVIEW User Manual

To access multiple consecutive values in an array, expand the Index Array
function, but do not wire values to the index inputs in each increment. For
example, to retrieve the first, second, and third rows from a 2D array,
expand the Index Array function by three increments and wire 1D array
indicators to each sub-array output.

Clusters
Clusters group data elements of mixed types, such as a bundle of wires, as
in a telephone cable, where each wire in the cable represents a different
element of the cluster.

Bundling several data elements into clusters eliminates wire clutter on the
block diagram and reduces the number of connector pane terminals that
subVIs need. The connector pane has, at most, 28 terminals. If your front
panel contains more than 28 controls and indicators that you want to use
programmatically, group some of them into a cluster and assign the cluster
to a terminal on the connector pane.

Although cluster and array elements are both ordered, you must unbundle
all cluster elements at once rather than index one element at a time. You
also can use the Unbundle By Name function to access specific cluster
elements. Clusters also differ from arrays in that they are a fixed size. Like
an array, a cluster is either a control or an indicator. A cluster cannot contain
a mixture of controls and indicators.

Most clusters on the block diagram have a pink wire pattern and data type
icon. Clusters of numerics, sometimes referred to as points, have a brown
wire pattern and data type icon. You can wire brown numeric clusters to
Numeric functions, such as Add or Square Root, to perform the same
operation simultaneously on all elements of the cluster.

To wire clusters, both clusters must have the same number of elements.
Corresponding elements, determined by the cluster order, must have
compatible data types. For example, if you use a double-precision
floating-point numeric and a string in the same cluster, the wire on the
block diagram appears broken and the VI does not run. If you use numerics
of different representations in the same cluster, LabVIEW coerces them to
the same representation. Refer to the Numeric Conversion section of
Appendix B, Polymorphic Functions, for more information about numeric
conversion.

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW User Manual 9-12 www.ni.com

Use the Cluster functions located on the Functions»Cluster palette
to create and manipulate clusters, such as the following tasks:

• Extract individual data elements from a cluster.

• Add individual data elements to a cluster.

• Break a cluster out into its individual data elements.

© National Instruments Corporation 10-1 LabVIEW User Manual

10
Local and Global Variables

In LabVIEW, you read data from or write data to a front panel object using
its block diagram terminal. However, a front panel object has only one
block diagram terminal, and your application might need to access the data
in that terminal from more than one location.

Local and global variables pass information between locations in your
application that you cannot connect with a wire. Use local variables to
access front panel objects from more than one location in a single VI. Use
global variables to access and pass data among several VIs.

For more information…

Refer to the LabVIEW Help for more information about using local and global
variables.

Local Variables
Use local variables to access front panel objects from more than one
location in a single VI and pass data between block diagram structures that
you cannot connect with a wire.

With a local variable, you can write to or read from a control or indicator
on the front panel. Writing to a local variable is similar to passing data to
any other terminal. However, with a local variable you can write to it even
if it is a control or read from it even if it is an indicator. In effect, with a local
variable, you can access a front panel object as both an input and an output.

For example, if the user interface requires users to log in, you can clear the
Login and Password prompts each time a new user logs in. Use a local
variable to read from the Login and Password string controls when a user
logs in and to write empty strings to these controls when the user logs out.

Creating Local Variables
Right-click a front panel object or block diagram terminal and select
Create»Local Variable from the shortcut menu to create a local variable.

Chapter 10 Local and Global Variables

LabVIEW User Manual 10-2 www.ni.com

You also can select Functions»Structures»Local Variable to create a
local variable.

A local variable node, shown at left, that is not yet associated with a control
or indicator appears on the block diagram. Right-click the local variable
node and select Select Item from the shortcut menu to indicate which front
panel object you want to associate with the local variable. The Select Item
shortcut submenu lists all front panel controls that have owned labels.

LabVIEW uses owned labels to associate local variables with front panel
objects, so label the front panel controls and indicators with descriptive
owned labels. Refer to the Labeling section of Chapter 4, Building the
Front Panel, for more information about owned and free labels.

Global Variables
Use global variables to access and pass data among several VIs that run
simultaneously. Global variables are built-in LabVIEW objects. When you
create a global variable, LabVIEW automatically creates a special global
VI, which has a front panel but no block diagram. Add controls and
indicators to the front panel of the global VI to define the data types of the
global variables it contains. In effect, this front panel is a container from
which several VIs can access data.

For example, suppose you have two VIs running simultaneously. Each VI
contains a While Loop and writes data points to a waveform chart. The first
VI contains a Boolean control to terminate both VIs. You must use a global
variable to terminate both loops with a single Boolean control. If both loops
were on a single block diagram within the same VI, you could use a local
variable to terminate the loops.

Creating Global Variables
Select Functions»Structures»Global Variable to create a global variable.
A global variable node, shown at left, appears on the block diagram.
Double-click the global variable node to display the front panel of the
global VI. Place controls and indicators on this front panel the same way
you do on a standard front panel.

You can create several single global VIs, each with one front panel object,
or you can create one global VI with multiple front panel objects. A global
VI with multiple objects is more efficient because you can group related
variables together. The block diagram of a VI can include several global
variable nodes that are associated with controls and indicators on the front

Chapter 10 Local and Global Variables

© National Instruments Corporation 10-3 LabVIEW User Manual

panel of a global VI. These global variable nodes are either copies of the
first global variable node that you placed on the block diagram of the global
VI, or they are the global variable nodes of global VIs that you placed on
the current VI. You place global VIs on other VIs the same way you place
subVIs on other VIs. Each time you place a new global variable node on a
block diagram, LabVIEW creates a new VI associated only with that global
variable node and copies of it. Refer to the SubVIs section of Chapter 7,
Creating VIs and SubVIs, for more information about subVIs.

After you finish placing objects on the global VI front panel, save it and
return to the block diagram of the original VI. You must then select the
object in the global VI that you want to access. Right-click the global
variable node and select Select Item from the shortcut menu to indicate
which object you want to access. The Select Item shortcut submenu lists
all the global VI front panel objects that have owned labels.

LabVIEW uses owned labels to identify global variables, so label the front
panel controls and indicators with descriptive owned labels. Refer to the
Labeling section of Chapter 4, Building the Front Panel, for more
information about owned and free labels.

Read and Write Variables
After you create a local or global variable, you can read data from a variable
or write data to it. By default, a new variable receives data. This kind of
variable works as an indicator and is a write local or global. When you write
new data to the local or global variable, the associated front panel control
or indicator updates to the new data.

You also can configure a variable to behave as a data source, or a read local
or global. Right-click the variable and select Change To Read from the
shortcut menu to configure the variable to behave as a control. When this
node executes, the VI reads the data in the associated front panel control or
indicator.

To change the variable to receive data from the block diagram rather than
provide data, right-click the variable and select Change To Write from the
shortcut menu.

On the block diagram, you can distinguish read locals or globals from write
locals or globals the same way you distinguish controls from indicators. A
read local or global has a thick border similar to a control. A write local or
global has a thin border similar to an indicator.

Chapter 10 Local and Global Variables

LabVIEW User Manual 10-4 www.ni.com

Refer to the examples\general\locals.llb and
examples\general\globals.llb for examples of using local and
global variables.

Using Local and Global Variables Carefully
Local and global variables are advanced LabVIEW concepts. They are
inherently not part of the LabVIEW dataflow execution model. Block
diagrams can become difficult to read when you use local and global
variables, so you should use them carefully. Misusing local and global
variables, such as using them instead of a connector pane, can lead to
unexpected behavior in VIs. Overusing local and global variables, such as
using them instead of wiring or using data flow, slows performance. Refer
to the Block Diagram Data Flow section of Chapter 5, Building the Block
Diagram, for more information about the LabVIEW dataflow execution
model.

Initializing Local and Global Variables
Verify that the local and global variables contain known data values before
the VI runs. Otherwise, the variables might contain data that cause the VI
to behave incorrectly.

If you do not initialize the variable before the VI reads the variable for the
first time, the variable contains the default value of the associated front
panel object.

Race Conditions
Because VIs follow a dataflow execution model, LabVIEW local and
global variables do not behave like local and global variables in text-based
programming languages. A race condition occurs when two or more pieces
of code that execute in parallel change the value of the same shared
resource, typically a local or global variable. Figure 10-1 shows an
example of a race condition.

Chapter 10 Local and Global Variables

© National Instruments Corporation 10-5 LabVIEW User Manual

Figure 10-1. Race Condition

The output of this VI depends on the order in which the operations run.
Because there is no data dependency between the two operations, there is
no way to determine which runs first. To avoid race conditions, do not write
to the same variable you read from. Refer to the Data Dependency and
Artificial Data Dependency section of Chapter 5, Building the Block
Diagram, for more information about data dependency.

Memory Considerations when Using Local Variables
When you create subVIs, you create a connector pane that describes how
to pass data to and from the subVI. The connector pane does not make
copies of data buffers from calling VIs.

Local variables make copies of data buffers. When you read from a local
variable, you create a new buffer for the data from its associated control.

If you use local variables to transfer large amounts of data from one place
on the block diagram to another, you generally use more memory and,
consequently, have slower execution speed than if you transfer data using a
wire.

Memory Considerations when Using Global Variables
When you read from a global variable, LabVIEW creates a copy of the data
stored in that global variable.

When you manipulate large arrays and strings, the time and memory
required to manipulate global variables can be considerable. Manipulating
global variables is especially inefficient when dealing with arrays, because
if you modify only a single array element, LabVIEW stores the entire array.
If you read from the global variable in several places in an application, you
create several memory buffers, which is inefficient and slows performance.

© National Instruments Corporation 11-1 LabVIEW User Manual

11
Graphs and Charts

Use graphs and charts to display plots of data in a graphical form.

Graphs and charts differ in the way they display and update data. VIs with
graphs usually collect the data in an array and then plot the data to the
graph, which is similar to a spreadsheet that first stores the data then
generates a plot of it. In contrast, a chart appends new data points to those
already in the display. On a chart, you can see the current reading or
measurement in context with data previously acquired.

For more information…

Refer to the LabVIEW Help for more information about using graphs and charts.

Types of Graphs and Charts
The graphs and charts located on the Controls»Graph palette include the
following types:

• Waveform Chart and Graph—Displays data acquired at a constant
rate.

• XY Graph—Displays data acquired at a non-constant rate, such as
data acquired when a trigger occurs.

• Intensity Chart and Graph—Displays 3D data on a 2D plot by using
color to display the values of the third dimension.

• Digital Waveform Graph—Displays data as pulses or groups of
digital lines. Computers transfer digital data to other computers in
pulses.

• (Windows) 3D Graphs—Displays 3D data on a 3D plot in an ActiveX
object on the front panel.

Refer to examples\general\graphs for examples of graphs and charts.

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-2 www.ni.com

Graph and Chart Options
Although graphs and charts plot data differently, they have several
common options that you access from the shortcut menu. Refer to the
Customizing Graphs and Customizing Charts sections of this chapter for
more information about the options available only on graphs or only on
charts.

Waveform and XY graphs and charts have different options than intensity,
digital, and 3D graphs and charts. Refer to the Intensity Graphs and Charts,
3D Graphs, and Digital Graphs sections of this chapter for more
information about intensity, digital, and 3D graph and chart options.

Multiple X- and Y-Scales on Graphs and Charts
All graphs and charts support multiple x- and y-scales. Use multiple scales
on a graph or chart to display multiple plots that do not share a common x-
or y-scale. Right-click the x- or y-scale of the waveform graph or chart and
select Duplicate Scale from the shortcut menu to add multiple x- or
y-scales to the graph or chart.

Anti-Aliased Line Plots for Graphs and Charts
You can improve the appearance of line plots in charts and graphs by using
anti-aliased lines. When you enable anti-aliased line drawing, line plots
appear smoother. Anti-aliased line drawing does not alter line widths, line
styles, point styles, and so on.

To enable anti-aliased line plots, right-click the plot legend and select
Anti-aliased from the shortcut menu. If the plot legend is not visible,
right-click the chart or graph and select Visible Items»Plot Legend from
the shortcut menu.

Note Because anti-aliased line drawing can be computation intensive, using anti-aliased
line plots can slow performance.

Customizing Graph and Chart Appearance
You customize the appearance of graphs and charts by showing or hiding
options. Right-click the graph or chart and select Visible Items from the
shortcut menu to display or hide the following options:

• Plot Legend—Defines the color and style of the plot(s). Resize the
legend to display multiple plots.

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-3 LabVIEW User Manual

• Scale Legend—Defines labels for scales and configures scale
properties.

• Graph Palette—Changes scaling and formatting while a VI is
running.

• X Scale and Y Scale—Formats the x- and y-scales. Refer to the Scale
Options section of this chapter for more information about scales.

• Cursor Legend (graph only)—Displays a marker at a defined point
coordinate. You can display multiple cursors on a graph.

• Scrollbar (chart only)—Scrolls through the data in the chart. Use the
scroll bar to view data that the buffer does not currently display.

Customizing Graphs
You can modify the behavior of graph cursors, scaling options, and graph
axes. Figure 11-1 illustrates the elements of a graph.

Figure 11-1. Graph Elements

You add most of the items listed in the legend above by right-clicking the
graph, selecting Visible Items from the shortcut menu, and selecting the
appropriate element.

1 Plot legend
2 Cursor (graph only)
3 Grid mark

4 Mini-grid mark
5 Graph palette
6 Cursor mover

7 Cursor legend
8 Scale legend
9 X-scale

10 Y-scale
11 Label

10

11

9

1

3

4

8

5

7

6

2

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-4 www.ni.com

Graph Cursors
Cursors on graphs allow you to read the exact value of a point on a plot.
The cursor value displays in the cursor legend. Add a cursor to a graph by
right-clicking the graph, selecting Visible Items»Cursor Legend from the
shortcut menu, and clicking anywhere in a cursor legend row to activate a
cursor. Use the Positioning tool to expand the cursor legend to add multiple
cursors.

You can place cursors and a cursor display on all graphs, and you can label
the cursor on the plot. You can set a cursor to lock onto a plot, and you can
move multiple cursors at the same time. A graph can have any number of
cursors.

Refer to the Zoom Graph VI in the examples\general\graphs\
zoom.llb for an example of reading cursor values and programmatically
zooming in and out of a graph using the cursors.

Scale Options
Graphs can automatically adjust their horizontal and vertical scales to
reflect the data you wire to them. This behavior is called autoscaling. Turn
autoscaling on or off by right-clicking the graph and selecting X Scale»
Autoscale X or Y Scale»Autoscale Y from the shortcut menu. By default,
autoscaling is enabled for graphs. However, autoscaling can slow
performance.

Use the Operating or Labeling tool to change the horizontal or vertical scale
directly.

Waveform Graph Scale Legend
Use the scale legend to label scales and configure scale properties.

Use the Operating tool to click the Scale Format button, shown at left,
to configure the format, precision, and mapping mode.

Use the Scale Lock button, shown at left, to toggle autoscaling for each
scale, the visibility of scales, scale labels, and plots, and to format scale
labels, grids, grid lines, and grid colors.

Graph Scale Formatting
You can format the scales of a graph to represent either absolute or relative
time or amplitude. Use absolute time format to display the time, date, or
both for a scale. If you do not want LabVIEW to assume a date, use relative

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-5 LabVIEW User Manual

time format. To select absolute or relative time format, right-click the
graph, select the scale you want to modify, and select Formatting from the
shortcut menu. The Formatting dialog box appears, where you specify
different properties of the graph scale. By default, the x-axis represents
time and the y-axis represents amplitude.

Using Smooth Updates
Right-click the graph and select Advanced»Smooth Updates from the
shortcut menu to use an offscreen buffer to minimize flashing. Using
Smooth Updates can slow performance depending on the computer and
video system you use.

Customizing Charts
Unlike graphs, which display an entire waveform that overwrites the data
already stored, charts update periodically and maintain a history of the data
previously stored.

You can customize the waveform and intensity charts located on the
Controls»Graph palette to match your data display requirements or to
display more information. Options available for charts include a scroll bar,
a legend, a palette, a digital display, and representation of scales with
respect to time. You can modify the behavior of chart history length, update
modes, and plot displays.

Chart History Length
LabVIEW stores data points already added to the chart in a buffer, or the
chart history. The default size for a chart history buffer is 1,024 data points.
You can configure the history buffer by right-clicking the chart and
selecting Chart History Length from the shortcut menu. You can view
previously collected data using the chart scroll bar. Right-click the chart
and select Visible Items»Scrollbar from the shortcut menu to display a
scroll bar.

Chart Update Modes
Charts use three different modes to scroll data. Right-click the chart and
select Advanced»Update Mode from the shortcut menu. Select Strip
Chart, Scope Chart, or Sweep Chart. The default mode is Strip Chart.
A strip chart shows running data continuously scrolling from left to right
across the chart. A scope chart shows one item of data, such as a pulse or
wave, scrolling partway across the chart from left to the right. A sweep
display is similar to an EKG display. A sweep works similarly to a scope

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-6 www.ni.com

except it shows the old data on the right and the new data on the left
separated by a vertical line.

Overlaid Versus Stacked Plots
You can display multiple plots on a chart by using a single vertical scale,
called overlaid plots, or by using multiple vertical scales, called stacked
plots. Figure 11-2 shows examples of overlaid plots and stacked plots.

Figure 11-2. Charts with Overlaid and Stacked Plots

Refer to the Charts VI in the examples\general\graphs\charts.llb
for examples of different kinds of charts and the data types they accept.

Waveform and XY Graphs
Waveform graphs display evenly sampled measurements. XY graphs
display any set of points, evenly sampled or not. Figure 11-3 shows
examples of a waveform graph and an XY graph.

Figure 11-3. Waveform and XY Graphs

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-7 LabVIEW User Manual

The waveform graph plots only single-valued functions, as in y = f(x), with
points evenly distributed along the x-axis, such as acquired time-varying
waveforms. The XY graph is a general-purpose, Cartesian graphing object
that plots multivalued functions, such as circular shapes or waveforms with
a varying timebase. Both graphs can display plots containing any number
of points.

Both types of graphs accept several data types, which minimizes the extent
to which you must manipulate data before you display it.

Single-Plot Waveform Graph Data Types
The waveform graph accepts two data types for single-plot waveform
graphs.

The graph accepts a single array of values and interprets the data as points
on the graph and increments the x index by one starting at x = 0. The graph
also accepts a cluster of an initial x value, a ∆x, and an array of y data.

Refer to the Waveform Graph VI in the examples\general\graphs\
gengraph.llb for examples of the data types that single-plot waveform
graphs accept.

Multiplot Waveform Graph
A multiplot waveform graph accepts a 2D array of values, where each row
of the array is a single plot. The graph interprets the data as points on the
graph and increments the x index by one, starting at x = 0. Wire a 2D array
data type to the graph, right-click the graph, and select Transpose Array
from the shortcut menu to handle each column of the array as a plot. This
is particularly useful when you sample multiple channels from a DAQ
device because the device returns the data as 2D arrays with each channel
stored as a separate column. Refer to the (Y) Multi Plot 1 graph in the
Waveform Graph VI in the examples\general\graphs\
gengraph.llb for an example of a graph that accepts this data type.

A multiplot waveform graph also accepts a cluster of an x value, a ∆x value,
and a 2D array of y data. The graph interprets the y data as points on the
graph and increments the x index by ∆x, starting at x = 0. This data type is
useful for displaying multiple signals all sampled at the same regular rate.
Refer to the (Xo, dX, Y) Multi Plot 3 graph in the Waveform Graph VI in
the examples\general\graphs\gengraph.llb for an example of a
graph that accepts this data type.

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-8 www.ni.com

A multiplot waveform graph accepts a plot array where the array contains
clusters. Each cluster contains a point array that contains the y data. The
inner array describes the points in a plot, and the outer array has one cluster
for each plot. Figure 11-4 shows this array of the y cluster.

Figure 11-4. Array of Cluster y

Use a multiplot waveform graph instead of a 2D array if the number of
elements in each plot is different. For example, when you sample data from
several channels using different time amounts from each channel, use this
data structure instead of a 2D array because each row of a 2D array must
have the same number of elements. The number of elements in the interior
arrays of an array of clusters can vary. Refer to the (Y) Multi Plot 2 graph
in the Waveform Graph VI in the examples\general\graphs\
gengraph.llb for an example of a graph that accepts this data type.

A multiplot waveform graph accepts a cluster of an initial x value, a ∆x
value, and array that contains clusters. Each cluster contains a point array
that contains the y data. You use the Bundle function to bundle the arrays
into clusters and you use the Build Arrays function to build the resulting
clusters into an array. You also can use the Build Cluster Array, which
creates arrays of clusters that contain inputs you specify. Refer to the (Xo,
dX, Y) Multi Plot 2 graph in the Waveform Graph VI in the examples\
general\graphs\gengraph.llb for an example of a graph that accepts
this data type.

A multiplot waveform graph accepts an array of clusters of an x value, a ∆x
value, and an array of y data. This is the most general of the multiplot
waveform graph data types because you can indicate a unique starting point
and increment for the x-axis of each plot. Refer to the (Xo, dX, Y) Multi
Plot 1 graph in the Waveform Graph VI in the examples\general\
graphs\gengraph.llb for an example of a graph that accepts this data
type.

Single-Plot XY Graph Data Types
The single-plot XY graph accepts a cluster that contains an x array and a y
array. The XY graph also accepts an array of points, where a point is a
cluster that contains an x value and a y value.

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-9 LabVIEW User Manual

Refer to the XY Graph VI in the examples\general\graph\
gengraph.llb for an example of single-plot XY graph data types.

Multiplot XY Graph Data Types
The multiplot XY graph accepts an array of plots, where a plot is a cluster
that contains an x array and a y array. The multiplot XY graph also accepts
an array of clusters of plots, where a plot is an array of points. A point is a
cluster that contains an x value and a y value.

Refer to the XY Graph VI in the examples\general\graph\
gengraph.llb for an example of multiplot XY graph data types.

Waveform Charts
The waveform chart is a special type of numeric indicator that displays one
or more plots. Refer to the examples\general\graphs\charts.llb
for examples of waveform charts.

You can pass charts a single value or multiple values at a time. As with the
waveform graph, LabVIEW interprets the data as points on the graph and
increments the x index by one starting at x = 0. The chart treats these inputs
as new data for a single plot.

The chart redraws less frequently when you pass it multiple points at a time.

To pass data for multiple plots to a waveform chart, you can bundle the data
together into a cluster of scalar numerics, where each numeric represents a
single point for each of the plots.

If you want to pass multiple points for plots in a single update, wire an array
of clusters of numerics to the chart. Each numeric represents a single
y value point for each of the plots.

If you cannot determine the number of plots you want to display until run
time, or you want to pass multiple points for multiple plots in a single
update, wire a 2D array of data to the chart. As with the waveform graph,
by default, waveform charts handle rows as new data for each plot. Wire a
2D array data type to the chart, right-click the chart, and select Transpose
Array from the shortcut menu to treat columns in the array as new data for
each plot.

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-10 www.ni.com

Intensity Graphs and Charts
Use the intensity graph and chart to display 3D data on a 2D plot by placing
blocks of color on a Cartesian plane. The intensity graph and chart accept
a 2D array of numbers. Each number in the array represents a specific color.
The indexes of the elements in the 2D array set the plot locations for the
colors. Figure 11-5 shows the concept of the intensity chart operation.

The rows of the data pass into the display as new columns on the graph or
chart. If you want rows to appear as rows on the display, wire a 2D array
data type to the graph or chart, right-click the graph or chart, and select
Transpose Array from the shortcut menu.

Figure 11-5. Intensity Chart Color Map

The array indexes correspond to the lower left vertex of the block of color.
The block of color has a unit area, which is the area between the two points,
as defined by the array indexes. The intensity chart or graph can display up
to 256 discrete colors. To display large quantities of data on an intensity
chart, make sure enough memory is available.

Input Array Color Map Definition
Column = y

Resulting Plot

Row = x

Array
Element

= z
Color

green

green

yellow

yellow

yellow

orange

orange

dk red

dk red

dk red

lt red

lt red

purple

purple

blue

blue

0 1

1

2 3

61

50

45

13

10

6

5

2

3

0

0

1

1

2

50 50 13

10

513

6145

62

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-11 LabVIEW User Manual

After you plot a block of data on an intensity chart, the origin of the
Cartesian plane shifts to the right of the last data block. When the chart
processes new data, the new data appear to the right of the old data. When
a chart display is full, the oldest data scroll off the left side of the chart. This
behavior is similar to the behavior of strip charts. Refer to the Chart Update
Modes section of this chapter for more information about these charts.

Refer to the examples\general\graphs\intgraph.llb for examples
of the intensity chart and graph.

Color Mapping
You can set the color mapping interactively for intensity graphs and charts
the same way you define the colors for a color ramp numeric control. Refer
to the Color Ramps section of Chapter 4, Building the Front Panel, for
more information about color ramps.

You can set the color mapping for the intensity graph and chart
programmatically by using the Property Node in two ways. Typically, you
specify the value-to-color mappings in the Property Node. For this method,
specify the Z Scale Info: Color Array property. This property consists of
an array of clusters, in which each cluster contains a numeric limit value
and the corresponding color to display for that value. When you specify the
color mapping in this manner, you can specify an upper out-of-range color
using the Z Scale Info: High Color property and a lower out-of-range
color using the Z Scale Info: Low Color property. The intensity graph and
chart is limited to a total of 254 colors, with the lower and upper
out-of-range colors bringing the total to 256 colors. If you specify more
than 254 colors, the intensity graph or chart creates the 254-color table by
interpolating among the specified colors.

If you display a bitmap on the intensity graph, you specify a color table
using the Color Table property. With this method, you can specify an array
of up to 256 colors. Data passed to the chart are mapped to indexes in this
color table based on the color scale of the intensity chart. If the color scale
ranges from 0 to 100, a value of 0 in the data is mapped to index 1, and a
value of 100 is mapped to index 254, with interior values interpolated
between 1 and 254. Anything below 0 is mapped to the out-of-range below
color (index 0), and anything above 100 is mapped to the out-of-range
above color (index 255).

Note The colors you want the intensity graph or chart to display are limited to the exact
colors and number of colors your video card can display. You are also limited by the
number of colors allocated for your display.

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-12 www.ni.com

Intensity Chart Options
The intensity chart shares many of the optional parts of the waveform
charts, which you can show or hide by right-clicking the chart and selecting
Visible Items from the shortcut menu. In addition, because the intensity
chart includes color as a third dimension, a scale similar to a color ramp
control defines the range and mappings of values to colors.

Like waveform charts, the intensity chart maintains a history of data,
or buffer, from previous updates. You can configure this buffer by
right-clicking the chart and selecting Chart History Length from the
shortcut menu. The default size for an intensity chart is 128 data points. The
intensity chart display can be memory intensive. For example, displaying a
single-precision chart with a history of 512 points and 128 y values requires
512 * 128 * 4 bytes (size of a single-precision number), or 256 KB.

Intensity Graph Options
The intensity graph works the same as the intensity chart, except it does not
retain previous data and does not include update modes. Each time new
data pass to an intensity graph, the new data replace old data.

The intensity graph can have cursors like other graphs. Each cursor displays
the x, y, and z values for a specified point on the graph.

Digital Graphs
Use the waveform graph to display digital data, especially when you work
with timing diagrams or logic analyzers. Refer to Chapter 8, Digital I/O, of
the LabVIEW Measurements Manual for more information about acquiring
digital data.

The waveform graph in Figure 11-6 displays an array of six 8-bit unsigned
integers. The graph represents the integers in binary format, and each bit
represents a plot on the graph.

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-13 LabVIEW User Manual

Figure 11-6. Graphing Integers Digitally

The Binary Representations column in Figure 11-6 corresponds to the
first plot, Bit 0, on the digital graph. The Number column corresponds to
the second plot, Bit 1, and so on. For example, the number 89 requires
seven bits of memory. The binary graphical representation of the number
89 appears on point 3 on the graph.

To build a VI that displays digital data, use the Bundle function to assemble
the trigger time (X0), ∆x (dX), the array of numbers, and the number of
ports, as shown in Figure 11-7.

Figure 11-7. Using Bundle Function with Digital Graph

ports specifies the number of data elements to treat as a single integer. If
you have 8-bit data represented as an 8-bit integer, the number of ports is
one. Also, if you have 32-bit data represented as a 32-bit integer, the
number of ports is one. If you have three sources of 8-bit data, you have
24 bits to represent as a single integer. In this case, use the Interleave
function to interleave the 8-bit data and specify the number of ports as
three, as shown in Figure 11-8.

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-14 www.ni.com

Figure 11-8. Using Interleave Function with Digital Graph

In Figure 11-8, enter 3 in Port to graph all three arrays of 8-bit data. Enter
2 in Port to graph two arrays of 8-bit data. Enter 5 in Port to graph five
arrays of 8-bit data. This results in 16 of the 40 bits containing no values.

Masking Data
The VI in Figure 11-6 produces a graph in which each plot represents one
bit in the data. You also can select, reorder, and combine bits in the data
before you display it on the graph. Selecting, reordering, and combining
bits is called masking the data.

Use a mask to combine the plots of two or more different bits and display
them on a single plot. If you have an array of 8-bit integers, you can plot up
to 8 bits on a single plot. If you have an array of 16-bit integers, you can
display up to 16 bits on a single plot, and so on. You also can plot the same
bit two or more times on a single plot. Refer to Appendix D, Masking
Digital Data, for more information about masking digital data.

3D Graphs

Note The 3D graph controls are available for Windows only in the LabVIEW Full and
Professional Development Systems.

For many real-world data sets, such as the temperature distribution on a
surface, joint time-frequency analysis, and the motion of an airplane, you
need to visualize data in three dimensions. With the 3D graphs, you can
visualize three-dimensional data and alter the way that data appear by
modifying the 3D graph properties.

Chapter 11 Graphs and Charts

© National Instruments Corporation 11-15 LabVIEW User Manual

The following 3D graphs are available:

• 3D Surface—Draws a surface in 3D space. When you drop this
control on the front panel, LabVIEW wires it to a subVI that receives
the data that represent the surface.

• 3D Parametric—Draws a complex surface in 3D space. When you
drop this control on the front panel, LabVIEW wires it to a subVI that
receives the data that represent the surface.

• 3D Curve—Draws a line in 3D space. When you drop this control on
the front panel, LabVIEW wires it to a subVI that receives the data that
represent the line.

Use the 3D graphs in conjunction with the 3D Graph VIs located on the
Functions»Graphics & Sound»3D Graph Properties palette to plot
curves and surfaces. A curve contains individual points on the graph, each
point having an x, y, and z coordinate. The VI then connects these points
with a line. A curve is ideal for visualizing the path of a moving object, such
as the flight path of an airplane.

The 3D graphs use ActiveX technology and VIs that handle
3D representation. You can set properties for the VIs located on the
Functions»Graphics & Sound»3D Graph Properties palette to change
behavior at run time, including setting basic, axes, grid, and projection
properties.

A surface plot uses x, y, and z data to plot points on the graph. The surface
plot then connects these points, forming a three-dimensional surface view
of the data. For example, you could use a surface plot for terrain mapping.

When you select a 3D graph, LabVIEW places an ActiveX Container on
the front panel that contains a 3D graph control. LabVIEW also places a
reference to the 3D graph control on the block diagram. LabVIEW wires
this reference to one of the three 3D Graph VIs.

Waveform Data Type
The waveform data type carries the data, start time, and ∆x of a waveform.
You can create waveforms using the Build Waveform function located on
the Functions»Waveform palette. Many of the VIs and functions you use
to acquire or analyze waveforms accept and return the waveform data type
by default. When you wire a waveform data type to a waveform graph or
chart, the graph or chart automatically plots a waveform based on the data,
start time, and ∆x of the waveform. When you wire an array of waveform
data types to a waveform graph or chart, the graph or chart automatically

Chapter 11 Graphs and Charts

LabVIEW User Manual 11-16 www.ni.com

plots all the waveforms. Refer to Chapter 6, Analog Input, of the LabVIEW
Measurements Manual for more information about using the waveform
data type.

© National Instruments Corporation 12-1 LabVIEW User Manual

12
Graphics and Sound VIs

Use the Graphics and Sound VIs and functions located on the
Functions»Graphics & Sound palette to display or modify graphics and
sound in VIs.

For more information…

Refer to the LabVIEW Help for more information about using graphics and sound
in VIs.

Using the Picture Indicator
The picture indicator located on the Controls»Graph»Ctls palette is a
general purpose indicator for displaying pictures that can contain lines,
circles, text, and other types of graphic shapes. Because you have
pixel-level control over the picture indicator, you can create nearly any
graphics object.

The picture indicator has a pixel-based coordinate system in which the
origin (0,0) is the pixel located at the top left corner of the control. The
horizontal (x) component of a coordinate increases toward the right, and the
vertical (y) coordinate increases toward the bottom.

If a picture is too large for the picture indicator that displays it, LabVIEW
crops the picture so you can see only the pixels that fit within the display
region of the indicator. Use the Positioning tool to resize the indicator and
run the VI again to view the entire picture.

To programmatically read or change the size of the picture area of the
picture indicator, use the Draw Area Size property. To read the size of the
entire picture indicator, use the Bounds property. You also can use the
Positioning tool to select the indicator, select Edit»Customize Control,
and use the Control Parts window of the Control Editor to determine the
size of the entire picture indicator and the size of the display region of the
picture indicator.

Chapter 12 Graphics and Sound VIs

LabVIEW User Manual 12-2 www.ni.com

When you place a picture indicator on the front panel, it appears as a blank
rectangular area, and a corresponding terminal, shown at left, appears on
the block diagram. Use the Picture Functions VIs located on the
Functions»Graphics & Sound»Picture Functions palette instead of a
graphics application to modify and add functionality to graphics in
LabVIEW.

To display an image in a picture indicator, you must use the Picture
Functions VIs to specify a set of drawing instructions. Each VI takes a set
of inputs that describes a drawing instruction. Based on these inputs, the VI
creates a compact description of these specifications that you pass to the
picture indicator for display.

You can connect the pictures you create with the Picture Functions VIs only
to a picture indicator or to the picture input of a Picture Functions VI.
LabVIEW draws the picture when it updates the picture indicator on an
open front panel.

Each Picture Functions VI concatenates its drawing instruction to the
previous drawing instruction(s) of the picture input and output. If the
picture input is unwired, the picture output returns a blank rectangular
drawing area.

The following block diagram uses the Draw Rect VI to draw two
overlapping rectangles.

The black in B/W? Boolean control indicates whether the rectangle is
black or white if you display it on a monochrome monitor. If you create a
set of VIs that use the picture indicator and you want the VIs to run on all
monitors, you must use the black in B/W? control.

Chapter 12 Graphics and Sound VIs

© National Instruments Corporation 12-3 LabVIEW User Manual

Picture Plots VIs
Use the Picture Plot VIs located on the Functions»Graphics &
Sound»Picture Plots palette to create common types of graphs using the
picture indicator. These graphs include a polar plot, a waveform graph
display, a Smith plot, and a graph scale.

The Picture Plot VIs use low-level drawing functions to create a graphical
display of your data and customize the drawing code to add functionality.
These graphical displays are not as interactive as the built-in LabVIEW
controls, but you can use them to visualize information in ways the built-in
controls currently cannot. Use the Plot Waveform VI to create a plot with
slightly different functionality than built-in LabVIEW graphs.

Using the Polar Plot VI as a SubVI
Use the Polar Plot VI to draw specific, contiguous quadrants of a polar
graph or the entire graph at once. As with the built-in LabVIEW graphs,
you can specify the color of the components, include a grid, and specify the
range and format for the scales.

The Polar Plot VI provides a large amount of functionality in a single VI.
Consequently, the VI includes complicated clusters for inputs. You can use
default values and custom controls to decrease the complexity of the VI.
Instead of creating your own cluster input on the block diagram, copy a
custom control from the Polar Plot Demo VI in the
examples\picture\demos.llb and place it on your front panel.

Using the Waveform Plot VI as a SubVI
Use the Plot Waveform VI, which emulates the behavior of the built-in
waveform graph, to draw waveforms in a variety of styles, including points,
connected lines, and bars. As with the built-in LabVIEW waveform graphs,
you can specify the color of the components, include a grid, and specify the
range and format for the scales.

The Waveform Plot VI provides a large amount of functionality in a
single VI. Consequently, the VI includes complicated clusters for inputs.
You can use default values and custom controls to decrease the complexity
of the VIs. Instead of creating your own cluster input, copy a custom
control from the Waveform and XY Plots VI in the
examples\picture\demos.llb and place it on your front panel.

Chapter 12 Graphics and Sound VIs

LabVIEW User Manual 12-4 www.ni.com

The Plot XY VI and the Plot Multi-XY VI are similar to the Plot
Waveform VI. You use different controls to specify the cosmetic
appearance of the plot because the XY plotting VIs have three plot
styles—two scatter plot styles and a plot style where a line is drawn at each
unique x-position to mark the minimum and maximum y-values for that
x-value.

Using the Smith Plot VIs as SubVIs
Use the Smith Plot VIs to study transmission line behavior, such as in the
telecommunications industry. A transmission line is a medium through
which you transmit energy and signals. A transmission line can be a wire
or it can be the atmosphere through which a signal transmits. Transmission
lines have an effect on the signal that is transmitting. This effect, called the
impedance of the transmission line, can attenuate or phase shift an AC
signal.

The impedance of the transmission line is a measure of the resistance and
the reactance of the line. The impedance, z, is commonly listed as a
complex number of the form z = r + jx, where both resistance (r) and
reactance (x) are components.

Use the Smith Plot VIs to display impedances of transmission lines. The
plot consists of circles of constant resistance and reactance.

You can plot a given impedance, r + jx, by locating the intersection of the
appropriate r circle and x circle. After you plot the impedance, use the
Smith Plot VIs as visual aids to match impedance and to calculate the
reflection coefficient of a transmission line.

The Smith Plot VIs provide a large amount of functionality in each
single VI. Consequently, many of these VIs include complicated clusters
for inputs. You can use default values and custom controls to decrease the
complexity of the VIs. Instead of creating your own cluster input,
copy a custom control from the Smith Plot example VIs in the
examples\picture\demos.llb and place it on your front panel.

If you are graphing load impedances, you can represent an impedance as a
complex number of the form r + jx.

To avoid losing detail in the Smith plot, use the Normalize Smith Plot VI to
normalize the data. You can pass the data you normalize with the
Normalize Smith Plot VI directly to the Smith Plot VI. You usually scale
Smith plot data with respect to the characteristic impedance (Z0) of the
system.

Chapter 12 Graphics and Sound VIs

© National Instruments Corporation 12-5 LabVIEW User Manual

Picture Functions VIs
Use the Picture Functions VIs located on the Functions»Graphics &
Sound»Picture Functions palette to draw shapes and enter text into a
picture indicator. You can draw points, lines, shapes, and pixmaps.
Pixmaps of unflattened data are 2D arrays of color, where each value
corresponds to a color.

The first row of the Picture Functions palette contains VIs you use to draw
points and lines. A point is a cluster of two 16-bit signed integers that
represent the x- and y-coordinates of a pixel. When you draw, the picture
remembers the position of the graphics pen.

For most of the Picture Functions VIs, you must specify absolute
coordinates—that is, relative to the origin (0,0). With Draw Line VI and
Move Pen VI, you can specify either absolute or relative coordinates.
Relative coordinates are relative to the current location of the pen. You can
use the Move Pen VI to change the location of the pen without drawing.
Only the Draw Point VI, Move Pen VI, Draw Line VI, and Draw Multiple
Lines VI change the location of the pen.

The second row of the Picture Functions palette contains VIs you use to
draw a filled shape. Each of these VIs draws a shape in a rectangular area
of a picture. You specify a rectangle as a cluster of four values that represent
the left, top, right, and bottom pixels. With the Draw Arc VI, the rectangle
describes the size of an oval. Additional parameters specify the portion of
the oval (the arc) you want to draw.

The third row of the Picture Functions palette contains VIs you use to
draw text in a picture. The Get Text Rect VI does not draw any text. Instead,
you use it to calculate the size of a bounding rectangle of a string.

The fourth row of the Picture Functions palette contains VIs you use to
draw pixmaps in a picture. In addition to specifying the 2D array of data,
you also specify the color table for corresponding array values to colors.
The 2D array corresponds to a grid of pixels. These VIs convert each value
in the data array into a color by using the value as an index into the color
table array.

The last row of the Picture Functions palette contains the Empty Picture
constant, which you use whenever you need to start with or make changes
to an empty picture.

Chapter 12 Graphics and Sound VIs

LabVIEW User Manual 12-6 www.ni.com

Creating and Modifying Colors with the Picture Functions VIs
Many of the Picture Functions VIs have a color input to modify the color
of the shapes and text. The easiest way to create a color is to use a color box
constant located on the Functions»Numeric»Additional Numeric
Constants palette and click the constant to select a color.

To create colors as the result of calculations rather than with color box
constants, you need to understand how a color box specifies a color using a
numeric value.

A 32-bit signed integer represents a color, and the lower three bytes
represent the red, green, and blue components of the color. For a range of
blue colors, create an array of 32-bit integers where only the values of the
low bytes change because the low byte contains the blue component. To
create a range of gray colors, create an array of 32-bit integers where the
red, green, and blue values of each element are the same.

Graphics Formats VIs
Use the Graphics Formats VIs located on the Functions»Graphics &
Sound»Graphics Formats palette to read data from and write data to
several standard graphic file formats, including bitmap (.bmp), Portable
Network Graphics (.png), and Joint Photographic Experts Group (.jpg)
files. You can use these VIs to perform the following tasks:

• Read data from a bitmap file for display in a picture indicator.

• Read data for image manipulation.

• Write an image for viewing in other applications.

Bitmap data are 2D arrays in which the data type of each point varies
depending on the color depth. For example, in a black-and-white, or 1-bit,
image, each point is Boolean. In 4-bit and 8-bit images, each point is an
index in a color table. For 24-bit true-color images, each point is a mixture
of red, green, and blue (RGB) values.

The VIs that read and write graphics files work with data in a simple,
flattened format that is closer to the way graphic files are written to disk,
with the data stored in a 1D array. These graphics files are pixmaps, which
are similar in concept to bitmaps. You can display this flattened data
directly using the Draw Flattened Pixmap VI located on the
Functions»Graphics & Sound»Picture Functions palette. This palette
contains VIs for drawing pixmaps that are 2D arrays of 1-bit (black and
white), 4-bit, 8-bit, and 24-bit data.

Chapter 12 Graphics and Sound VIs

© National Instruments Corporation 12-7 LabVIEW User Manual

To manipulate the data as a 2D array, you can convert it to the appropriate
format using the Unflatten Pixmap VI and Flatten Pixmap VI located on the
Functions»Graphics & Sound»Graphics Formats palette.

Sound VIs
Use the Sound VIs located on the Functions»Graphics & Sound»Sound
palette to integrate sound files and functions into your VIs. You can use
these VIs to perform the following tasks:

• Create VIs that play sound files, such as a recorded warning, when
users perform certain actions.

• Create a VI that plays a sound file when the VI starts or finishes
running or when you reach a certain point in the VI.

• Configure a sound input device to acquire sound data. Use the Sound
Input VIs to acquire the sound data. You also can read any sound
information coming through the device.

• Configure a sound output device to accept sound data from other
Sound VIs. You can control the volume of the sound going through the
device, play or pause the sound, and clear the sound from your system.

© National Instruments Corporation 13-1 LabVIEW User Manual

13
File I/O

File I/O operations pass data to and from files. Use the File I/O VIs and
functions located on the Functions»File I/O palette to handle all aspects of
file I/O, including the following:

• Opening and closing data files.

• Reading data from and writing data to files.

• Reading from and writing to spreadsheet-formatted files.

• Moving and renaming files and directories.

• Changing file characteristics.

• Creating, modifying, and reading a configuration file.

Use the high-level VIs to perform common I/O operations. Use the
low-level VIs and functions to control each file I/O operation individually.

For more information…

Refer to the LabVIEW Help for more information about performing file I/O
operations.

Basics of File I/O
A typical file I/O operation involves the following process.

1. Create or open a file. Indicate where an existing file resides or where
you want to create a new file by specifying a path or responding to a
dialog box to direct LabVIEW to the file location. After the file opens,
a refnum represents the file. Refer to the References to Objects or
Applications section of Chapter 4, Building the Front Panel, for more
information about refnums.

2. Read from or write to the file.

3. Close the file.

Most File I/O VIs and functions perform only one step in a file I/O
operation. However, some high-level File I/O VIs designed for common file

Chapter 13 File I/O

LabVIEW User Manual 13-2 www.ni.com

I/O operations perform all three steps. Although these VIs are not as
efficient as the low-level functions, you might find them easier to use.

Choosing a File I/O Format
The File I/O VIs you use depend on the format of the files. You can read
data from or write data to files in three formats—text, binary, and datalog.
The format you use depends on the data you acquire or create and the
applications that will access that data.

Use the following basic guidelines to determine which format to use:

• If you want to make your data available to other applications, such as
Microsoft Excel, use text files because they are the most common and
the most portable.

• If you need to randomly access reads or writes or if speed and compact
disk space are crucial, use binary files because they are more efficient
than text files in disk space and in speed.

• If you want to manipulate complex records of data or different
data types in LabVIEW, use datalog files because they are the best way
to store data if you intend to access the data only from LabVIEW and
you need to store complex data structures.

When to Use Text Files
Use text format files for your data to make it available to other users or
applications, if disk space and file I/O speed are not crucial, if you do not
need to perform random access reads or writes, and if numeric precision is
not important.

Text files are the easiest format to use and to share. Almost any computer
can read from or write to a text file. A variety of text-based programs can
read text-based files. Most instrument control applications use text strings.

Store data in text files when you want to access it from another application,
such as a word processing or spreadsheet application. To store data in text
format, use the String functions located on the Functions»String palette to
convert all data to text strings. Text files can contain information of
different data types.

Text files typically take up more memory than binary and datalog files if the
data is not originally in text form, such as graph or chart data, because the
ASCII representation of data usually is larger than the data itself. For
example, you can store the number –123.4567 in 4 bytes as a

Chapter 13 File I/O

© National Instruments Corporation 13-3 LabVIEW User Manual

single-precision floating-point number. However, its ASCII representation
takes 9 bytes, one for each character.

In addition, it is difficult to randomly access numeric data in text files.
Although each character in a string takes up exactly 1 byte of space, the
space required to express a number as text typically is not fixed. To find the
ninth number in a text file, LabVIEW must first read and convert the
preceding eight numbers.

You might lose precision if you store numeric data in text files. Computers
store numeric data as binary data, and typically you write numeric data to
a text file in decimal notation. A loss of precision might occur when you
read the data from the text file. Loss of precision is not an issue with binary
files.

Refer to the examples\file\smplfile.llb and
examples\file\sprdsht.llb for examples of using file I/O with
text files.

When to Use Binary Files
A binary file uses a fixed number of storage bytes on disk. For example,
storing any number from 0 to 4 billion in binary format, such as 1, 1,000,
or 1,000,000, takes up 4 bytes for each number.

Use binary files to save numeric data and to access specific numbers from
a file or randomly access numbers from a file. Binary files are machine
readable only, unlike text files, which are human readable. Binary files are
the most compact and fastest format for storing data. You can use multiple
data types in binary files, but it is uncommon.

Binary files are more efficient because they use less disk space and because
you do not need to convert data to and from a text representation when you
store and retrieve data. A binary file can represent 256 values in 1 byte of
disk space. Often, binary files contain a byte-for-byte image of the data as
it was stored in memory, except for cases like extended and complex
numerics. When the file contains a byte-for-byte image of the data as it was
stored in memory, reading the file is faster because conversion is not
necessary.

Note Text and binary files are both known as byte stream files, which means they store
data as a sequence of characters or bytes.

Chapter 13 File I/O

LabVIEW User Manual 13-4 www.ni.com

Refer to the Read Binary File and Write Binary File VIs in the
examples\file\smplfile.llb for examples of reading and writing an
array of double-precision floating-point values to and from a binary file,
respectively.

When to Use Datalog Files
Use datalog files to access and manipulate data only in LabVIEW and to
store complex data structures quickly and easily.

Datalog files are files only LabVIEW can create and read. Unlike binary
files that require similar data types when storing, you can use datalog files
to store several different data types in one record of a file. For example, in
one datalog file you can store strings, numerics, and clusters.

A datalog file stores data as a sequence of identically structured records,
similar to a spreadsheet, where each row represents a record. Each record
in a datalog file must have the same data types associated with it. However,
the components of a datalog record can be any data type, which you
determine when you create the file.

For example, you can create a datalog whose record data type is a cluster
of a string and a number. Then, each record of the datalog is a cluster of a
string and a number. However, the first record could be (“abc”,1), while
the second record could be (“xyz”,7).

Using datalog files requires little manipulation, which makes writing and
reading much faster. It also simplifies data retrieval because you can read
the original blocks of data back as a record without having to read all
records that precede it in the file. Random access is fast and easy with
datalog files because all you need to access the record is the record number.
LabVIEW sequentially assigns the record number to each record when it
creates the datalog file.

You can access datalog files from the front panel and from the block
diagram. Refer to the Logging Front Panel Data section of this chapter for
more information about accessing datalog files from the front panel.

LabVIEW writes a record to a datalog file each time the associated VI runs.
You cannot overwrite a record after LabVIEW writes it to a datalog file.
When you read a datalog file, you can read one or more records at a time.

Refer to the examples\file\datalog.llb for examples of reading and
writing datalog files.

Chapter 13 File I/O

© National Instruments Corporation 13-5 LabVIEW User Manual

Using High-Level File I/O VIs
Use the high-level File I/O VIs located on the top row of the
Functions»File I/O palette to perform common I/O operations, such as
writing to or reading from the following types of data:

• Characters to or from text files

• Lines from text files

• 1D or 2D arrays of single-precision numerics to or from spreadsheet
text files

• 1D or 2D arrays of single-precision numerics or signed 16-bit integers
to or from binary files

You can save time and programming effort by using the high-level VIs to
write to and read from files. The high-level VIs perform read or write
operations in addition to opening and closing the file. The high-level VIs
expect a file path input. If you do not wire a file path, a dialog box appears
for you to specify a file to read from or write to. If an error occurs, the
high-level VIs display a dialog box that describes the error. You can choose
to halt execution or to continue.

Figure 13-1 shows how to use the high-level Write To Spreadsheet File VI
to send numbers to a Microsoft Excel spreadsheet file. When you run this
VI, LabVIEW prompts you to write the data to an existing file or to create
a new file.

Figure 13-1. Using a High-Level VI to Write to a Spreadsheet

Use the Binary File VIs located on the Functions»File I/O»Binary File
VIs palette to read from and write to files in binary format. Data can be
integers or single-precision floating-point numerics.

Chapter 13 File I/O

LabVIEW User Manual 13-6 www.ni.com

Using Low-Level and Advanced File I/O VIs and
Functions

Use low-level File I/O VIs and functions located on the middle row of the
Functions»File I/O palette and the Advanced File I/O functions located on
the Functions»File I/O»Advanced File Functions palette to control each
file I/O operation individually.

Use the principal low-level functions to create or open a file, write data to
or read data from the file, and close the file. Use the other low-level
functions to perform the following tasks:

• Create directories.

• Move, copy, or delete files.

• List directory contents.

• Change file characteristics.

• Manipulate paths.

A path, shown at left, is a LabVIEW data type that identifies the location
of a file on disk. The path describes the volume that contains the file, the
directories between the top-level of the file system and the file, and the
name of the file. Enter or display a path using the standard syntax for a
given platform with the path control or indicator. Refer to the Path Controls
and Indicators section of Chapter 4, Building the Front Panel, for more
information about path controls and indicators.

Figure 13-2 shows how to use low-level VIs and functions to send numbers
to a Microsoft Excel spreadsheet file. When you run this VI, the
Open/Create/Replace VI opens the numbers.xls file. The Write File
function writes the string of numbers to the file. The Close function closes
the file. If you do not close the file, the file stays in memory and is not
accessible from other applications or to other users.

Chapter 13 File I/O

© National Instruments Corporation 13-7 LabVIEW User Manual

Figure 13-2. Using a Low-Level VI to Write to a Spreadsheet

Compare the VI in Figure 13-2 to the VI in Figure 13-1, which completes
the same task. In Figure 13-2, you have to use the Array To Spreadsheet
String function to format the array of numbers as a string. The Write To
Spreadsheet File VI in Figure 13-1 opens the file, converts the array of
numbers to a string, and closes the file.

Refer to the Write Datalog File Example VI in the
examples\file\datalog.llb for an example of using low-level file
I/O VIs and functions.

Disk Streaming
You also can use the low-level File I/O VIs and functions for disk
streaming, which saves memory resources. Disk streaming is a technique
for keeping files open while you perform multiple write operations, for
example, within a loop. Although the high-level write operations are easy
to use, they add the overhead of opening and closing the file each time they
execute. Your VIs can be more efficient if you avoid opening and closing
the same files frequently.

Disk streaming reduces the number of times the function interacts with the
operating system to open and close the file. To create a typical
disk-streaming operation, place the Open/Create/Replace File VI before
the loop and the Close File function after the loop. Continuous writing to a
file then can occur within the loop without the overhead associated with
opening and closing the file.

Disk streaming is ideal in lengthy data acquisition operations where speed
is critical. You can write data continuously to a file while acquisition is still
in progress. For best results, avoid running other VIs and functions, such as
Analyze VIs and functions, until you complete the acquisition.

Chapter 13 File I/O

LabVIEW User Manual 13-8 www.ni.com

Creating Text and Spreadsheet Files
To write data to a text or spreadsheet file, you must convert your data to a
string. To write data to a spreadsheet file, you must format the string as a
spreadsheet string, which is a string that includes delimiters, such as tabs.
Refer to the Formatting Strings section of Chapter 9, Grouping Data Using
Strings, Arrays, and Clusters, for more information about formatting
strings.

Writing text to text files requires no formatting because most word
processing applications that read text do not require formatted text. To write
a text string to a text file, use the Write Characters To File VI, which
automatically opens and closes the file.

Use the Write To Spreadsheet File VI or the Array To Spreadsheet String
function to convert a set of numbers from a graph, a chart, or an acquisition
into a spreadsheet string. Refer to the Using High-Level File I/O VIs and
Using Low-Level and Advanced File I/O VIs and Functions sections of this
chapter for more information about using these VIs and functions.

Reading text from a word processing application might result in errors
because word processing applications format text with different fonts,
colors, styles, and sizes that the spreadsheet file VIs cannot process.

If you want to write numbers and text to a spreadsheet or word processing
application, use the String functions located on the Functions»String
palette and the Array functions located on the Functions»Array palette to
format the data and to combine the strings. Then write the data to a file.
Refer to Chapter 9, Grouping Data Using Strings, Arrays, and Clusters, for
more information about using these functions to format and combine data.

Formatting and Writing Data to Files
Use the Format Into File function to format string, numeric, path, and
Boolean data as text and write the text to a file. Often you can use this
function instead of separately formatting the string with the Format Into
String function and writing the resulting string with the Write Characters
To File VI or Write File function.

Use the Format Into File function to determine the order in which the data
appears in the text file. However, you cannot use this function to append
data to a file or overwrite existing data in a file. For these operations, use
the Format Into String function with the Write File function.

Chapter 13 File I/O

© National Instruments Corporation 13-9 LabVIEW User Manual

Refer to the Formatting Strings section of Chapter 9, Grouping Data Using
Strings, Arrays, and Clusters, for more information about formatting
strings.

Scanning Data from Files
Use the Scan From File function to scan text in a file for string, numeric,
path, and Boolean values and then convert the text into a data type. Often
you can use this function instead of reading data from a file with the Read
File function or Read Characters From File VI and scanning the resulting
string with the Scan From String function.

Use the Scan From File function to read all the text in the file. However,
you cannot use this function to determine the point in the file where the
scanning starts. For this operation, use the Read Characters From File VI
with the Scan From String function.

Creating Binary Files
To create a binary file, acquire a set of numbers and write them to a file.
You do not have to format the numbers unless you want to use the
high-level Binary File I/O VIs located on the Functions»File I/O»Binary
File VIs palette.

Use the Write To I16 and Write To SGL VIs to save 1D and 2D arrays of
numbers to a file. You must first format the numbers as 16-bit integers or
single-precision floating-point numerics. Use the Read I16 and Read
SGL VIs to read the files you created.

To write numbers of different data types, such as double-precision
floating-point numerics or 32-bit unsigned integers, use the low-level or
Advanced File functions located on the Functions»File I/O»Advanced
File Functions palette. When you read the file, use the Read File function
and specify the data type of the number.

Refer to the Read Binary File and Write Binary File VIs in the
examples\file\smplfile.llb for examples of writing and reading
floating-point numerics to and from a binary file.

Chapter 13 File I/O

LabVIEW User Manual 13-10 www.ni.com

Creating Datalog Files
You can create and read datalog files by enabling front panel datalogging
or by using the low-level or Advanced File functions located on the
Functions»File I/O»Advanced File Functions palette to acquire data and
write the data to a file. Refer to the Logging Front Panel Data section of
this chapter for more information about creating and accessing datalog files
from the front panel.

You do not have to format the data in a datalog file. However, when you
write or read datalog files, you must specify the data type. For example, if
you acquire a temperature reading with the time and date the temperature
was recorded, you write the data to a datalog file and specify the data as a
cluster of one number and two strings. Refer to the Simple Temp
Datalogger VI in the examples\file\datalog.llb for an example of
writing data to a datalog file.

If you read a file that includes a temperature reading with the time and date
the temperature was recorded, you specify that you want to read a cluster
of one number and two strings. Refer to the Simple Temp Datalog Reader
VI in the examples\file\datalog.llb for an example of reading a
datalog file.

Writing Waveforms to Files
Use the Write Waveforms to File and Export Waveforms to Spreadsheet
File VIs located on the Functions»Waveform»Waveform File I/O palette
to send waveforms to files. You can write waveforms to spreadsheet, text,
or datalog files.

If you expect to use the waveform you create only in a VI, save the
waveform as a datalog file (.log). Refer to the When to Use Datalog Files
section of this chapter for more information about datalogging.

The VI in Figure 13-3 acquires multiple waveforms, displays them on a
graph, and writes them to a Microsoft Excel spreadsheet file.

Chapter 13 File I/O

© National Instruments Corporation 13-11 LabVIEW User Manual

Figure 13-3. Writing Multiple Waveforms to a Spreadsheet File

Reading Waveforms from Files
Use the Read Waveform from File VI located on the
Functions»Waveform»Waveform File I/O palette to read waveform
from a file. After you read a single waveform, you can add or edit
waveform data type components with the Build Waveform function located
on the Functions»Waveform palette, or you can extract waveform
components with the Get Waveform Attribute function located on the
Functions»Waveform palette.

The VI in Figure 13-4 reads a waveform from a file, edits the dt component
of the waveform, and plots the edited waveform to a graph.

Figure 13-4. Reading a Waveform from a File

The Read Waveform from File VI also reads multiple waveforms from a
file. The VI returns an array of waveform data types, which you can display
in a multiplot graph. If you want to access a single waveform from a file,
you must index the array of waveform data types, as shown in Figure 13-5.
Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about indexing arrays. The VI
accesses a file that includes multiple waveforms. The Index Array function
reads the first and third waveforms in the file and plots them on two
separate waveform graphs. Refer to Chapter 8, Loop and Case Structures,
for more information about graphs.

Chapter 13 File I/O

LabVIEW User Manual 13-12 www.ni.com

Figure 13-5. Reading Multiple Waveforms from a File

Flow-Through Parameters
Many File I/O VIs and functions contain flow-through parameters,
typically a refnum or path, that return the same value as the corresponding
input parameter. Use these parameters to control the execution order of the
functions. By wiring the flow-through output of the first node you want to
execute to the corresponding input of the next node you want to execute,
you create artificial data dependency. Without these flow-through
parameters, you have to use Sequence structures to ensure that file I/O
operations take place in the order you want. Refer to the Data Dependency
and Artificial Data Dependency section of Chapter 5, Building the Block
Diagram, for more information about artificial data dependency.

Creating Configuration Files
Use the Configuration File VIs located on the Functions»File
I/O»Configuration File VIs palette to read and create standard Windows
configuration settings (.ini) files and to write platform-specific data, such
as paths, in a platform-independent format so that you can use the files
these VIs generate across multiple platforms.

Refer to the examples\file\config.llb for examples of using the
Configuration File VIs.

Note The standard extension for Windows configuration settings files is .ini, but the
Configuration File VIs work with files with any extension, provided the content is in the
correct format. Refer to the Windows Configuration Settings File Format section of this
chapter for more information about configuring the content.

Chapter 13 File I/O

© National Instruments Corporation 13-13 LabVIEW User Manual

Using Configuration Settings Files
A standard Windows configuration settings file is a specific format for
storing data in a text file. You can programmatically access data within the
.ini file easily because it follows a specific format.

For example, consider a configuration settings file with the following
contents:

[Data]

Value=7.2

You can use the Configuration File VIs to read this data, as shown in
Figure 13-6. This VI uses the Read Key VI to read the key named Value

from the section called Data. This VI works regardless of how the file
changes, provided the file remains in the Windows configuration settings
file format.

Figure 13-6. Reading Data from an .ini File

Windows Configuration Settings File Format
Windows configuration settings files are text files divided into named
sections. Brackets enclose each section name. Every section name in a file
must be unique. The sections contain key/value pairs separated by an equal
sign (=). Within each section, every key name must be unique. The key
name represents a configuration preference, and the value name represents
the setting for that preference. The following example shows the
arrangement of the file:

[Section 1]

key1=value

key2=value

[Section 2]

key1=value

key2=value

Chapter 13 File I/O

LabVIEW User Manual 13-14 www.ni.com

Use the following data types with Configuration File VIs for the value
portion of the key parameter:

• String

• Path

• Boolean

• 64-bit double-precision floating-point numeric

• 32-bit signed integer

• 32-bit unsigned integer

The Configuration File VIs can read and write raw or escaped string data.
The VIs read and write raw data byte by byte, without converting the data
to ASCII. In converted, or escaped, strings LabVIEW stores any
non-displayable text characters in the configuration settings file with the
equivalent hexadecimal escape codes, such as \0D for a carriage return.
In addition, LabVIEW stores backslash characters in the configuration
settings file as double backslashes, such as \\ for \. Set the read raw
string? or write raw string? inputs of the Configuration File VIs to TRUE
for raw data and to FALSE for escaped data.

When VIs write to a configuration file, they place quotation marks around
any string or path data that contain a space character. If a string contains
quotation marks, LabVIEW stores them as \". If you read and/or write to
configuration files using a text editor, you might notice that LabVIEW
replaced quotation marks with \".

LabVIEW stores path data in a platform-independent format, the standard
UNIX format for paths, in .ini files. The VIs interpret the absolute path
/c/temp/data.dat stored in a configuration settings file as follows:

• (Windows) c:\temp\data.dat

• (Macintosh) c:temp:data.dat

• (UNIX) /c/temp/data.dat

The VIs interpret the relative path temp/data.dat as follows:

• (Windows) temp\data.dat

• (Macintosh) :temp:data.dat

• (UNIX) temp/data.dat

Chapter 13 File I/O

© National Instruments Corporation 13-15 LabVIEW User Manual

Logging Front Panel Data
Use front panel datalogging to record data for use in other VIs and in
reports. For example, you can log data from a graph and use that data in
another graph in a separate VI.

Each time a VI runs, front panel datalogging saves the front panel data to a
separate datalog file, which is in the format of delimited text. You can
retrieve the data in the following ways:

• Use the same VI from which you recorded the data to retrieve the data
interactively.

• Use the VI as a subVI to retrieve the data programmatically.

• Use the File I/O VIs and functions to retrieve the data.

Each VI maintains a log-file binding that records the location of the datalog
file where LabVIEW maintains the logged front panel data. Log-file
binding is the association between a VI and the datalog file to which you
log the VI data.

A datalog file contains records that include a timestamp and the data from
each time you ran the VI. When you access a datalog file, you select which
record you want by running the VI in retrieval mode and using the front
panel controls to view the data. When you run the VI in retrieval mode, a
numeric control appears at the top of the front panel, so you can navigate
among the records. Refer to Figure 13-7 for an example of this numeric
control.

Automatic and Interactive Front Panel Datalogging
Select Operate»Log at Completion to enable automatic logging. The first
time you log front panel data for a VI, LabVIEW prompts you to name the
datalog file. LabVIEW logs data each time you run the VI and appends a
new record to the datalog file each additional time you run the VI. You
cannot overwrite a record after LabVIEW writes it to a datalog file.

To log your data interactively, select Operate»Data Logging»Log.
LabVIEW appends the data to the datalog file immediately. Log your data
interactively so you can select when to log the data. Logging your data
automatically logs the data each time you run the VI.

Note A waveform chart logs only one data point at a time with front panel datalogging. If
you wire an array to the chart indicator, the datalog file contains a subset of the array the
chart displays.

Chapter 13 File I/O

LabVIEW User Manual 13-16 www.ni.com

Viewing the Logged Front Panel Data Interactively
After you log data, you can view it interactively by selecting
Operate»Data Logging»Retrieve. The data retrieval toolbar appears,
as shown in Figure 13-7.

Figure 13-7. Data Retrieval Toolbar

The highlighted number indicates the data record you are viewing. The
numbers in square brackets indicate the range of records you logged for the
current VI. You log a record each time you run the VI. The date and time
indicate when you logged the selected record. View the next or previous
record by clicking the increment or decrement arrows. You also can use the
up and down arrow keys on your keyboard.

In addition to the data retrieval toolbar, the front panel appearance changes
according to the record you select in the toolbar. For example, when you
click the increment arrow and advance to another record, the controls and
indicator display the data for that particular record at the time you logged
the data. Click the OK button to exit retrieval mode and return to the VI
whose datalog file you were viewing.

Deleting a Record
While in retrieval mode, you can delete specific records. Mark for deletion
an individual record in retrieval mode by viewing that record and clicking
the Trash button. If you click the Trash button again, the record is no
longer marked for deletion.

Select Operate»Data Logging»Purge Data while in retrieval mode to
delete all the records you marked for deletion.

If you do not select Operate»Data Logging»Purge Data before you click
the OK button, LabVIEW prompts you to delete the marked records.

Clearing the Log-File Binding
Use log-file binding to associate a VI with the datalog file to use when
logging or retrieving front panel data. You can have two or more datalog
files associated with one VI. This might help you test or compare the VI
data. For example, you could compare the data logged the first time you run
the VI to the data logged the second time you run the VI. To associate more

Chapter 13 File I/O

© National Instruments Corporation 13-17 LabVIEW User Manual

than one datalog file with a VI, you must clear the log-file binding by
selecting Operate»Data Logging»Clear Log File Binding. LabVIEW
prompts you to specify a datalog file the next time you run the VI either
with automatic logging enabled or when you choose to log data
interactively.

Changing the Log-File Binding
Change the log-file binding to log front panel data to or retrieve front panel
data from a different log file by selecting Operate»Data Logging»Change
Log File Binding. LabVIEW prompts you to select a different log file or
to create a new one. You might change log-file binding when you want to
retrieve different data into a VI or append data from the VI to another
datalog file.

Retrieving Front Panel Data Programmatically
You also can retrieve logged data using a subVI or using the File I/O VIs
and functions.

Retrieving Front Panel Data Using a SubVI
When you right-click a subVI and select Enable Database Access from the
shortcut menu, a yellow box appears around the subVI, as shown in
Figure 13-8.

Figure 13-8. Retrieving Logged Data

The yellow box that looks like a filing cabinet includes terminals for
accessing data from the datalog file. When you enable database access for
the subVI, the inputs and outputs of the subVI actually act as outputs,
returning their logged data. record # indicates the record to retrieve,
invalid record # indicates whether the record number exists, timestamp is

Chapter 13 File I/O

LabVIEW User Manual 13-18 www.ni.com

the time the record was created, and front panel data is a cluster of the
front panel objects. You can access the data of a front panel object by wiring
the front panel data cluster to the Unbundle function.

You also can retrieve values for specific inputs and outputs by wiring
directly to the corresponding terminal on the subVI, as shown in
Figure 13-9.

Figure 13-9. Retrieving Logged Data through SubVI Terminals

If you run the VI, the subVI does not run. Instead, it returns the logged data
from its front panel to the VI front panel as a cluster.

Specifying Records
The subVI has n logged records, and you can wire any number from –n to
n – 1 to the record # terminal of the subVI. You can access records relative
to the first logged record using non-negative record numbers. 0 represents
the first record, 1 represents the second record, and so on, through n – 1,
which represents the last record.

You can access records relative to the last logged record using negative
record numbers. –1 represents the last record, –2 represents the second to
the last, and so on, through –n, which represents the first record. If you wire
a number outside the range –n to n – 1 to the record # terminal, the invalid
record # output is TRUE, and the subVI retrieves no data.

Retrieving Front Panel Data Using File I/O Functions
You also can retrieve data you logged from the front panel by using File I/O
VIs and functions, such as the Read File function. The data type of each
record in the front panel datalog file creates two clusters. One cluster
contains a timestamp, and the other cluster contains the front panel data.
The timestamp cluster includes an unsigned 32-bit integer that represents
seconds and an unsigned 16-bit integer that represents milliseconds elapsed
since the LabVIEW reference time, which is midnight, January 1, 1904.

You access the records of front panel datalog files with the same File I/O
functions you use to access datalog files you created programmatically.

Chapter 13 File I/O

© National Instruments Corporation 13-19 LabVIEW User Manual

Enter the datalog record type as the type input to the File Open function,
as shown in Figure 13-10.

Figure 13-10. Retrieving Logged Data Using the File Open Function

© National Instruments Corporation 14-1 LabVIEW User Manual

14
Documenting and Printing VIs

You can use LabVIEW to document and print VIs.

The Documenting VIs section of this chapter describes how to record
information about the block diagram and/or the front panel at any stage of
development in printed documentation about VIs.

The Printing VIs section of this chapter describes options for printing VIs.
Some options are more appropriate for printing information about VIs, and
others are more appropriate for reporting the data and results the VIs
generate. Several factors affect which printing method you use, including if
you want to print manually or programmatically, how many options you
need for the report format, if you need the functionality in the stand-alone
applications you build, and on which platforms you run the VIs.

The Printing Reports section of this chapter describes how to print reports
in LabVIEW.

For more information…

Refer to the LabVIEW Help for more information about documenting and
printing VIs.

Documenting VIs
You can use LabVIEW to track development, document a finished VI, and
create instructions for users of VIs. You can view documentation within
LabVIEW, print it, and save it to HTML or RTF files.

Note You cannot print VI documentation in any format in built applications.

To use printed documentation most effectively, create VI and object
descriptions and set up the VI revision history.

Chapter 14 Documenting and Printing VIs

LabVIEW User Manual 14-2 www.ni.com

Creating VI and Object Descriptions
Create descriptions for VIs and their objects, such as controls and
indicators, to describe the purpose of the VI or object and to give users
instructions for using the VI or object. You can view the descriptions in
LabVIEW or print them.

Create, edit, and view VI descriptions by selecting File»VI Properties and
selecting Documentation from the Category pull-down menu. Create,
edit, and view object and subVI descriptions by right-clicking the object
and selecting Description and Tip from the shortcut menu. Tip strips are
brief descriptions that appear when you move the cursor over an object. If
you do not enter a tip in the Description and Tip dialog box, no tip strip
appears.The VI or object description also appears in the Context Help
window when you move the cursor over the VI icon or object, respectively.
Select Help»Show Context Help to display the Context Help window.

Setting up the VI Revision History
Use the History window in each VI to display the development history of
the VI, including revision numbers. Record and track the changes you
make to the VI in the History window as you make them. Select
Tools»VI Revision History to display the History window. You also can
print the revision history. Refer to the Printing Documentation section of
this chapter for more information about printing the revision history.

Revision Numbers
The revision number is an easy way to track changes to a VI. The revision
number starts at zero and increases incrementally every time you save
the VI. The current revision number stored on disk appears in the History
window. To display the current revision number in the titlebar of the VI,
select Tools»Options, select Revision History from the top pull-down
menu, and place a checkmark in the Show revision number in titlebar
checkbox.

The number LabVIEW displays in the titlebar of the History window and
the titlebar of the VI is the next revision number, which is the current
revision number plus one. When you add a comment to the history, the
header of the comment includes the next revision number. The revision
number does not increase when you save a VI if you change only the
History window.

Chapter 14 Documenting and Printing VIs

© National Instruments Corporation 14-3 LabVIEW User Manual

Revision numbers are independent of comments in the History window.
Gaps in revision numbers between comments indicate that you saved the VI
without a comment.

Because the history is strictly a development tool, LabVIEW automatically
removes the history when you remove the block diagram of a VI. Refer to
the Distributing VIs section of Chapter 7, Creating VIs and SubVIs, for
more information about removing the block diagram. The History window
is not available in the run-time version of a VI. The General page of the
VI Properties dialog box displays the revision number, even for VIs
without block diagrams. Click the Reset button in the History window to
erase the revision history and reset the revision number to zero.

Printing Documentation
Select File»Print to print VI documentation or save it to HTML or RTF
files. You can select a built-in format or create a custom format for
documentation. The documentation you create can include the following
items:

• Connector pane and icon

• Front panel and block diagram

• Controls, indicators, and data types

• VI hierarchy

• List of subVIs

• Revision history

Saving to HTML or RTF Files
You can save VI documentation to HTML or RTF files. You can import
HTML and RTF files into most word processing applications, and you
can use HTML and RTF files to create help files. Use HTML for
documentation you want to publish on the Web. Refer to the Creating Your
Own Help Files section of this chapter for more information about
using HTML and RTF files to create help files. Refer to Chapter 16,
Programmatically Controlling VIs, for more information about creating
HTML and RTF files programmatically.

When you save documentation to an RTF file, specify if you want to create
a file suitable for online help files or for word processing. In the help file
format, LabVIEW saves the graphics to external bitmap files. In the word
processing file format, LabVIEW embeds the graphics in the document.
For HTML files, LabVIEW saves all graphics externally in the JPEG or
PNG formats.

Chapter 14 Documenting and Printing VIs

LabVIEW User Manual 14-4 www.ni.com

Selecting Graphic Formats for HTML Files
When you save documentation to an HTML file, you can select the format
of the graphics files and the color depth.

The JPEG format compresses graphics well but can lose some graphic
detail. This format works best for photos. For line art, front panels, and
block diagrams, JPEG compression can result in fuzzy graphics and uneven
colors. JPEG graphics are always 24-bit graphics. If you select a lower
color depth, black-and-white for example, graphics save with the depth you
requested, but the result is still a 24-bit graphic.

The PNG format also compresses graphics well, although not always as
well as the JPEG format. However, PNG compression does not lose any
detail. Also, it supports 1-bit, 4-bit, 8-bit, and 24-bit graphics. For lower bit
depth, the resulting graphic compresses much better than JPEG. The PNG
format replaces the Graphics Interchange Format (GIF). Although the PNG
format has advantages over both JPEG and GIF, it is not as well supported
by most Web browsers.

To use GIF graphics, use a graphics-format converter to convert the JPEG
or PNG graphics. If you produce GIF graphics, start out with PNG graphics
because they are lossless reproductions of the original graphics. Then
convert the PNG graphics to GIF graphics. Modify the HTML file to which
you saved the VI documentation to refer to the GIF graphics with the .gif
extension. Because of licensing issues, LabVIEW does not save graphics as
GIF files but might in the future.

Naming Conventions for Graphic Files
When you save HTML files or RTF files with external graphics, LabVIEW
saves the control and indicator terminals to graphic files with consistent
names. If a VI has multiple terminals of the same type, LabVIEW creates
one graphic file that contains each terminal. For example, if a VI has three
32-bit signed integer inputs, LabVIEW creates a single ci32.jpg file.

Creating Your Own Help Files
You can create help files using the HTML or RTF files LabVIEW
generates. You can generate HTML files for use on the Web or for creating
HTML-based help files. You can create links from LabVIEW to
HTML-based help files.

Chapter 14 Documenting and Printing VIs

© National Instruments Corporation 14-5 LabVIEW User Manual

Windows Help Files
Windows Help files are based on RTF files. You can create topics in these
files to create connections to VIs, and you can create links from LabVIEW
to a Windows Help file.

Use a help compiler to create a help file from the RTF files. If you want to
create help files for multiple platforms, use the help compiler for the
platform on which you will use the file.

Printing VIs
You can use the following primary methods to print VIs in LabVIEW:

• Select File»Print Window to print the contents of the active window.

• Select File»Print to print more comprehensive information about a VI,
including information about the front panel, block diagram, subVIs,
controls, VI history, and so on. Refer to the Printing Documentation
section of this chapter for more information about using this method to
print VIs.

• Use the Report Generation VIs to print paper or HTML reports of the
information the VI generates.

• Use the VI Server to programmatically print any VI window or VI
documentation at any time. Refer to Chapter 16, Programmatically
Controlling VIs, for more information about using this method to
print VIs.

Printing the Active Window
Select File»Print Window to print the contents of the active front panel or
block diagram window with the minimum number of prompts. LabVIEW
prints the workspace of the active window but is not limited by the active
window size. LabVIEW does not print the titlebar, menu bar, toolbar, or
scroll bars.

Select File»VI Properties and select Print Options from the Category
pull-down menu for more control over how LabVIEW prints a VI when you
select File»Print Window or when you print programmatically. Refer to
the Printing Programmatically section of this chapter for more information
about printing programmatically.

Chapter 14 Documenting and Printing VIs

LabVIEW User Manual 14-6 www.ni.com

Printing Reports
Use the Report Generation VIs located on the Functions»Report
Generation palette to print paper or HTML reports of the information the
VI generates. Create a basic report using the Easy Text Report VI or
generate more complex reports using the other Report Generation VIs.

You can use the Report Generation VIs to perform the following tasks:

• Set the report headers and footers.

• Set text font, size, style, and color.

• Set margins and tabs.

• Determine which information appears on which line or page of a
report.

• Set the report orientation—portrait or landscape.

• Include text from other files in a report.

• Clear information from an existing report.

• Automatically print a paper report or save an HTML report.

• Append text, graphics, or tables to a report.

• Dispose of a report after it prints.

Printing Programmatically
Use the following methods to print VIs programmatically rather than
interactively with the Print dialog boxes that appear when you select
File»Print Window and File»Print:

• Set a VI to automatically print its front panel every time it finishes
running.

• Create a subVI to print the VI.

• Use the VI Server to programmatically print any VI window or VI
documentation at any time. Refer to Chapter 16, Programmatically
Controlling VIs, for more information about using this method to
print VIs.

Printing at Completion
Select Operate»Print at Completion to print a VI when it finishes
running. You also can select File»VI Properties, select Print Options
from the Category pull-down menu, and place a checkmark in the
Automatically Print Panel Every Time VI Completes Execution
checkbox.

Chapter 14 Documenting and Printing VIs

© National Instruments Corporation 14-7 LabVIEW User Manual

When you select this option, LabVIEW prints the contents of the front
panel every time the VI finishes running. If you use the VI as a subVI,
LabVIEW prints when that subVI finishes running and before the subVI
returns to the caller.

Using a SubVI to Selectively Print at Completion
In some cases, you might not want a VI to print every time it finishes
running. You might want printing to occur only if the user clicks a button
or if some condition occurs, such as a test failure. You also might want
more control over the format for the printout, or you might want to print
only a subset of the controls. In these cases, you can use a subVI that is set
to print at completion.

Create a subVI and format the front panel the way you want LabVIEW to
print it. Instead of selecting Operate»Print at Completion while in the VI,
select it while in the subVI. When you want to print, call the subVI and pass
the data to it to print.

Additional Printing Techniques
If standard LabVIEW printing methods do not meet your needs, use the
following additional techniques:

• Print data on a line-by-line basis. If you have a line-based printer
connected to a serial port, use the Serial Compatibility VIs to send text
to the printer. Doing so generally requires some knowledge of the
command language of the printer.

• Export data to other applications, such as Microsoft Excel, save the
data to a file, and print from the other application.

• (Windows and UNIX) Use the System Exec VI.

• (Macintosh) Use the AESend Print Document VI.

• (Windows) Use ActiveX Automation to make another application print
data. Refer to Chapter 18, ActiveX, for more information about
ActiveX.

© National Instruments Corporation 15-1 LabVIEW User Manual

15
Customizing VIs

You can configure VIs and subVIs to work according to your application
needs. For example, if you plan to use a VI as a subVI that requires user
input, configure the VI so that its front panel appears each time you call it.

You can configure a VI in many ways, either within the VI itself or
programmatically by using the VI Server. Refer to Chapter 16,
Programmatically Controlling VIs, for more information about using the
VI Server to configure several VIs to behave identically.

For more information…

Refer to the LabVIEW Help for more information about customizing VIs.

Configuring the Appearance and Behavior of VIs
Select File»VI Properties to configure the appearance and behavior of
a VI. You cannot access the VI Properties dialog box while a VI is
running.

Use the Category pull-down menu at the top of the dialog box to select
from several different option categories, including the following:

• General—Displays the current path where a VI is saved, its revision
number, revision history, and any changes made since the VI was last
saved. You also can use this page to edit an icon.

• Documentation—Use this page to add a description of the VI and link
to a help file topic. Refer to the Documenting VIs section of
Chapter 14, Documenting and Printing VIs, for more information
about the documentation options.

• Security—Use this page to lock or password-protect a VI.

• Window Appearance—Use this page to configure various window
settings.

• Window Size—Use this page to set the size of the window.

• Execution—Use this page to configure how a VI runs. For example,
you can configure a VI to run immediately when it opens or to pause

Chapter 15 Customizing VIs

LabVIEW User Manual 15-2 www.ni.com

when called as a subVI. You also can configure the VI to run at
different priorities. For example, if it is crucial that a VI runs without
waiting for another operation to complete, configure the VI to run at
time-critical (highest) priority. Refer to the Using LabVIEW to Create
Multithreaded VIs for Maximum Performance and Reliability
Application Note for more information about creating
multithreaded VIs.

Customizing Menus
You can create custom menus for every VI you build, and you can
configure VIs to show or hide menu bars. Show and hide menu bars by
selecting File»VI Properties, selecting Windows Appearance from the
Category pull-down menu, clicking the Customize button, and placing or
removing a checkmark from the Show Menu Bar checkbox.

Configuring menus includes creating the menu and providing the block
diagram code that executes when the user selects the various menu items.

Note Custom menus appear only while the VI runs.

Creating Menus
You can build custom menus or modify the default LabVIEW menus
statically when you edit the VI or programmatically when you run the VI.
When you select Edit»Run-Time Menu and create a menu in the Menu
Editor dialog box, LabVIEW creates a run-time menu (.rtm) file so you
can have a custom menu bar on a VI rather than the default menu bar. After
you create and save the .rtm file, you must maintain the same relative path
between the VI and the .rtm file.

Use the Menu Editor dialog box to associate a custom .rtm file with a VI.
When the VI runs, it loads the menu from the .rtm file. Use the Menu
functions located on the Functions»Application Control»Menu palette to
insert, delete, and modify menu items programmatically at run time.You
can modify all user items, but you can only add or remove application
items. Refer to the Menu Selection Handling section of this chapter for
more information about programmatically editing menus.

You can add application items, user items, and line separators to a custom
menu. Application items are menu items LabVIEW provides. If you select
an application item, LabVIEW defines the behavior of these items. User
items are menu items that you add. You control the behavior of user items
on the block diagram.

Chapter 15 Customizing VIs

© National Instruments Corporation 15-3 LabVIEW User Manual

Menu Selection Handling
When you create a custom menu, you assign each menu item a unique,
case-insensitive string identifier called a tag. When the user selects a menu
item, you retrieve its tag programmatically using the Get Menu Selection
function. LabVIEW provides a handler on the block diagram for each menu
item based on the tag value of each menu item. The handler is a While Loop
and Case Structure combination that allows you to determine which, if any,
menu is selected and to execute the appropriate code.

After you build a custom menu, build a Case structure on the block diagram
that executes, or handles, each item in the custom menu. This process is
called menu selection handling. Use the Get Menu Selection and Enable
Menu Tracking functions to define which actions to take when users select
each menu item. LabVIEW handles all application items implicitly.

In Figure 15-1, the Get Menu Selection function reads the menu item the
user selects and passes the menu item into the Case structure, where the
menu item executes.

Figure 15-1. Block Diagram Using Menu Handling

If you know that a certain menu item takes a long time to process, wire a
Boolean control to the block menu input of the Get Menu Selection
function and set the Boolean control to TRUE to disable the menu bar so
the user cannot select anything else on the menu while LabVIEW processes
the menu item. Wire a TRUE value to the Enable Menu Tracking function
to enable the menu bar after LabVIEW processes the menu item.

© National Instruments Corporation 16-1 LabVIEW User Manual

16
Programmatically
Controlling VIs

You can access the VI Server through block diagrams, ActiveX
technology, and the TCP protocol to communicate with VIs and other
instances of LabVIEW so you can programmatically control VIs and
LabVIEW. You can perform VI Server operations on a local computer or
remotely across a network.

For more information…

Refer to the LabVIEW Help for more information about programmatically
controlling VIs.

Capabilities of the VI Server
Use the VI Server to perform the following programmatic operations:

• Call a VI remotely.

• Configure an instance of LabVIEW to be a server that exports VIs you
can call from other instances of LabVIEW on the Web. For example, if
you have a data acquisition application that acquires and logs data at a
remote site, you can sample that data occasionally from your local
computer. By changing your LabVIEW preferences, you can make
some VIs accessible on the Web so that transferring the latest data is as
easy as a subVI call. The VI Server handles the networking details. The
VI Server also works across platforms, so the client and the server can
run on different platforms.

• Edit the properties of a VI and LabVIEW. For example, you can
dynamically determine the location of a VI window or scroll a front
panel so that a part of it is visible. You also can programmatically save
any changes to disk.

• Update the properties of multiple VIs rather than manually using the
File»VI Properties dialog box for each VI.

Chapter 16 Programmatically Controlling VIs

LabVIEW User Manual 16-2 www.ni.com

• Retrieve information about an instance of LabVIEW, such as the
version number and edition. You also can retrieve environment
information, such as the platform on which LabVIEW is running.

• Dynamically load VIs into memory when another VI needs to calls
them, rather than loading all subVIs when you open a VI.

• Create a plug-in architecture for the application to add functionality to
the application after you distribute it to customers. For example, you
might have a set of data filtering VIs, all of which take the same
parameters. By designing the application to dynamically load these
VIs from a plug-in directory, you can ship the application with a partial
set of these VIs and make more filtering options available to users by
placing the new filtering VIs in the plug-in directory.

Building VI Server Applications
The programming model for VI Server applications is based on refnums.
Refnums also are used in file I/O, network connections, and other objects
in LabVIEW. Refer to the References to Objects or Applications section of
Chapter 4, Building the Front Panel, for more information about refnums.

Typically, you open a refnum to an instance of LabVIEW or to a VI. You
then use the refnum as a parameter to other VIs. The VIs get (read) or set
(write) properties, execute methods, or dynamically load a referenced VI.
Finally, you close the refnum, which releases the instance of LabVIEW or
the VI from memory.

Use the following functions and nodes located on the
Functions»Application Control palette to build VI Server applications:

• Open Application Reference—Opens a refnum to the local or remote
application you are accessing through the server or to access a remote
instance of LabVIEW. Use the Open VI Reference function to access
a VI on the local or remote computer.

• Property Node—Gets and sets VI or application properties. Refer to
the Property Nodes section of this chapter for more information about
properties.

• Invoke Node—Invokes methods on a VI or application. Refer to the
Invoke Nodes section of this chapter for more information about
methods.

• Call By Reference Node—Dynamically loads a VI into memory.

• Close LV Object Reference—Closes the refnum to the VI or
application you accessed using the VI Server.

Chapter 16 Programmatically Controlling VIs

© National Instruments Corporation 16-3 LabVIEW User Manual

Application and VI References
You access VI Server functionality through references to two main classes
of objects—the Application object and the VI object. After you create a
reference to one of these objects, you can pass the reference to a VI or
function that performs an operation on the object.

An Application refnum refers to a local or remote instance of LabVIEW.
You can use Application properties and methods to change LabVIEW
preferences and return system information. A VI refnum refers to a VI in
the instance of LabVIEW.

With a refnum to an instance of LabVIEW, you can retrieve information
about the LabVIEW environment, such as the platform on which LabVIEW
is running, the version number, or a list of all VIs currently in memory. You
also can set information, such as the current user name or the list of VIs
exported to other instances of LabVIEW.

When you get a refnum to a VI, you load the VI into memory. After you get
the refnum, the VI stays in memory until you close the refnum. If you have
multiple refnums to an open VI at the same time, the VI stays in memory
until you close all refnums to the VI. With a refnum to a VI, you can update
all the properties of the VI available in the File»VI Properties dialog box
as well as dynamic properties, such as front panel window position. You
also can programmatically print the VI, save it to another location, and
export and import its strings to translate into another language.

Editing Application and VI Settings
Use the VI Server to get and set application and VI settings by using the
Property and Invoke Nodes. You can get and set many application and VI
settings only through the Property and Invoke Nodes.

Refer to examples\viserver for examples of using the Application and
VI Class properties and methods.

Property Nodes
Use the Property Node to get and set various properties on an application
or VI. Select properties from the node by using the Operating tool to click
the property terminal or by right-clicking the white area of the node and
selecting Properties from the shortcut menu.

Chapter 16 Programmatically Controlling VIs

LabVIEW User Manual 16-4 www.ni.com

You can read or write multiple properties using a single node. Use the
Positioning tool to resize the Property Node to add new terminals. A small
direction arrow to the right of the property indicates a property you read.
A small direction arrow to the left of the property indicates a property you
write. Right-click the property and select Change to Read or Change to
Write from the shortcut menu to change the operation of the property.

The node executes from top to bottom. The Property Node does not execute
if an error occurs before it executes, so always check for the possibility of
errors. If an error occurs in a property, LabVIEW ignores the remaining
properties and returns an error. The error out cluster contains information
about which property caused the error.

Implicitly Linked Property Nodes
When you create a Property Node from a front panel object by
right-clicking the object and selecting Create»Property Node from the
shortcut menu, the new Property Node is implicitly linked to the object.
Because these Property Nodes are implicitly linked to the object from
which it was created, they have no refnum input, and you do not need to
wire the Property Node to the control or control refnum. Refer to the
Control Refnums section of this chapter for more information about
Property Nodes for controls.

Invoke Nodes
Use the Invoke Node to perform actions, or methods, on an application or
a VI. Unlike the Property Node, a single Invoke Node executes only a
single method on an application or VI. Select a method by using the
Operating tool to click the method terminal or by right-clicking the white
area of the node and selecting Methods from the shortcut menu.

The name of the method is always the first terminal in the list of parameters
in the Invoke Node. If the method returns a value, the method terminal
displays the return value. Otherwise, the method terminal has no value.

The Invoke Node lists the parameters from top to bottom with the name of
the method at the top and the optional parameters in gray at the bottom.

Manipulating Application Class Properties and Methods
You can get or set properties on a local or remote instance of LabVIEW,
perform methods on LabVIEW, or both. Figure 16-1 shows how to display
all VIs in memory on a local computer in a string array on the front panel.

Chapter 16 Programmatically Controlling VIs

© National Instruments Corporation 16-5 LabVIEW User Manual

Figure 16-1. Displaying All VIs in Memory on a Local Computer

To find the VIs in memory on a remote computer, wire a string control to
the machine name input of the Open Application Reference function, as
shown in Figure 16-2, and enter the IP address or domain name. You also
must select the Exported VIs in Memory property because the All VIs in
Memory property used in Figure 16-1 applies only to local instances of
LabVIEW.

Figure 16-2. Displaying All VIs in Memory on a Remote Computer

Manipulating VI Class Properties and Methods
You can get or set properties of a VI, perform methods on a VI, or both. In
Figure 16-3, LabVIEW reinitializes the front panel objects of a VI to their
default values using the Invoke Node. The front panel opens and displays
the default values using the Property Node.

Before you can access properties and methods of a VI, you must create a
refnum to that VI with the Open VI Reference function. Use the Invoke
Node to invoke a method on a VI.

Figure 16-3. Using VI Class Property and Invoke Nodes

After you wire Open VI Reference to the Invoke Node, you can access all
the VI Class methods.

Chapter 16 Programmatically Controlling VIs

LabVIEW User Manual 16-6 www.ni.com

The Property Node operates similarly to the Invoke Node. After you wire a
VI refnum to the Property Node, you can access all the VI Class properties.

Manipulating Application and VI Class Properties and Methods
In some VIs, you must access both Application and VI Class properties or
methods. You must open and close the Application and VI Class refnums
separately, as shown in Figure 16-4.

Figure 16-4 shows how to determine the VIs in memory on a local
computer and to display the path to each of the VIs on the front panel. To
find all the VIs in memory, you must access an Application Class property.
To determine the paths to each of these VIs, you must access a VI Class
property. The number of VIs in memory determines the number of times the
For Loop executes. Place the Open VI Reference and Close LV Object
Reference functions inside the For Loop because you need a VI refnum for
each VI in memory. Do not to close the Application refnum until the For
Loop finishes retrieving all the VI paths.

Figure 16-4. Using Application and VI Class Properties and Methods

Dynamically Loading and Calling VIs
You can dynamically load VIs instead of using statically linked subVI
calls. A statically linked subVI is one you place directly on the block
diagram of a caller VI. It loads at the same time the caller VI loads.

Unlike statically linked subVIs, dynamically loaded subVIs do not load
until the caller VI makes the call to the subVI. If you have a large caller VI,
you can save load time and memory by dynamically loading the subVI
because the subVI does not load until the caller VI needs it, and you can
release it from memory after the operation completes.

Chapter 16 Programmatically Controlling VIs

© National Instruments Corporation 16-7 LabVIEW User Manual

Call By Reference Nodes and Strictly Typed VI Refnums
Use the Call By Reference Node to dynamically call VIs.

The Call By Reference Node requires a strictly typed VI refnum. The
strictly typed VI refnum identifies the connector pane of the VI you are
calling. It does not create a permanent association to the VI or contain other
VI information, such as the name and location. You can wire the Call By
Reference Node inputs and outputs just like you wire any other VI.

Figure 16-5 shows how to use the Call By Reference Node to dynamically
call the Frequency Response VI. The Call By Reference Node requires the
use of the Open VI Reference and the Close LV Object Reference
functions, similar to the functions you use for the Property Node and Invoke
Node. However, the Call By Reference Node requires that you wire a
strictly typed VI refnum to the type specifier VI Refnum input of the Open
VI Reference function. Wire a strictly typed VI refnum by selecting
Controls»Refnum»VI Refnum and placing the refnum on the front panel.
Right-click the refnum and select Select VI Server Class»Browse from
the shortcut menu. The Choose the VI to open dialog box prompts you for
a VI.

Figure 16-5. Using the Call By Reference Node

The VI you specify for strictly typed refnums provides only the connector
pane information. That is, no permanent association is made between the
refnum and the VI. In particular, avoid confusing selecting the VI connector
pane with getting a refnum to the selected VI. You specify a particular VI
using the vi path input on the Open VI Reference function.

Chapter 16 Programmatically Controlling VIs

LabVIEW User Manual 16-8 www.ni.com

Editing and Running VIs on Remote Computers
An important aspect of both Application and VI refnums is their network
transparency. This means you can open refnums to objects on remote
computers in the same way you open refnums to those objects on your
computer.

After you open a refnum to a remote object, you can treat it in exactly the
same way as a local object, with a few restrictions. For operations on a
remote object, the VI Server sends the information about the operation
across the network and sends the results back. The application looks almost
identical regardless of whether the operation is remote or local.

Control Refnums
Use control refnums to pass front panel object information to subVIs. Once
you pass a control refnum to a subVI, use Property Nodes and Invoke
Nodes to read and configure properties and invoke methods of the
referenced front panel object.

Strictly Typed and Weakly Typed Control Refnums
Strictly typed control refnums accept only control refnums of the same kind
of data. For example, if the type of a strictly typed control refnum is a slide
of 32-bit integers, you can wire a slide of 32-bit integers, a slide of 8-bit
integers, or a slide of double-precision scalars to the control refnum
terminal, but not a slide of a cluster of 32-bit integers or a slide of an array
of 32-bit integers.

Control refnums you create from a control are strictly typed by default. A
red star in the lower left corner of the control refnum on the front panel
indicates the control refnum is strictly typed. On the block diagram,
(strict) appears on the Property Node or Invoke Node wired to the
control refnum terminal to indicate that the control refnum is strictly typed.

Note Because the latch mechanical actions are incompatible with strictly typed control
refnums, Boolean controls with latch mechanical action produce weakly typed control
refnums.

Weakly typed control refnums are more flexible in the type of data they
accept. For example, if the type of a weakly typed control refnum is slide,
you can wire a 32-bit integer slide, single-precision slide, or a cluster of
32-bit integer slides to the control refnum terminal. If the type of a weakly

Chapter 16 Programmatically Controlling VIs

© National Instruments Corporation 16-9 LabVIEW User Manual

typed control refnum is control, you can wire a control refnum of any type
of control to the control refnum terminal.

Note When you wire a Property Node to a weakly typed control refnum terminal, the
value and chart history properties produce variant data, which might require conversion
before you can use the data. Refer to the Handling Variant Data section of Chapter 5,
Building the Block Diagram, for more information about variant data.

© National Instruments Corporation 17-1 LabVIEW User Manual

17
Networking in LabVIEW

VIs can communicate, or network, with other processes, including those
that run on other applications or on remote computers. Use the networking
features in LabVIEW to perform the following tasks:

• Share live data with other VIs running on a network using National
Instruments DataSocket technology.

• Publish front panel images and VI documentation on the Web.

• Build VIs that communicate with other applications and VIs through
low-level protocols, such as TCP, UDP, DDE, Apple events, and
PPC Toolbox.

For more information…

Refer to the LabVIEW Help for more information about networking in LabVIEW.

Choosing among File I/O, VI Server, ActiveX, and
Networking

Networking might not be the best solution for your application. If you want
to create a file that contains data other VIs and applications can read, use
the File I/O VIs and functions. Refer to Chapter 13, File I/O, for more
information about using the File I/O VIs and functions.

If you want to control other VIs, use the VI Server. Refer to Chapter 16,
Programmatically Controlling VIs, for more information about controlling
VIs and other LabVIEW applications on local and remote computers.

(Windows) If you want to access the features of many Microsoft
applications, such as embedding a waveform graph in an Excel spreadsheet,
use the ActiveX VIs and functions. Refer to Chapter 18, ActiveX, for more
information about accessing ActiveX-enabled applications and permitting
other ActiveX applications access to LabVIEW.

Chapter 17 Networking in LabVIEW

LabVIEW User Manual 17-2 www.ni.com

LabVIEW as a Network Client and Server
You can use LabVIEW as a client to subscribe to data and use features
in other applications or as a server to make LabVIEW features available
to other applications. Refer to Chapter 16, Programmatically
Controlling VIs, for more information about using the VI Server to
control VIs on local and remote computers. You control VIs by accessing
properties and invoking methods using the Property Node and
Invoke Node, respectively.

Before you can access the properties and invoke methods of another
application, you must establish the network protocol you use to access the
properties and methods. Protocols you can use include HTTP and TCP/IP.
The protocol you select depends on the application. For example, the HTTP
protocol is ideal for publishing on the Web, but you cannot use the HTTP
protocol to build a VI that listens for data that another VI creates. To do that,
use the TCP protocol.

Refer to the Low-Level Communications Applications section of this
chapter for more information about communications protocols LabVIEW
supports.

(Windows) Refer to Chapter 18, ActiveX, for more information about using
ActiveX technology with LabVIEW as an ActiveX server or client.

Using DataSocket Technology
Use National Instruments DataSocket technology to share live data
with other VIs and other applications, such as National Instruments
ComponentWorks, on the Web, or on your local computer. DataSocket
pulls together established communication protocols for measurement and
automation in much the same way a Web browser pulls together different
Internet technologies.

DataSocket technology provides access to several input and output
mechanisms from the front panel through the DataSocket Connection
dialog box. Right-click a front panel object and select Data
Operations»DataSocket Connection from the shortcut menu to display
the DataSocket Connection dialog box. You publish (write) or subscribe
to (read) data by specifying a URL, in much the same way you specify
URLs in a Web browser.

Chapter 17 Networking in LabVIEW

© National Instruments Corporation 17-3 LabVIEW User Manual

For example, if you want to share the data in a thermometer indicator on the
front panel with other computers on the Web, publish the thermometer data
by specifying a URL in the DataSocket Connection dialog box. Users on
other computers subscribe to the data by placing a thermometer on their
front panel and selecting the URL in the DataSocket Connection dialog
box. Refer to the Front Panel DataSocket section of this chapter for more
information about using DataSocket technology on the front panel.

Refer to the Integrating the Internet into Your Measurement System white
paper for more information about DataSocket technology. This white paper
is available as a PDF from the Installation CD, in the manuals directory,
or from the National Instruments Web site at www.ni.com

Specifying a URL
URLs use communication protocols, such as dstp, ftp, and file, to
transfer data. The protocol you use in a URL depends on the type of data
you want to publish and how you configure your network.

You can use the following protocols when you publish or subscribe to data
using DataSocket:

• DataSocket Transport Protocol (dstp)—The native protocol for
DataSocket connections. When you use this protocol, the VI
communicates with the DataSocket server. You must provide a named
tag for the data, which is appended to the URL. The DataSocket
connection uses the named tag to address a particular data item on a
DataSocket server. To use this protocol, you must run a DataSocket
server.

• (Windows) OLE for Process Control (opc)—Designed specifically
for sharing real-time production data, such as data generated by
industrial automation operations. To use this protocol, you must run an
OPC server.

• (Windows) logos—An internal National Instruments technology for
transmitting data between the network and your local computer.

• File Transfer Protocol (ftp)—You can use this protocol to specify a
file from which to read data.

• file—You can use this protocol to provide a link to a local or network
file that contains data.

Chapter 17 Networking in LabVIEW

LabVIEW User Manual 17-4 www.ni.com

Table 17-1 shows examples of each protocol URL.

Use the dstp, opc, and logos URLs to share live data because these
protocols can update remote and local controls and indicators. Use the ftp
and file URLs to read data from files because these protocols cannot
update remote and local controls and indicators.

Refer to the examples/comm/datasktx.llb file for examples of using
DataSocket connections.

Data Formats Supported by DataSocket
Use DataSocket to publish and subscribe to the following data:

• Raw text—Use raw text to deliver a string to a string indicator.

• Tabbed text—Use tabbed text, as in a spreadsheet, to publish data in
arrays. LabVIEW interprets tabbed text as an array of data.

• wav data—Use .wav data to publish a sound to a VI or function.

• Variant data—Use variant data to subscribe to data from another
application, such as a ComponentWorks control.

Table 17-1. Example DataSocket URLs

URL Example

dstp dstp://servername.com/numericdata, where
numericdata is the named tag

opc opc:\National Instruments.OPCTest\item1

opc:\\machine\National

Instruments.OPCModbus\Modbus Demo Box.4:0

opc:\\machine\National

Instruments.OPCModbus\Modbus Demo

Box.4:0?updaterate=100&deadband=0.7

logos logos://computer_name/process/data_item_name

ftp ftp://ftp.natinst.com/datasocket/ping.wav

file file:ping.wav

file:c:\mydata\ping.wav

file:\\machine\mydata\ping.wav

Chapter 17 Networking in LabVIEW

© National Instruments Corporation 17-5 LabVIEW User Manual

Using DataSocket on the Front Panel
Use front panel DataSocket connections to publish or subscribe to live data
in a front panel object. When you share the data of a front panel object with
other users, you publish data. When users retrieve the published data and
view it on their front panel, users subscribe to the data.

DataSocket connections differ from Web Server and ActiveX connections
because you can use DataSocket connections directly from the front panel
without any block diagram programming. Each front panel control or
indicator can publish or subscribe to data through its own DataSocket
connection. Front panel DataSocket connections publish only the data, not
a graphic of the front panel control, so the VIs that subscribe through a
DataSocket connection can perform their own operations on the data.

You can set the value of a front panel control directly on the front panel and
then publish the data, or you can build a block diagram, wire the output of
a VI or function to an indicator, and publish the data from that indicator.
Typical scenarios for using DataSocket connections with controls and
indicators include the following:

• Publish a value from a front panel control to manipulate a control and
publish the data for other users to subscribe to through a control or
indicator. For example, if you place a knob on your front panel that
raises or lowers temperature, a user on another computer can subscribe
to the data and use it in a control wired to a subVI or function, or view
the data in an indicator. A user cannot manipulate a front panel control
on his or her VI while the control subscribes to data from the
DataSocket connection.

• Publish a value that appears in a front panel indicator so another user
can subscribe to the data and view the data in an control or indicator on
his or her front panel, or use the results as data in a control wired to an
input in a subVI or function. For example, a VI that calculates the mean
temperature and displays the temperature in a thermometer on the front
panel can publish the temperature data.

• Subscribe to a value from a front panel indicator to view data in a front
panel indicator on your VI that appears in a control or indicator on the
front panel of another VI.

• Subscribe to a value from a front panel control to view data in a front
panel control on your VI that appears in a control or indicator on the
front panel of another VI. If you subscribe to the data with a control,
you can use the data in your VI by wiring the control to an input of a
subVI or function.

Chapter 17 Networking in LabVIEW

LabVIEW User Manual 17-6 www.ni.com

• Publish from and subscribe to a front panel control so users can
manipulate a control on the front panel of your VI from the front panels
of their VIs. When you run the VI, the front panel control on your VI
retrieves the current value that another VI or application published
through the DataSocket connection. When a user changes the control
value on his or her front panel, the DataSocket connection publishes
the new value to the front panel control of your VI. If you then
manipulate the value of your front panel control, your VI publishes the
value to the front panels of other users.

The front panel objects that subscribe to data do not have to be the same
kind of objects that publish the data. However, the front panel objects must
be the same data type or, if they are numeric data, they must coerce. For
example, you can use a digital indicator in your VI to view the data a
thermometer in another VI generates. The thermometer can be a
floating-point number, and the digital indicator can be an integer.

Front panel DataSocket connections are primarily intended for sharing live
data. To read data in local files, FTP servers, or Web servers, use the
DataSocket Read function located on the Functions»Communication»
DataSocket palette, the File I/O VIs and functions located on the
Functions»File I/O palette, or the Application Control VIs and functions
located on the Functions»Application Control palette. National
Instruments recommends you publish only raw text and variant data for live
front panel updates.

Reading and Writing Live Data through the Block Diagram
From the block diagram, you can programmatically read or write data
using the DataSocket functions located on the Functions»
Communication»DataSocket palette.

Use the DataSocket Write function to write live data through a DataSocket
connection programmatically. Figure 17-1 shows how to write a numeric
value.

Figure 17-1. Publishing Data Using DataSocket Write

Chapter 17 Networking in LabVIEW

© National Instruments Corporation 17-7 LabVIEW User Manual

The DataSocket Write function is polymorphic, so you can wire most data
types to the data input. Refer to the Polymorphic VIs and Functions section
of Chapter 5, Building the Block Diagram, for more information about
polymorphic VIs and functions.

Use the DataSocket Read function to read live data from a DataSocket
connection programmatically. Figure 17-2 shows how to read data and
convert it to a double-precision floating-point number.

Figure 17-2. Reading a Single Value Using DataSocket Read

Convert live data to a specific data type by wiring a control or constant to
the type input of DataSocket Read. If you do not specify a type, the data
output of DataSocket Read returns variant data, which you must manipulate
with the Variant to Data function located on the
Functions»DataSocket»Variant palette. In some cases, you must convert
variant data to LabVIEW data.

DataSocket and Variant Data
In some cases, the VI or other application that programmatically reads the
data cannot convert the data back into its original data type, such as when
you subscribe to data from another application. Also, you might want to
add an attribute to the data, such as a timestamp or warning, which the data
types do not permit.

In these cases, use the To Variant function located on the
Functions»DataSocket»Variant palette to programmatically convert the
data you write to a DataSocket connection to variant data. Figure 17-3
shows a block diagram that continually acquires a temperature reading,
converts the data to variant data, and adds a timestamp as an attribute to the
data.

Chapter 17 Networking in LabVIEW

LabVIEW User Manual 17-8 www.ni.com

Figure 17-3. Converting Live Temperature Data to Variant Data

When another VI reads the live data, the VI must convert the variant data
to a data type it can manipulate. Figure 17-4 shows a block diagram that
continually reads temperature data from a DataSocket connection, converts
the variant data into a temperature reading, retrieves the timestamp attribute
associated with each reading, and displays the temperature and the
timestamp on the front panel.

Figure 17-4. Converting Live Variant Data to Temperature Data

Chapter 17 Networking in LabVIEW

© National Instruments Corporation 17-9 LabVIEW User Manual

Publishing VIs on the Web
Use the LabVIEW Web Server to create HTML documents and publish
front panel images on the Web. You can control browser access to the
published front panels and configure which VIs are visible on the Web.

Note Use the LabVIEW Enterprise Connectivity Toolset to control VIs on the Web and
to add more security features to VIs you publish on the Web. Refer to the National
Instruments Web site at www.ni.com for more information about this toolset.

Web Server Options
Select Tools»Options and select one of the Web Server items in the top
pull-down menu to set the following options:

• Set up the root directory and log file.

• Enable the Web Server.

• Control browser access to VI front panels.

• Configure which VI front panels are visible on the Web.

You must enable the Web Server in the Web Server: Configuration page
of the LabVIEW Options dialog box before you can publish VIs on the
Web. You also can enable the Web Server with the Web Publishing Tool,
described in the following section. The VIs must be in memory before you
publish them.

Creating HTML Documents
Select Tools»Web Publishing Tool to use the Web Publishing Tool to
accomplish the following tasks:

• Create an HTML document.

• Embed static or animated images of the front panel in an HTML
document.

• Add text above and below the embedded VI front panel image.

• Place a border around the VI front panel image.

• Animate the image. Currently only Netscape browsers support
animated images.

• Preview the document.

• Save the document to disk.

• Enable the Web Server for publishing HTML documents and front
panel images on the Web.

Chapter 17 Networking in LabVIEW

LabVIEW User Manual 17-10 www.ni.com

Publishing Front Panel Images
Use a .snap URL in a Web browser or an HTML document to return a
static image of the front panel of a VI currently in memory. The query
parameters in the URL specify the VI name and the attributes of the image.
For example, use http://web.server.address/.snap?VIName.vi,
where VIName.vi is the name of the VI you want to view.

Use a .monitor URL to return an animated image of the front panel of a
VI currently in memory. The query parameters in the URL specify the VI
name, attributes of the animation, and attributes of the image. For example,
use http://web.server.address/.monitor?VIName.vi, where
VIName.vi is the name of the VI you want to view.

Front Panel Image Formats
The Web Server can generate images of front panels in the JPEG and PNG
image formats.

The JPEG format compresses graphics well but can lose some graphic
detail. This format works best for photos. For line art, front panels, and
block diagrams, JPEG compression can result in fuzzy graphics and uneven
colors. The PNG format also compresses graphics well, although not
always as well as the JPEG format. However, PNG compression does not
lose any detail.

Low-Level Communications Applications
LabVIEW supports several low-level protocols you can use to
communicate between computers.

Each protocol is different, especially in the way it refers to the network
location of a remote application. Each protocol generally is incompatible
with other protocols. For example, if you want to communicate between
Macintosh and Windows, you must use a protocol that works on both
platforms, such as TCP.

TCP and UDP
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
are available on all platforms LabVIEW supports. TCP is a reliable,
connection-based protocol. It provides error detection and ensures that data
arrive in order and without duplication. For these reasons, TCP is usually
the best choice for network applications.

Chapter 17 Networking in LabVIEW

© National Instruments Corporation 17-11 LabVIEW User Manual

Although UDP can give higher performance than TCP and does not require
a connection, it does not guarantee delivery. Typically, use UDP in
applications in which guaranteed delivery is not critical. For example, an
application might transmit data to a destination frequently enough that a
few lost segments of data are not problematic. Refer to the Using LabVIEW
with TCP/IP and UDP Application Note for more information about using
TCP and UDP in LabVIEW applications.

DDE (Windows)
Dynamic Data Exchange (DDE) works at a higher level than TCP to
exchange commands and data between clients and servers. DDE is a good
choice for communication with standard off-the-shelf applications such as
Microsoft Excel. Refer to the Using DDE in LabVIEW Application Note
for more information about using DDE in LabVIEW applications.

Apple Events and PPC Toolbox (Macintosh)
The more common Macintosh-only form of communication is Apple
events. As with DDE, use Apple events to send messages to request
actions or return information from other Macintosh applications.

Program-to-Program Communication (PPC) Toolbox is a lower level form
of sending and receiving data between Macintosh applications. PPC
Toolbox gives higher performance than Apple events because the overhead
required to transmit information is lower. However, because PPC Toolbox
does not define the types of information you can transfer, many
applications do not support it. PPC Toolbox is the best method to send large
amounts of information between applications that support PPC Toolbox.
Refer to the Using Apple Events and the PPC Toolbox to Communicate
with LabVIEW Applications on the Macintosh Application Note for more
information about using Apple events and PPC Toolbox in LabVIEW
applications.

Pipe VIs (UNIX)
Use the Pipe VIs to open, close, read, and write to UNIX named pipes. Use
named pipes to communicate between LabVIEW and unrelated processes.

Executing System-Level Commands (Windows and UNIX)
Use the System Exec VI to execute or launch other Windows applications
or UNIX command-line applications from within VIs. With the System
Exec VI, you execute a system-level command line that can include any
parameters supported by the application you want to launch.

© National Instruments Corporation 18-1 LabVIEW User Manual

18
ActiveX

With ActiveX Automation, a Windows application, such as LabVIEW,
provides a public set of objects, commands, and functions that other
Windows applications can access. You can use LabVIEW as an ActiveX
client to access the objects, properties, methods, and events associated with
other ActiveX-enabled applications. LabVIEW also can act as an ActiveX
server, so other ActiveX-enabled applications can access LabVIEW
objects, properties, and methods.

In this manual, ActiveX refers to Microsoft’s ActiveX technology and OLE
technology. This technology is available only on Windows. Refer to the
Microsoft Developer’s Network documentation, Inside OLE, by Kraig
Brockschmidt, second edition, and Essential COM, by Don Box, for more
information about ActiveX.

For more information…

Refer to the LabVIEW Help for more information about using ActiveX technology.

ActiveX Objects, Properties, Methods, and Events
ActiveX-enabled applications include objects that have exposed properties
and methods that other applications can access. Objects can be visible to
the users, such as buttons, windows, pictures, documents, and dialog boxes,
or invisible to the user, such as application registry objects. You access an
application by accessing an object associated with that application and
setting a property or invoking a method of that object.

Refer to the Editing Application and VI Settings section of Chapter 16,
Programmatically Controlling VIs, for more information about objects,
properties, and methods.

Events are the actions taken on an object, such as clicking a mouse,
pressing a key, or running out of memory. Whenever these actions occur to
the object, the object sends an event to alert the ActiveX Container along
with the event-specific data.

Chapter 18 ActiveX

LabVIEW User Manual 18-2 www.ni.com

Refer to the ActiveX Event Template VI and the List ActiveX Events VI in
the examples\comm\axevent.llb and the FamilyTree VI and the
MultiEvents VI in the examples\comm directory for examples of using
ActiveX events in LabVIEW and examples of using the
ActiveX Events VIs.

ActiveX VIs, Functions, Controls, and Indicators
Use the following VIs, functions, controls, and indicators to access the
objects, properties, methods, and events associated with other
ActiveX-enabled applications:

• Use the automation refnum control located on the Controls»ActiveX
palette to create a reference to an ActiveX object. Right-click this
control on the front panel to select an object from the type library you
want to access.

• Use the Automation Open function located on the Functions»
Communication»ActiveX palette to open an ActiveX object.

• Use the ActiveX Container located on the Controls»ActiveX palette
to access and display an ActiveX object on the front panel. Right-click
this control to select the object you want to access.

• Use the Property Node located on the Functions»Communication»
ActiveX palette to get (read) and set (write) the properties associated
with an ActiveX object.

• Use the Invoke Node located on the Functions»Communication»
ActiveX palette to invoke the methods associated with an ActiveX
object.

• Use the ActiveX Events VIs located on the Functions»
Communication»ActiveX»ActiveX Events palette to manage the
events that occur to an ActiveX object you placed in the ActiveX
Container on the front panel.

• Use the ActiveX variant control and indicator located on the
Controls»ActiveX palette to pass data to or from subVIs. You also can
use it to display but not modify the data. Refer to the Handling Variant
Data section of Chapter 5, Building the Block Diagram, for more
information about variant data.

Chapter 18 ActiveX

© National Instruments Corporation 18-3 LabVIEW User Manual

LabVIEW as an ActiveX Client
When LabVIEW accesses the objects associated with another
ActiveX-enabled application, it is acting as an ActiveX client. You
can use LabVIEW as an ActiveX client in the following ways:

• Open an application, such as Microsoft Excel, create a document, and
add data to that document.

• Embed a document, such as a Microsoft Word document or an Excel
spreadsheet, on the front panel.

• Place a button or other object from another application, such as a Help
button that calls the other application help file, on the front panel.

• Link to an ActiveX control you built with another application.

LabVIEW accesses an ActiveX object with the automation refnum control
and the ActiveX Container, both of which are front panel objects. Use the
automation refnum control to select an ActiveX object. Use the ActiveX
Container to select a displayable ActiveX object, such as a button or
document and place it on the front panel. Both objects appear as automation
refnum controls on the block diagram.

Accessing an ActiveX-Enabled Application
To access an ActiveX-enabled application, use the automation refnum
control on the block diagram to create a reference to an application. Wire
the control to the Automation Open function, which opens the calling
application. Use the Property Node to select and access the properties
associated with the object. Use the Invoke Node to select and access the
methods associated with the object. Close the reference to the object using
the Automation Close function. Closing the reference removes the object
from memory.

For example, you can build a VI that opens Microsoft Excel so it appears
on the user’s screen, creates a workbook, creates a spreadsheet, creates a
table in LabVIEW, and writes that table to the Excel spreadsheet.

Refer to the Write Table To XL VI in the
examples\comm\ExcelExamples.llb for an example of using
LabVIEW as an Excel client.

Chapter 18 ActiveX

LabVIEW User Manual 18-4 www.ni.com

Inserting an ActiveX Control or Document on the Front Panel
To insert an ActiveX control or document on the front panel, use the
ActiveX Container to select the ActiveX object or document and access the
properties and methods associated with that object. Use the Property Node
to access the properties associated with the object. Use the Invoke Node to
invoke the methods associated with the object.

For example, you can display a Web page on the front panel by using an
ActiveX Container to access the Microsoft Web Browser object, selecting
the Navigate class of methods, selecting the URL method, and specifying
the URL.

If you use the ActiveX Container, you do not have to have to wire the
automation refnum control on the block diagram to the Automation Open
function or close the reference to the object using the Automation Close
function. You can wire directly to the Invoke Node or Property Node
because the ActiveX Container embeds the calling application in
LabVIEW. However, if the ActiveX Container includes properties or
methods that return other automation refnum controls, you must close those
other refnum controls.

LabVIEW as an ActiveX Server
The LabVIEW application, VIs, and control properties and methods are
available through ActiveX calls from other applications. Other
ActiveX-enabled applications, such as Microsoft Excel, can request
properties, methods, and individual VIs from LabVIEW, and LabVIEW
acts as an ActiveX server.

For example, you can embed a VI graph in an Excel spreadsheet and, from
the spreadsheet, enter data in the VI inputs and run the VI. When you run
the VI, the data plot to the graph.

Refer to the examples\comm\freqresp.xls for an example of using
LabVIEW properties and methods in an Excel spreadsheet.

Using Constants to Set Parameters in ActiveX VIs
Some parameters in ActiveX nodes take a discrete list of valid values.
Select the descriptive name in the ring constant to set these parameter
values. To access the ring constant when building an ActiveX VI,
right-click the parameter of the node that accepts data values and select
Create Constant from the shortcut menu. The selections available in the

Chapter 18 ActiveX

© National Instruments Corporation 18-5 LabVIEW User Manual

ring constant depend on the refnum passed to the node. Figures 18-1
and 18-2 show examples of using ring and numeric constants to set
parameter values.

Figure 18-1. Setting a Data Value with a Ring Constant

Figure 18-2. Setting a Data Value with a Numeric Constant

Parameters that accept data values have a small arrow to the left of the
parameter name. To view the corresponding numeric data value, right-click
the ring constant and select Visible Items»Digital Display from the
shortcut menu.

The VIs in Figures 18-1 and 18-2 both access the Microsoft Excel
application and execute a method. The Index parameter of the
ActivateMicrosoftApp method has several options: MicrosoftWord,
MicrosoftPowerPoint, MicrosoftMail, MicrosoftAccess,
MicrosoftFoxPro, MicrosoftProject, and MicrosoftSchedulePlus.

To identify the numeric value of the Index parameter that corresponds to
the MicrosoftAccess option in Figure 18-1, select the MicrosoftAccess
option from the pull-down menu in the ring constant. The numeric value of
the currently selected option appears in a box next to the ring constant.
Instead of using a ring constant, you can enter the numeric value of an
option into a numeric constant, as shown in Figure 18-2.

© National Instruments Corporation 19-1 LabVIEW User Manual

19
Calling Code from Text-Based
Programming Languages

You can call most standard shared libraries in LabVIEW using the Call
Library function. You also can call C code in LabVIEW using the
Code Interface Node (CIN).

Refer to the Using External Code in LabVIEW manual for more
information about calling code from text-based programming languages.

For more information…

Refer to the LabVIEW Help for more information about calling code from
text-based programming languages.

Call Library Function
Use the Call Library function to call most standard shared libraries or
DLLs. With this function, you can create an interface in LabVIEW to call
existing libraries or new libraries specifically written for use with
LabVIEW. National Instruments recommends using the Call Library
function to create an interface to external code.

Code Interface Node
Use the CIN as an alternative method for calling source code written in C.
The Call Library function generally is easier to use than the CIN.

© National Instruments Corporation 20-1 LabVIEW User Manual

20
Formulas and Equations

When you want to use a complex equation in LabVIEW, you do not have
to wire together various arithmetic functions on the block diagram. You can
develop equations in a familiar, mathematical environment and then
integrate the equations into an application.

Use the Formula Node to perform mathematical operations within the
LabVIEW environment. For more advanced functionality, you can link to
the mathematics applications HiQ and MATLAB to develop equations.
HiQ and MATLAB are software packages that help you organize and
visualize real-world math, science, and engineering problems.

For more information…

Refer to the LabVIEW Help for more information about using equations and the
syntax to use, available functions and operators, and descriptions of possible
errors.

Methods for Using Equations in LabVIEW
You can use the Formula Node, the HiQ-Script node, and the MATLAB
script node to perform mathematical operations on the block diagram.

Note You must have HiQ or MATLAB installed on your computer to use the script nodes
because LabVIEW uses ActiveX technology to pass the script to HiQ or MATLAB for
execution. LabVIEW uses ActiveX technology, which is available only on Windows, to
implement the script nodes. Therefore, script nodes are available only on Windows.

Because National Instruments ships HiQ with LabVIEW, you can install
the software at no extra cost to gain more functionality in handling
equations.

The script nodes are similar to the Formula Node, but they allow you to
import an existing HiQ or MATLAB script in ASCII form and run the script
in LabVIEW. As with a Formula Node, you can pass data to and from the
node.

Chapter 20 Formulas and Equations

LabVIEW User Manual 20-2 www.ni.com

Formula Nodes
The Formula Node is a convenient text-based node you can use to perform
mathematical operations on the block diagram. You do not have to access
any external code or applications, and you do not have to wire low-level
arithmetic functions to create equations. In addition to text-based equation
expressions, the Formula Node can accept text-based versions of if
statements, while loops, for loops, and do loops, which are familiar to
C programmers. These programming elements are similar to what you find
in C programming but are not identical.

Formula Nodes are useful for equations that have many variables or are
otherwise complicated and for using existing text-based code. You can
copy and paste the existing text-based code into a Formula Node rather than
recreating it graphically.

Using the Formula Node
The Formula Node located on the Functions»Structures and
Functions»Mathematics»Formula palettes is a resizable box similar to
the For Loop, While Loop, Case structure, and Sequence structure.
However, instead of containing a subdiagram, the Formula Node contains
one or more C-like statements delimited by semicolons, as in the following
example. As with C, add comments by enclosing them inside a
slash/asterisk pair (/*comment*/).

Refer to the Equations VI in the examples\general\structs.llb for
an example of using a Formula Node.

Chapter 20 Formulas and Equations

© National Instruments Corporation 20-3 LabVIEW User Manual

Variables in the Formula Node
When you work with variables, remember the following points:

• There is no limit to the number of variables or equations in a Formula
Node.

• No two inputs and no two outputs can have the same name, but an
output can have the same name as an input.

• Declare an input variable by right-clicking the Formula Node border
and selecting Add Input from the shortcut menu. You cannot declare
input variables inside the Formula Node.

• Declare an output variable by right-clicking the Formula Node border
and selecting Add Output from the shortcut menu. You must specify
an input variable name or the name of a variable you declare inside the
Formula Node.

• You can change whether a variable is an input or an output by
right-clicking it and selecting Change to Input or Change to Output
from the shortcut menu.

• You can declare and use a variable inside the Formula Node without
relating it to an input or output wire.

• You must wire all input terminals.

• Variables can be floating-point numeric scalars, whose precision
depends on the configuration of your computer. You also can use
integers and arrays of numerics for variables.

• Variables cannot have units.

Expression Nodes
Use Expression Nodes to calculate expressions, or equations, that contain
a single variable. Expression Nodes are useful when an equation has only
one variable but is otherwise complicated.

Expression Nodes use the value you pass to the input terminal as the value
of the variable. The output terminal returns the value of the calculation.

For example, consider this simple equation:

x x 33 x 5+()×+×

Chapter 20 Formulas and Equations

LabVIEW User Manual 20-4 www.ni.com

The block diagram in the following figure uses Numeric functions to
represent this equation.

Use an Expression Node, as shown in the following figure, to create a much
simpler block diagram.

Polymorphism in Expression Nodes
The input terminal of an Expression Node is the same data type as the
control or constant you wire to it. The output terminal is the same data type
as the input terminal. The data type of the input can be any non-complex
scalar number, array of non-complex scalar numbers, or cluster of
non-complex scalar numbers. With arrays and clusters, the expression node
applies the equation to each element of an input array or cluster.

Using HiQ with LabVIEW
HiQ is a high-performance, interactive, problem-solving environment
where you can analyze, visualize, and document real-world science and
engineering problems. HiQ uses a virtual notebook interface and a
programming language called HiQ-Script. The notebook has pages,
sections, and tabs where you can place and arrange objects such as text,
numerics, and graphs.

Use the VIs located on the Functions»Communication»HiQ palette to
control HiQ from LabVIEW and transfer data between the two applications
in various formats. You must install HiQ to use these VIs. Use these HiQ
VIs to launch HiQ, access and manipulate HiQ Notebooks to analyze and
visualize data, and run a HiQ-Script within a Notebook.

Refer to the HiQ Help for more information about HiQ functionality,
including the mathematical features, function reference, and syntax
information.

Chapter 20 Formulas and Equations

© National Instruments Corporation 20-5 LabVIEW User Manual

Refer to examples\comm\hiq for examples of setting up and using the
HiQ VIs.

HiQ and MATLAB Script Nodes
Use the HiQ and MATLAB script nodes located on the
Functions»Mathematics»Formula palette to load and edit HiQ and
MATLAB scripts on the block diagram so LabVIEW can work with their
advanced mathematics functionality.

You must have HiQ or MATLAB installed to use script nodes. If you
already have a script written in HiQ or MATLAB, you can import it into the
script node.

You assign script node terminals as inputs or outputs for the variables in the
script to pass values between HiQ or MATLAB and LabVIEW. You can
determine the function of a terminal by the way the equation is written. For
example, if the script contains the assignment statement, X = i + 3, you can
assign i as an input terminal to control how the script node calculates X, and
you can assign X to an output terminal to retrieve the final result of the
script calculation.

If you do not already have a script written, you can place a script node
on the block diagram and create a script using HiQ or MATLAB syntax.
LabVIEW communicates with the script server engine, which is a program
that runs the script. LabVIEW communicates and controls the script server
engine using an industry-established protocol. Script server engines are
installed with HiQ or MATLAB.

Because of the nature of the HiQ and MATLAB script languages, the script
node cannot determine the data type of terminals you created. You must
assign a LabVIEW data type to each script node terminal. The script node
in LabVIEW recognizes the data types HiQ or MATLAB support.
Table 20-1 shows LabVIEW data types and the corresponding data types in
HiQ and MATLAB.

Table 20-1. LabVIEW, HiQ, and MATLAB Data Types

LabVIEW
Data Type

HiQ
Data Type

MATLAB
Data Type

Integer —

Real Real

Chapter 20 Formulas and Equations

LabVIEW User Manual 20-6 www.ni.com

Programming Suggestions for HiQ and MATLAB Scripts
The following programming techniques make it easier to debug a script:

• Write the script and run it in HiQ or MATLAB for testing and
debugging purposes before you import it into LabVIEW.

• Right-click the HiQ script node and select Edit In Server from the
shortcut menu to edit, debug, compile, and run in the script a native
HiQ script window.

• Verify the data types. When you create a new input or output, make
sure that the data type of the terminal is correct. In both HiQ and
MATLAB, a variable can change its type during computation. You can
use the Error In and Error Out functions to keep track of this.

• Create controls and indicators for the inputs and outputs so you can
monitor the values that the script nodes are passing between LabVIEW
and HiQ or MATLAB. This allows you to pinpoint where a script node
calculates a value incorrectly, if necessary.

• Take advantage of the error-checking parameters for debugging
information. Create an indicator for the error out terminal on a script
node so you can view error information at run time. Formula Nodes
show errors at compile time.

Text —

Integer Vector —

Real Vector Real Vector

Integer Matrix —

Real Matrix Real Matrix

Complex Complex

Complex Vector Complex Vector

Complex Matrix Complex Matrix

Table 20-1. LabVIEW, HiQ, and MATLAB Data Types (Continued)

LabVIEW
Data Type

HiQ
Data Type

MATLAB
Data Type

Chapter 20 Formulas and Equations

© National Instruments Corporation 20-7 LabVIEW User Manual

HiQ Support Files Required with a LabVIEW Application
After you build a LabVIEW application that includes calls to the HiQ VIs,
you must consider the target computer that runs the application.

Calling the HiQ script node in the LabVIEW code launches HiQ. If you are
distributing a LabVIEW application that contains a HiQ script, the target
machine must have HiQ installed.

The following table lists which files you need based on how you use and
distribute LabVIEW and HiQ.

Files to Distribute
Software Currently
Available on Target What to Install

LabVIEW application
VIs with HiQ script
node

LabVIEW (any version)
installed; no HiQ installed

Licensed copy of HiQ that is available with
LabVIEW

Executable No LabVIEW and no HiQ
installed

HiQ Reader enables others to view HiQ
Professional Notebooks and run scripts.
You can distribute the HiQ Reader free
from the LabVIEW Full or Professional
Development System CD. Refer to the
National Instruments Web site at
www.ni.com to download the HiQ Reader.

© National Instruments Corporation A-1 LabVIEW User Manual

A
Organization of LabVIEW

This appendix describes the structure of the LabVIEW file system and the
suggested locations for saving files.

Organization of the LabVIEW Directory Structure
This section describes the structure of the LabVIEW file system for
Windows, Macintosh, and UNIX. LabVIEW installs driver software for
GPIB, DAQ, and VXI hardware. Refer to Chapter 3, Installing and
Configuring Your Measurement Hardware, of the LabVIEW
Measurements Manual for information about configuring your hardware.

As described in the LabVIEW Release Notes that come with the software,
your LabVIEW directory contains the following groupings after you
complete the installation.

Libraries
• user.lib—Contains controls and VIs you create. LabVIEW displays

controls on the Controls»User Controls palette and VIs on the
Functions»User Libraries palette.

• vi.lib—Contains libraries of built-in VIs, including GPIB, analysis,
and DAQ VIs. LabVIEW displays these VIs in related groups on the
Functions palette. Do not save files into vi.lib because LabVIEW
overwrites these files when you upgrade.

• instr.lib—Contains instrument drivers used to control PXI, VXI,
GPIB, serial, and computer-based instruments. When you install
National Instruments instrument drivers, place them in this directory,
and LabVIEW adds them to the Instrument I/O»Instrument Drivers
palette.

Appendix A Organization of LabVIEW

LabVIEW User Manual A-2 www.ni.com

Structure and Support
• menus—Contains files LabVIEW uses to configure the structure of the

Controls and Functions palettes.

• resource—Contains additional support files for the LabVIEW
application. Do not save files into this directory because LabVIEW
overwrites these files when you upgrade.

• project—Contains files that become items on the LabVIEW Tools
menu.

• templates—Contains templates for common VIs.

• www—Location of HTML files you can access through the Web Server.

Learning and Instruction
• activity—Contains VIs you use to complete the activities in the

LabVIEW Tutorial. The activity\solution directory contains the
completed VIs for each activity.

• examples—Contains example VIs. Select Help»Examples to search
the examples.

Documentation
• manuals—Contains documentation in PDF format. This folder does

not contain the help files. Access the PDFs by selecting Help»View
Printed Manuals.

• help—Contains the help files. Access the LabVIEW Help by selecting
Help»Contents and Index.

Miscellaneous File
• serpdrv—Support file for accessing the serial port on Windows and

UNIX. Distribute this file with any application that uses the serial port
on these platforms.

Macintosh
In addition to the above directories, Macintosh users have a shared libraries
folder that contains support files for the LabVIEW application.

Appendix A Organization of LabVIEW

© National Instruments Corporation A-3 LabVIEW User Manual

Suggested Location for Saving Files
LabVIEW installs the vi.lib and the resource directories for LabVIEW
system purposes only. Do not save your files in these directories.

You can save your files in the following directories:

• user.lib—Any commonly used VIs that you want to appear on the
Functions»User Libraries palette. Use for vi.lib extensions.

Note Save subVIs in the user.lib directory only if they are portable, without
modification, across projects. Paths to VIs in user.lib are absolute. Paths to subVIs you
save elsewhere are relative to the parent VI. Therefore, copying a VI from user.lib to
modify it for a special case does not change the path to its subVIs located in user.lib.

• instr.lib—Any instrument driver VI that you want to appear on the
Instrument I/O»Instrument Drivers palette.

• project—VIs you use to extend LabVIEW capabilities. VIs you
store in this directory appear on the Tools menu.

• www—Location of HTML files you can access through the Web Server.

• help—Any VIs, PDFs, and .hlp files that you want to make available
on the Help menu.

You also can create a directory anywhere on your hard drive to store
LabVIEW files that you create.

© National Instruments Corporation B-1 LabVIEW User Manual

B
Polymorphic Functions

Functions are polymorphic to varying degrees—none, some, or all of their
inputs may be polymorphic. Some function inputs accept numerics or
Boolean values. Some accept numerics or strings. Some accept not only
scalar numerics but also arrays of numerics, clusters of numerics, arrays of
clusters of numerics, and so on. Some accept only one-dimensional arrays
although the array elements can be of any type. Some functions accept all
types of data, including complex numerics.

For more information…

Refer to the LabVIEW Help for more information about polymorphic functions.

Numeric Conversion
You can convert any numeric representation to any other numeric
representation. When you wire two or more numeric inputs of different
representations to a function, the function usually returns output in the
larger or wider format. The functions coerce the smaller representations to
the widest representation before execution.

Some functions, such as Divide, Sine, and Cosine, always produce
floating-point output. If you wire integers to their inputs, these functions
convert the integers to double-precision, floating-point numbers before
performing the calculation.

For floating-point, scalar quantities, it is usually best to use
double-precision, floating-point numbers. Single-precision, floating-point
numbers save little or no run time and overflow much more easily. The
analysis libraries, for example, use double-precision, floating-point
numbers. You should only use extended-precision, floating-point numbers
when necessary. The performance and precision of extended-precision
arithmetic varies among the platforms. Refer to the Undefined or
Unexpected Data section of Chapter 6, Running and Debugging VIs,
for more information about floating-point overflow.

For integers, it is usually best to use a 32-bit signed integer.

Appendix B Polymorphic Functions

LabVIEW User Manual B-2 www.ni.com

If you wire an output to a destination that has a different numeric
representation, LabVIEW converts the data according to the following
rules:

• Signed or unsigned integer to floating-point number—Conversion
is exact, except for long integers to single-precision, floating-point
numbers. In this case, LabVIEW reduces the precision from 32 bits to
24 bits.

• Floating-point number to signed or unsigned integer—LabVIEW
moves out-of-range values to the integer’s minimum or maximum
value. Most integer objects, such as the iteration terminal of a For
Loop, round floating-point numbers. LabVIEW rounds a fractional
part of 0.5 to the nearest even integer. For example, LabVIEW rounds
6.5 to 6 rather than 7.

• Integer to integer—LabVIEW does not move out-of-range values to
the integer’s minimum or maximum value. If the source is smaller than
the destination, LabVIEW extends the sign of a signed source and
places zeros in the extra bits of an unsigned source. If the source is
larger than the destination, LabVIEW copies only the least significant
bits of the value.

Polymorphism for Numeric Functions
The arithmetic functions take numeric input data. With some exceptions
noted in the function descriptions, the output has the same numeric
representation as the input or, if the inputs have different representations,
the output is the wider of the inputs.

The arithmetic functions work on numbers, arrays of numbers, clusters of
numbers, arrays of clusters of numbers, complex numbers, and so on. A
formal and recursive definition of the allowable input type is as follows:

Numeric type = numeric scalar OR array [numeric type] OR cluster
[numeric types]

The numeric scalars can be floating-point numbers, integers, or complex
floating-point numbers. LabVIEW does not allow you to use arrays of
arrays.

Arrays can have any number of dimensions of any size. Clusters can have
any number of elements. The output type of functions is of the same
numeric representation as the input type. For functions with one input,
the functions operate on each element of the array or cluster.

Appendix B Polymorphic Functions

© National Instruments Corporation B-3 LabVIEW User Manual

For functions with two inputs, you can use the following input
combinations:

• Similar—Both inputs have the same structure, and the output has the
same structure as the inputs.

• One scalar—One input is a numeric scalar, the other is an array or
cluster, and the output is an array or cluster.

• Array of—One input is a numeric array, the other is the numeric type
itself, and the output is an array.

For similar inputs, LabVIEW performs the function on the respective
elements of the structures. For example, LabVIEW can add two arrays
element by element. Both arrays must have the same dimensionality. You
can add arrays with differing numbers of elements; the output of such an
addition has the same number of elements as the smallest input. Clusters
must have the same number of elements, and the respective elements must
be of the same type.

You cannot use the Multiply function to do matrix multiplication. If you use
the Multiply function with two matrices, LabVIEW takes the first number
in the first row of the first matrix, multiplies it by the first number in the first
row of the second matrix, and so on.

For operations involving a scalar and an array or cluster, LabVIEW
performs the function on the scalar and the respective elements of the
structure. For example, LabVIEW can subtract a number from all elements
of an array, regardless of the dimensionality of the array.

For operations that involve a numeric type and an array of that type,
LabVIEW performs the function on each array element. For example, a
graph is an array of points, and a point is a cluster of two numeric types,
x and y. To offset a graph by 5 units in the x direction and 8 units in the
y direction, you can add a point, (5, 8), to the graph.

Appendix B Polymorphic Functions

LabVIEW User Manual B-4 www.ni.com

The following example shows the possible polymorphic combinations of
the Add function.

Polymorphism for Boolean Functions
The logical functions take either Boolean or numeric input data. If the input
is numeric, LabVIEW performs a bit-wise operation. If the input is an
integer, the output has the same representation. If the input is a
floating-point number, LabVIEW rounds it to a long integer, and the output
is a long integer.

The logical functions work on arrays of numbers or Boolean values,
clusters of numbers or Boolean values, arrays of clusters of numbers or
Boolean values, and so on.

A formal and recursive definition of the allowable input type is as follows:

Logical type = Boolean scalar OR numeric scalar OR array [logical type]
OR| cluster [logical types]

except that complex numbers and arrays of arrays are not allowed.

Logical functions with two inputs can have the same input combinations as
the arithmetic functions. However, the logical functions have the further
restriction that the base operations can only be between two Boolean values
or two numbers. For example, you cannot have an AND between a Boolean
value and a number. The following example shows some combinations of
Boolean values for the AND function.

Scalar
Scalar
Array
Array

Scalar
Array

Scalar
ClusterCluster

Cluster

Array of Clusters Array of Clusters

Array of

Similar One Scalar

Cluster

scalar

array

cluster

Array

Cluster

Appendix B Polymorphic Functions

© National Instruments Corporation B-5 LabVIEW User Manual

Polymorphism for Array Functions
Most of the array functions accept n-dimensional arrays of any type.
However, the wiring diagrams in the function descriptions show numeric
arrays as the default data type.

Polymorphism for String Functions
String Length, To Upper Case, To Lower Case, Reverse String, and Rotate
String accept strings, clusters and arrays of strings, and arrays of clusters.
To Upper Case and To Lower Case also accept numbers, clusters of
numbers, and arrays of numbers, interpreting them as ASCII codes for
characters. Width and precision inputs must be scalar.

Polymorphism for String Conversion Functions
The Path To String and String To Path functions are polymorphic. That is,
they work on scalar values, arrays of scalars, clusters of scalars, arrays of
clusters of scalars, and so on. The output has the same composition as the
input but with the new type.

Polymorphism for Additional String to Number Functions
To Decimal, To Hex, To Octal, To Engineering, To Fractional, and
To Exponential accept clusters and arrays of numbers and produce clusters
and arrays of strings. From Decimal, From Hex, From Octal, and From
Exponential/Fract/Sci accept clusters and arrays of strings and produce
clusters and arrays of numbers. Width and precision inputs must be scalar.

Appendix B Polymorphic Functions

LabVIEW User Manual B-6 www.ni.com

Polymorphism for Cluster Functions
The Bundle and Unbundle functions do not show the data type for their
individual input or output terminals until you wire objects to these
terminals. When you wire them, these terminals look similar to the data
types of the corresponding front panel control or indicator terminals.

Polymorphism for Comparison Functions
The functions Equal?, Not Equal?, and Select take inputs of any type, as
long as the inputs are the same type.

The functions Greater or Equal?, Less or Equal?, Less?, Greater?, Max &
Min, and In Range? take inputs of any type except complex, path, or
refnum, as long as the inputs are the same type. You can compare numbers,
strings, Booleans, arrays of strings, clusters of numbers, clusters of strings,
and so on. However, you cannot compare a number to a string or a string to
a Boolean, and so on.

The functions that compare values to zero accept numeric scalars, clusters,
and arrays of numbers. These functions output Boolean values in the same
data structure as the input.

The Not A Number/Path/Refnum function accepts the same input types as
functions that compare values to zero. This function also accepts paths and
refnums. Not A Number/Path/Refnum outputs Boolean values in the same
data structure as the input.

The functions Decimal Digit?, Hex Digit?, Octal Digit?, Printable?, and
White Space? accept a scalar string or number input, clusters of strings or
non-complex numbers, arrays of strings or non-complex numbers, and so
on. The output consists of Boolean values in the same data structure as the
input.

The function Empty String/Path? accepts a path, a scalar string, clusters of
strings, arrays of strings, and so on. The output consists of Boolean values
in the same data structure as the input.

You can use the Equal?, Not Equal?, Not A Number/Path/Refnum?, Empty
String/Path?, and Select functions with paths and refnums, but no other
Comparison functions accept paths or refnums as inputs.

Appendix B Polymorphic Functions

© National Instruments Corporation B-7 LabVIEW User Manual

Comparison functions that use arrays and clusters normally produce
Boolean arrays and clusters of the same structure. You can right-click the
function and select Compare Aggregates, in which case the function
outputs a single Boolean value. The function compares aggregates by
comparing the first set of elements to produce the output, unless the first
elements are equal, in which case the function compares the second set of
elements, and so on.

Polymorphism for Log Functions
The Logarithmic functions take numeric input data. If the input is an
integer, the output is a double-precision, floating-point number. Otherwise,
the output has the same numeric representation as the input.

These functions work on numbers, arrays of numbers, clusters of numbers,
arrays of clusters of numbers, complex numbers, and so on. A formal and
recursive definition of the allowable input type is as follows:

Numeric type = numeric scalar OR array [numeric type] OR cluster
[numeric types]

except that arrays of arrays are not allowed.

Arrays can be any size and can have any number of dimensions. Clusters
can have any number of elements. The output type is of the same numeric
representation as the input, and the functions operate on each element of the
cluster or array. Refer to the Polymorphism for Numeric Functions section
of this chapter for more information about two-input polymorphic
functions. Allowable input type combinations for the two-input
Logarithmic functions include the following:

• Similar—Both inputs have the same structure, and the output has the
same structure as the inputs.

• One scalar—One input is a numeric scalar, the other is a numeric
array or cluster, and the output is an array or cluster.

© National Instruments Corporation C-1 LabVIEW User Manual

C
Comparison Functions

Use the Comparison functions located on the Functions»Comparison
palette to compare Boolean values, strings, numerics, arrays, and clusters.
Most Comparison functions test one input or compare two inputs and return
a Boolean value.

For more information…

Refer to the LabVIEW Help for more information about Comparison functions.

Comparing Boolean Values
The Comparison functions treat the Boolean value TRUE as greater than
the Boolean value FALSE.

Comparing Strings
LabVIEW compares strings based on the numerical equivalent of the
ASCII characters. For example, a (with a decimal value of 97) is greater
than A (65), which is greater than the numeral 0 (48), which is greater than
the space character (32). LabVIEW compares characters one by one from
the beginning of the string until an inequality occurs, at which time the
comparison ends. For example, LabVIEW evaluates the strings abcd and
abef until it finds c, which is less than the value of e. The presence of a
character is greater than the absence of one. Thus, the string abcd is greater
than abc because the first string is longer.

The functions that test the category of a string character, such as the
Decimal Digit? and Printable? functions, evaluate only the first character of
the string.

Appendix C Comparison Functions

LabVIEW User Manual C-2 www.ni.com

Comparing Numerics
The Comparison functions convert numeric values to the same
representation before comparing them. Comparisons with one or two inputs
having the value Not a Number (NaN) return a value that indicates
inequality. Refer to the Undefined or Unexpected Data section of
Chapter 6, Running and Debugging VIs, for more information about the
NaN value.

Comparing Arrays and Clusters
Some Comparison functions have two modes for comparing arrays or
clusters of data. In Compare Aggregates mode, if you compare two arrays
or clusters, the function returns a single scalar value. In Compare Elements
mode, the function compares the elements individually and returns an array
or cluster of Boolean values.

In Compare Aggregates mode, the string comparison and array comparison
operations follow exactly the same process—the string is treated as an array
of ASCII characters.

Some Comparison functions operate only in Compare Aggregates, so the
shortcut menu options do not appear.

Arrays
When comparing multi-dimensional arrays, each array entered in the
function must have the same number of dimensions. The Comparison
functions that do not have the Compare Aggregates or Compare Elements
modes compare arrays the same way as they compare strings—one element
at a time starting with the first element until they encounter an inequality.

Compare Elements Mode
In Compare Elements mode, Comparison functions output an array of
Boolean values of the same dimensions as the input arrays. Each dimension
of the output array is the size of the smaller of the two input arrays in that
dimension. Along each dimension (row, column, or page), the functions
compare corresponding element values in each input array to produce the
corresponding Boolean value in the output array.

Appendix C Comparison Functions

© National Instruments Corporation C-3 LabVIEW User Manual

Compare Aggregates Mode
In Compare Aggregates mode, comparison functions output a single
Boolean result. LabVIEW considers corresponding values that appear later
in the input arrays as secondary to values appearing later in the input arrays.
LabVIEW performs the following steps to determine the result of the
comparison:

• LabVIEW compares corresponding elements in each input array,
starting at the beginning of the array.

• If the corresponding elements are not equal, LabVIEW stops—the
result of this comparison is used as the output of the comparison
function.

• If the corresponding elements are equal, LabVIEW processes the next
pair of values, until it finds an inequality or reaches the end of one of
the input arrays.

• If all values in the input arrays are equal but one array has extra
elements at the end, the longer array is considered greater than the
shorter one. For example, LabVIEW considers the array [1,2,3,2]

to be greater than the array [1,2,3].

Clusters
Clusters you want to compare must include the same number of elements,
each element in the clusters must be of compatible types, and the elements
must be in the same cluster order. For example, a cluster of a DBL and a
string can be compared to a cluster of an I32 and a string.

Compare Elements Mode
In Compare Elements mode, Comparison functions output a cluster of
Boolean elements, one for each corresponding element in the input clusters.

Compare Aggregates Mode
In Compare Aggregates mode, Comparison functions output a single
Boolean result. LabVIEW compares corresponding elements until an
inequality is found, which determines the result. The function considers the
two clusters equal only if all elements are equal.

Use Compare Aggregates mode on clusters if you are comparing two
records containing sorted data, where elements later in the cluster are
considered secondary keys to elements earlier in the cluster. For example,
a cluster containing two strings, last name followed by first name, would
compare the first name fields only if the last name fields matched.

© National Instruments Corporation D-1 LabVIEW User Manual

D
Masking Digital Data

On the block diagram, create a mask by bundling the digital waveform with
a 2D array of integers, as shown in Figure D-1.

Figure D-1. Masking Digital Data

Combine bits by specifying values in each row of the 2D Mask array.

For example, consider a 1D array that consists of seven 8-bit numbers: 1, 2,
7, 32, 55, 82, and 127. The following table displays the binary
representations of these numbers.

1 2 7 32 55 82 127

Bit 0 1 0 1 0 1 0 1

Bit 1 0 1 1 0 1 1 1

Bit 2 0 0 1 0 1 0 1

Bit 3 0 0 0 0 0 0 1

Bit 4 0 0 0 0 1 1 1

Bit 5 0 0 0 1 1 0 1

Bit 6 0 0 0 0 0 1 1

Bit 7 0 0 0 0 0 0 0

Appendix D Masking Digital Data

LabVIEW User Manual D-2 www.ni.com

Using a mask, you can plot one bit on a graph and overlay another bit on
the same plot. For example, Bit 1 includes the values 0, 1, 1, 0, 1, 1, and 1,
as shown in the following plot.

Bit 5 includes the values 0, 0, 0, 1, 1, 0, and 1, as shown in the following
plot.

A mask is a 2D array. Each row in the array represents a plot on the digital
graph. To display Bits 1 and 5 on the plot, enter 1 in one element of the
array and 5 in another element, as shown in Figure D-2. Enter -1 in the
other elements of the array that should not plot a bit.

Figure D-2. Example of a Mask Array Control

In this example, each element in the array is identified by power of two
(20 through 26). Use these numbers to identify which element in the array
plots a bit to the graph. In this example, element 1 plots Bit 1 to the graph,
so any value of 1 in the bit assigns a 1 in the plot, and any value of 0 assigns
a 0 to the plot. Element 2 plots Bit 5 to the graph, so any value of 1 in the
bit assigns a 2 to the plot, and any value of 0 assigns a 0 to the plot.

The array in Figure D-2 results in the following plot on the digital
waveform graph.

This plot indicates the following:

• Bit 1 and Bit 5 in the first element include a value of 0.

• Bit 1 includes a value of 1 in both the second and third elements. Bit 5
includes a value of 0 in both the second and third elements.

Appendix D Masking Digital Data

© National Instruments Corporation D-3 LabVIEW User Manual

• Bit 1 in the fourth element includes a value of 0. Bit 5 in the fourth
element includes a value of 1.

• Bit 1 and Bit 5 in the fifth element include a value of 1.

• Bit 1 in the sixth element includes a value of 1. Bit 5 in the sixth
element includes a value of 0.

• Bit 1 and Bit 5 in the seventh element include a value of 1.

The numbers that appear in the plot are derived from the following
equation:

In Figure D-3, the fourth (8) and sixth (32) elements plot Bits 5 and 1,
respectively.

Figure D-3. Specifying the Same Bits in Different Elements

The array in Figure D-3 results in the following plot. Notice how the plots
look similar, but the numeric values differ.

[bit value (1 or 0)] [element number]2×
+ [another bit value (1 or 0)] [another element number]2×

•••
+ [n bit value (1 or 0)] [n element number]2×

point value of the plot

Appendix D Masking Digital Data

LabVIEW User Manual D-4 www.ni.com

Each row in the mask corresponds to a plot on the graph. Add a new row to
the mask to add a new plot on the digital graph, as shown in the Figure D-4.

Figure D-4. Creating Two Plots of Masked Data on a Digital Waveform Graph

© National Instruments Corporation E-1 LabVIEW User Manual

E
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of www.ni.com

NI Developer Zone
The NI Developer Zone at zone.ni.com is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of www.ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of www.ni.com

Appendix E Technical Support Resources

LabVIEW User Manual E-2 www.ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of www.ni.com. Branch office web sites
provide up-to-date contact information, support phone numbers, e-mail
addresses, and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 LabVIEW User Manual

Glossary

Prefix Meaning Value

m- milli- 10–3

k- kilo- 103

M- mega- 106

Numbers/Symbols

∆ Delta; difference. ∆x denotes the value by which x changes from one index
to the next.

π Pi.

∞ Infinity.

1D One-dimensional.

2D Two-dimensional.

A

A Amperes.

absolute coordinates Picture coordinates relative to the origin (0,0) of the picture indicator.

absolute path File or directory path that describes the location relative to the top level of
the file system.

AC Alternating current.

active window Window that is currently set to accept user input, usually the frontmost
window. The titlebar of an active window is highlighted. Make a window
active by clicking it or by selecting it from the Windows menu.

application software Application created using the LabVIEW Development System and
executed in the LabVIEW Run-Time System environment.

Glossary

LabVIEW User Manual G-2 www.ni.com

array Ordered, indexed list of data elements of the same type.

artificial data
dependency

Condition in a dataflow programming language in which the arrival of data,
rather than its value, triggers execution of a node.

ASCII American Standard Code for Information Interchange.

auto-indexing Capability of loop structures to disassemble and assemble arrays at their
borders. As an array enters a loop with auto-indexing enabled, the loop
automatically disassembles it extracting scalars from ID arrays, ID arrays
extracted from 2D arrays, and so on. Loops assemble data into arrays as
data exit the loop in the reverse order.

autoscaling Ability of scales to adjust to the range of plotted values. On graph scales,
autoscaling determines maximum and minimum scale values.

B

block diagram Pictorial description or representation of a program or algorithm. The block
diagram, consists of executable icons called nodes and wires that carry data
between the nodes. The block diagram is the source code for the VI. The
block diagram resides in the block diagram window of the VI.

Boolean controls
and indicators

Front panel objects to manipulate and display Boolean (TRUE or FALSE)
data.

breakpoint Pause in execution used for debugging.

Breakpoint tool Tool to set a breakpoint on a VI, node, or wire.

broken Run button Button that replaces the Run button when a VI cannot run because of
errors.

broken VI VI that cannot or run because of errors; signified by a broken arrow in the
broken Run button.

buffer Temporary storage for acquired or generated data.

byte stream file File that stores data as a sequence of ASCII characters or bytes.

C

case One subdiagram of a Case structure.

Glossary

© National Instruments Corporation G-3 LabVIEW User Manual

Case structure Conditional branching control structure, that executes one of its
subdiagrams based on the input to the Case structure. It is the combination
of the IF, THEN, ELSE, and CASE statements in control flow languages.

channel Pin or wire lead to which you apply or from which you read the analog or
digital signal. Analog signals can be single-ended or differential. For digital
signals, you group channels to form ports. Ports usually consist of either
four or eight digital channels.

channel name Unique name given to a channel configuration in the DAQ Channel
Wizard.

chart 2D display of one or more plots in which the display retains previous data,
up to a maximum that you define. The chart receives the data and updates
the display point by point or array by array, retaining a certain number of
past points in a buffer for display purposes. See also scope chart, strip chart,
and sweep chart.

checkbox Small square box in a dialog box you can select or clear. Checkboxes
generally are associated with multiple options that you can set. You can
select more than one checkbox.

CIN See Code Interface Node (CIN).

cloning To make a copy of a control or another object by clicking it while pressing
the <Ctrl> key and dragging the copy to its new location.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key. (HP-UX and
Linux) Press the <Alt> key.

(UNIX) You also can clone an object by clicking the object with the middle
mouse button and then dragging the copy to its new location.

cluster A set of ordered, unindexed data elements of any data type, including
numeric, Boolean, string, array, or cluster. The elements must be all
controls or all indicators.

Code Interface
Node (CIN)

CIN. Special block diagram node through which you can link text-based
code to a VI.

coercion Automatic conversion LabVIEW performs to change the numeric
representation of a data element.

coercion dot Dot on a terminal that indicates that one of two terminals wired together
LabVIEW has converted to match the data type of the other.

Glossary

LabVIEW User Manual G-4 www.ni.com

Color Copy tool Copies colors for pasting with the Coloring tool.

Coloring tool Tool to set foreground and background colors.

compile Process that converts high-level code to machine-executable code.
LabVIEW compiles VIs automatically before they run for the first time
after you create or edit alteration.

conditional terminal Terminal of a While Loop that contains a Boolean value that determines if
the VI performs another iteration.

configuration utility Refers to Measurement & Automation Explorer on Windows and to the
NI-DAQ Configuration Utility on Macintosh.

connector Part of the VI or function node that contains input and output terminals.
Data pass to and from the node through a connector.

connector pane Region in the upper right corner of a front panel or block diagram window
that displays the VI terminal pattern. It defines the inputs and outputs you
can wire to a VI.

constant See universal constant and user-defined constant.

Context Help window Special window in LabVIEW that displays the names and locations of the
terminals for a VI or function, the description of controls and indicators, the
values of universal constants, and descriptions and data types of control
attributes.

control Front panel object for entering data to a VI interactively or to a subVI
programmatically, such as a knob, push button, or dial.

control flow Programming system in which the sequential order of instructions
determines execution order. Most text-based programming languages are
control flow languages.

Controls palette Palette that contains front panel controls, indicators, and decorative objects.

conversion Changing the type of a data element.

count terminal Terminal of a For Loop whose value determines the number of times the
For Loop executes its subdiagram.

current VI VI whose front panel, block diagram, or Icon Editor is the active window.

Glossary

© National Instruments Corporation G-5 LabVIEW User Manual

curve in 3D Special parametric plot (x(t), y(t), z(t)), where the parameter t runs over a
given interval.

D

D Delta; Difference. ∆x denotes the value by which x changes from one index
to the next.

DAQ See data acquisition.

DAQ Channel Wizard Utility that guides you through naming and configuring DAQ analog and
digital channels. Available in the Data Neighborhood of Measurement &
Automation Explorer (Windows) or DAQ Channel Wizard (Macintosh).

data acquisition DAQ. Process of acquiring data, typically from A/D or digital input plug-in
devices.

data dependency Condition in a dataflow programming language in which a node cannot
execute until it receives data from another node. See also artificial data
dependency.

data flow Programming system that consists of executable nodes that execute only
when they receive all required input data and produce output automatically
when they execute. LabVIEW is a dataflow system.

datalog file File that stores data as a sequence of records of a single, arbitrary data type
that you specify when you create the file. Although all the records in a
datalog file must be a single type, that type can be complex. For instance,
you can specify that each record is a cluster that contains a string, a number,
and an array.

datalogging Generally, to acquire data and simultaneously store it in a disk file.
LabVIEW file I/O VIs and functions can log data.

data type Format for information. In LabVIEW, acceptable data types for most VIs
and functions are numeric, array, string, Boolean, path, refnum,
enumeration, waveform, and cluster.

DDE See dynamic data exchange.

default Preset value. Many VI inputs use a default value if you do not specify a
value.

Glossary

LabVIEW User Manual G-6 www.ni.com

device Instrument or controller that is addressable as a single entity and controls
or monitors real-world I/O points. A device is often connected to the host
computer through some type of communication network or can be a plug-in
device.

For data acquisition (DAQ) applications, a DAQ device is inside your
computer or attached directly to the parallel port of your computer. Plug-in
boards, PCMCIA cards, and devices such as the DAQPad-1200, which
connects to your computer's parallel port, are all examples of DAQ devices.
SCXI modules are distinct from devices, with the exception of the
SCXI-1200, which is a hybrid.

directory Structure for organizing files into convenient groups. A directory is like an
address that shows the location of files. A directory can contain files or
subdirectories of files.

discrete Having discontinuous values of the independent variable, usually time.

dithering Addition of Gaussian noise to an analog input signal. By applying dithering
and then averaging the input data, you can effectively increase the
resolution by another one-half bit.

DLL Dynamic Link Library.

drag To use the cursor on the screen to select, move, copy, or delete objects.

drive Letter in the range a–z followed by a colon (:), to indicate a logical
disk drive.

driver Software that controls a specific hardware device, such as a DAQ device.

dynamic data exchange DDE. Method to pass data between applications, without user involvement
or monitoring.

E

empty array Array that has zero elements but has a defined data type. For example, an
array that has a numeric control in its data display window but has no
defined values for any element is an empty numeric array.

error in Error structure that enters a VI.

error message Indication of a software or hardware malfunction or of an unacceptable data
entry attempt.

Glossary

© National Instruments Corporation G-7 LabVIEW User Manual

error out The error structure that leaves a VI.

error structure Consists of a Boolean status indicator, a numeric code indicator, and a
string source indicator.

event Condition or state of an analog or digital signal.

execution highlighting Debugging technique that animates VI execution to illustrate the data flow
in the VI.

external trigger Voltage pulse from an external source that triggers an event, such as
A/D conversion.

F

FIFO First-in-first-out memory buffer. The first data stored is the first data sent
to the acceptor.

file refnum See refnum.

filtering Type of signal conditioning that allows you to filter unwanted signals from
the signal you are trying to measure.

flattened data Data of any type that has been converted to a string, usually for writing the
data to a file.

For Loop Iterative loop structure that executes its subdiagram a set number of times.
Equivalent to text-based code: For i = 0 to n – 1, do....

Formula Node Node that executes equations you enter as text. Especially useful for
lengthy equations too cumbersome to build in block diagram form.

frame Subdiagram of a Sequence structure.

free label Label on the front panel or block diagram that does not belong to any
other object.

front panel Interactive user interface of a VI. Front panel appearance imitates physical
instruments, such as oscilloscopes and multimeters.

function Built-in execution element, comparable to an operator, function, or
statement in a text-based programming language.

Glossary

LabVIEW User Manual G-8 www.ni.com

Functions palette Palette that contains VIs, functions, block diagram structures, and
constants.

G

General Purpose
Interface Bus

GPIB—synonymous with HP-IB. The standard bus used for controlling
electronic instruments with a computer. Also called IEEE 488 bus because
it is defined by ANSI/IEEE Standards 488-1978, 488.1-1987, and
488.2-1992.

global variable Accesses and passes data among several VIs on a block diagram.

glyph Small picture or icon.

GPIB See General Purpose Interface Bus.

graph 2D display of one or more plots. A graph receives and plots data as a block.

graph control Front panel object that displays data in a Cartesian plane.

group Collection of input or output channels or ports that you define. Groups can
contain analog input, analog output, digital input, digital output, or
counter/timer channels. A group can contain only one type of channel. Use
a task ID number to refer to a group after you create it. You can define up
to 16 groups at one time.

To erase a group, pass an empty channel array and the group number to the
group configuration VI. You do not need to erase a group to change its
membership. If you reconfigure a group whose task is active, LabVIEW
clears the task and returns a warning. LabVIEW does not restart the task
after you reconfigure the group.

H

handle Pointer to a pointer to a block of memory that manages reference arrays and
strings. An array of strings is a handle to a block of memory that contains
handles to strings.

hex Hexadecimal. Base-16 number system.

Hierarchy Window Window that graphically displays the hierarchy of VIs and subVIs.

Glossary

© National Instruments Corporation G-9 LabVIEW User Manual

I

icon Graphical representation of a node on a block diagram.

IEEE Institute for Electrical and Electronic Engineers.

indicator Front panel object that displays output, such as a graph or LED.

Inf Digital display value for a floating-point representation of infinity.

instrument driver VI that controls a programmable instrument.

integer Any of the natural numbers, their negatives, or zero.

intensity map/plot Method of displaying three dimensions of data on a 2D plot with the use of
color.

I/O Input/Output. The transfer of data to or from a computer system involving
communications channels, operator input devices, and/or data acquisition
and control interfaces.

IP Internet protocol.

iteration terminal Terminal of a For Loop or While Loop that contains the current number of
completed iterations.

L

label Text object used to name or describe objects or regions on the front panel
or block diagram.

Labeling tool Tool to create labels and enter text into text windows.

LabVIEW Laboratory Virtual Instrument Engineering Workbench. LabVIEW is a
graphical programming language that uses icons instead of lines of text to
create programs.

LED Light-emitting diode.

legend Object a chart or graph owns to displays the names and plot styles of plots
on that chart or graph.

library See VI library.

Glossary

LabVIEW User Manual G-10 www.ni.com

listbox Box within a dialog box that lists all available choices for a command.
For example, a list of filenames on a disk.

LLB VI Library.

local variable Variable that enables you to read or write to one of the controls or indicators
on the front panel of a VI.

M

matrix 2D array.

Measurement &
Automation Explorer

The standard National Instruments hardware configuration and diagnostic
environment for Windows.

memory buffer See buffer.

menu bar Horizontal bar that lists the names of the main menus of an application.
The menu bar appears below the titlebar of a window. Each application has
a menu bar that is distinct for that application, although some menus
and commands are common to many applications.

method A procedure that is executed when an object receives a message. A method
is always associated with a class.

multithreaded
application

Application that runs several different threads of execution independently.
On a multiple processor computer, the different threads might be running
on different processors simultaneously.

N

NaN Digital display value for a floating-point representation of not a number.
Typically the result of an undefined operation, such as log(–1).

NI-DAQ Comprehensive driver software included with all National Instruments
DAQ hardware.

node Program execution element. Nodes are analogous to statements, operators,
functions, and subroutines in text-based programming languages.
On a block diagram, nodes include functions, structures, and subVIs.

numeric controls
and indicators

Front panel objects to manipulate and display numeric data.

Glossary

© National Instruments Corporation G-11 LabVIEW User Manual

O

object Generic term for any item on the front panel or block diagram, including
controls, indicators, nodes, wires, and imported pictures.

Object Shortcut
Menu tool

Tool to access a shortcut menu for an object.

OLE Object Linking and Embedding.

one-dimensional Having one dimension, as in the case of an array that has only one row
of elements.

Operating tool Tool to enter data into controls operate them.

P

palette Display of icons that represent possible options.

panel window VI window that contains the front panel, the toolbar, and the icon and
connector panes.

picture Series of graphics instructions that a picture indicator uses to create a
picture.

picture indicator General-purpose indicator for displaying pictures that can contain lines,
circles, text, and other types of graphic shapes.

pixel Smallest unit of a digitized picture.

pixmap Standard format for storing pictures in which a color value represents each
pixel. A bitmap is a black and white version of a pixmap.

plot Graphical representation of an array of data shown either on a graph or
a chart.

point Cluster that contains two 16-bit integers that represent horizontal and
vertical coordinates.

polymorphism Ability of a node to automatically adjust to data of different representation,
type, or structure.

Positioning tool Tool to move and resize objects.

Glossary

LabVIEW User Manual G-12 www.ni.com

PPC Program-to-program communication.

probe Debugging feature for checking intermediate values in a VI.

Probe tool Tool to create probes on wires.

programmatic printing Automatic printing of a VI front panel after execution.

Property Node Sets or finds the properties of a VI or application.

pull-down menus Menus accessed from a menu bar. Pull-down menu options are usually
general in nature.

PXI PCI eXtensions for Instrumentation. A modular, computer-based
instrumentation platform.

R

race condition Occurs when two or more pieces of code that execute in parallel change the
value of the same shared resource, typically a global or local variable.

range Region between the limits within which a quantity is measured, received,
or transmitted. Expressed by stating the lower and upper range values.

rectangle Cluster that contains four 16-bit integers. The first two values describe the
vertical and horizontal coordinates of the top left corner. The last two values
describe the vertical and horizontal coordinates of the bottom right corner.

refnum Reference number. An Identifier that LabVIEW associates with a file you
open. Use the refnum to indicate that you want a function or VI to perform
an operation on the open file.

relative coordinates Picture coordinates relative to the current location of the pen.

representation Subtype of the numeric data type, of which there are signed and unsigned
byte, word, and long integers, as well as single-, double-, and
extended-precision floating-point numbers.

resizing handles Angled handles on the corner of objects that indicate resizing points.

ring control Special numeric control that associates 32-bit integers, starting at 0 and
increasing sequentially, with a series of text labels or graphics.

Glossary

© National Instruments Corporation G-13 LabVIEW User Manual

S

sample Single analog or digital input or output data point.

scalar Number that a point on a scale can represent. A single value as opposed to
an array. Scalar Booleans and clusters are explicitly singular instances of
their respective data types.

scale Part of chart, graph, and some numeric controls and indicators that contains
a series of marks or points at known intervals to denote units of measure.

scope chart Numeric indicator modeled on the operation of an oscilloscope.

Scroll tool Tool to move through windows.

SCXI Signal Conditioning eXtensions for Instrumentation. The National
Instruments product line for conditional low-level signals within an
external chassis near sensors, so only high-level signals in a noisy
environment are sent to DAQ devices.

sequence local Terminal to pass data between the frames of a Sequence Structure.

Sequence structure Program control structure that executes its subdiagrams in numeric order.
Use this structure to force nodes that are not data dependent to execute in
the order you want.

shift register Optional mechanism in loop structures to pass the value of a variable from
one iteration of a loop to a subsequent iteration.

shortcut menu Menu accessed by right-clicking an object. Menu options pertain to that
object specifically.

slider Moveable part of slide controls and indicators.

string Representation of a value as text.

string controls and
indicators

Front panel objects to manipulate and display text.

strip chart Numeric plotting indicator modeled after a paper strip chart recorder,
which scrolls as it plots data.

structure Program control element, such as a Sequence Structure, Case structure,
For Loop, or While Loop.

Glossary

LabVIEW User Manual G-14 www.ni.com

subdiagram Block diagram within the border of a structure.

subVI VI used in the block diagram of another VI. Comparable to a subroutine.

sweep chart Numeric indicator modeled on the operation of an oscilloscope. It is similar
to a scope chart, except that a line sweeps across the display to separate old
data from new data.

syntax Set of rules to which statements must conform in a particular programming
language.

T

TCP Transmission Control Protocol.

terminal Object or region on a node through which data pass.

tip strip Small yellow text banners that identify the terminal name and make it easier
to identify terminals for wiring.

tool Special cursor to perform specific operations.

toolbar Bar that contains command buttons to run and debug VIs.

Tools palette Palette that contains tools you can use to edit and debug front panel and
block diagram objects.

top-level VI VI at the top of the VI hierarchy. This term distinguishes the VI from
its subVIs.

tunnel Data entry or exit terminal on a structure.

two-dimensional Having two dimensions, as in the case of an array that has several rows and
columns.

U

UDP User Datagram Protocol.

universal constant Uneditable block diagram object that emits a particular ASCII character or
standard numeric constant, for example, π.

user-defined constant Block diagram object that emits a value you set.

Glossary

© National Instruments Corporation G-15 LabVIEW User Manual

V

vector 1D array.

VI See virtual instrument (VI).

VI class A reference to a virtual instrument that allows access to VI properties and
methods.

VI library Special file that contains a collection of related VIs for a specific use.

VI Server Mechanism for controlling VIs and LabVIEW applications
programmatically, locally and remotely.

virtual instrument (VI) Program in LabVIEW that models the appearance and function of a
physical instrument.

Virtual Instrument
Software Architecture

VISA. Single interface library for controlling GPIB, VXI, RS-232, and
other types of instruments.

VISA See Virtual Instrument Software Architecture.

VXI VME eXtensions for Instrumentation (bus).

W

waveform Multiple voltage readings taken at a specific sampling rate.

waveform chart Indicator that plots data points at a certain rate.

While Loop Loop structure that repeats a section of code until a condition is met.

wire Data path between nodes.

wire bend Point where two wire segments join.

wire branch Section of wire that contains all the wire segments from junction to
junction, terminal to junction, or terminal to terminal if there are no
junctions between.

wire junction Point where three or more wire segments join.

wire segment Single horizontal or vertical piece of wire.

Glossary

LabVIEW User Manual G-16 www.ni.com

wire stub Truncated wire that appears around the VI or function icon when you move
the Wiring tool over the icon.

Wiring tool Tool to define data paths between terminals.

© National Instruments Corporation I-1 LabVIEW User Manual

Index

Numerics
2D controls and indicators, 4-7
3D controls and indicators, 4-7
3D graphs, 11-14

A
ActiveX, 18-1

accessing ActiveX-enabled
applications, 18-3

building subpalettes, 3-5
clients, 18-3
constants for setting parameters, 18-4
Containers, 18-2
controls, 18-2
events, 18-1
for running script nodes, 20-1
functions, 18-2
indicators, 18-2
inserting objects on front panel, 18-4
methods, 18-1
networking and, 17-1
objects, 18-1
overview, 18-1
properties, 18-1
servers, 18-4
setting parameters using constants, 18-4
VIs, 18-2
VI Server, 16-1

adding
controls to libraries, 3-4
directories to VI search path. See the

LabVIEW Help.
graphic to VI icon. See the LabVIEW Help.
terminals to functions, 5-9
VIs to libraries, 3-4

add-on toolsets, 1-1
in palettes, 3-5

advanced functions, 5-9
aligning objects. See the LabVIEW Help.
Alliance Program, E-1
animated front panel images, 17-10
annotations, 4-15

editing. See the LabVIEW Help.
anti-aliased line plots, 11-2
Apple events, 17-11
Application Builder. See stand-alone

applications.
application control functions, 5-9
application font, 4-17
application notes, 1-3
Application object

editing settings, 16-3
VI Server, 16-3

applications
building stand-alone, 7-12

distributing VIs, 7-12
building VI Server, 16-2

arrays, 9-5
auto-indexing loops, 8-4
comparing, C-2
constants, 9-8
controls and indicators, 4-11

data type (table), 5-3
converting clusters to and from. See the

LabVIEW Help.
creating, 9-8
default data, 6-7
deleting elements. See the LabVIEW Help.
dimensions, 9-5
examples, 9-6

1D arrays, 9-6
2D arrays, 9-7

Index

LabVIEW User Manual I-2 www.ni.com

functions, 5-7
global variables, 10-5
indexes, 9-6

display, 9-9
inserting elements. See the LabVIEW

Help.
moving. See the LabVIEW Help.
overview, 9-5
polymorphism, B-5
replacing elements. See the LabVIEW

Help.
resizing. See the LabVIEW Help.
restrictions, 9-8
size of, 6-7

artificial data dependency, 5-20
assigning

passwords to block diagrams, 7-12
auto-constant labels

displaying. See the LabVIEW Help.
auto-indexing, 8-4

For Loops, 8-4
unexpected data, 6-7
While Loops, 8-5

automatic wiring, 5-11
automation refnum control, 18-2

B
background color of front panel objects. See

the LabVIEW Help.
binary

creating files, 13-9
file I/O, 13-3
floating-point arithmetic, 6-6

bitmap files, 12-6
blink speed. See the LabVIEW Help.
block diagram, 2-2

adding space without resizing, 5-22
aligning objects. See the LabVIEW Help.
coercion dots, 5-12
commenting out sections, 6-6

constants, 5-3
controlling source code, 7-2
copying objects. See the LabVIEW Help.
creating controls and indicators. See the

LabVIEW Help.
data flow, 5-19
DataSocket, 17-6
data types (table), 5-2
deleting objects. See the LabVIEW Help.
designing, 5-21
finding terminals. See the LabVIEW Help.
fonts, 4-16
functions, 5-6
inserting objects. See the LabVIEW Help.
labels, 4-15

creating. See the LabVIEW Help.
resizing. See the LabVIEW Help.

nodes, 5-5
objects, 5-1
options, 3-6
overview, 2-2
password protecting, 7-12
planning, 7-1
printing, 14-5
removing objects. See the LabVIEW Help.
reordering objects. See the LabVIEW

Help.
replacing objects. See the LabVIEW Help.
spacing objects evenly. See the LabVIEW

Help.
structures, 8-1

using. See the LabVIEW Help.
terminals, 5-1

adding to functions, 5-9
control and indicator (table), 5-2
displaying, 5-2
front panel objects and, 5-1
removing from functions, 5-9

variant data, 5-15
VI Server, 16-1
wiring, 5-9

Index

© National Instruments Corporation I-3 LabVIEW User Manual

BMP files, 12-6
Boolean controls and indicators, 4-10

comparing values, C-1
data type (table), 5-2
using. See the LabVIEW Help.

Boolean functions, 5-6
polymorphism, B-4

Breakpoint tool
debugging VIs, 6-4
highlighting breakpoints. See the

LabVIEW Help.
broken VIs

common causes, 6-2
correcting, 6-2
displaying errors, 6-2

broken wires, 5-12
buffered data

local variables, 10-5
buffers

variant data, 5-16
building

block diagram, 5-1
front panel, 4-1
instrument driver applications. See the

LabVIEW Help.
measurement and automation

systems, E-1
polymorphic VIs, 5-13
shared libraries, 7-12

distributing VIs, 7-12
stand-alone applications, 7-12

distributing VIs, 7-12
subVIs, 7-4
VIs, 7-1
VI Server applications, 16-2

buttons
controlling with keyboard shortcuts, 4-3
front panel, 4-10

byte stream files, 13-3

C
Call By Reference Node, 16-7
callers

chain of, 6-5
displaying, 6-5

calling code from text-based programming
languages, 19-1

Call Library function, 19-1
canceling existing errors. See the LabVIEW

Help.
captions, 4-16

creating. See the LabVIEW Help.
subVI tip strips. See the LabVIEW Help.

Case structures, 8-6
data types, 8-7
error handling, 6-10
selector terminals, 8-6

values, 8-7
using. See the LabVIEW Help.

C code
calling from LabVIEW, 19-1

chain of callers
displaying, 6-5

changing palette views. See the LabVIEW
Help.

character formatting, 4-16
charts, 11-1

adding plots. See the LabVIEW Help.
anti-aliased line plots, 11-2
creating. See the LabVIEW Help.
customizing appearance, 11-2
customizing behavior, 11-5
history length, 11-5
intensity, 11-10

options, 11-12
multiple scales, 11-2
options, 11-2
overlaid plots, 11-6
overview, 11-1
scrolling, 11-3

Index

LabVIEW User Manual I-4 www.ni.com

stacked plots, 11-6
types, 11-1
waveform, 11-9
zooming. See the LabVIEW Help.

checking available disk space. See the
LabVIEW Help.

CIN, 19-1
classic controls and indicators, 4-7
clients

ActiveX, 18-3
cloning objects on front panel or block

diagram. See the LabVIEW Help.
clusters, 9-11

comparing, C-2
controls and indicators, 4-11

data type (table), 5-3
converting arrays to and from. See the

LabVIEW Help.
error, 6-9

components, 6-9
reports. See the LabVIEW Help.

functions, 5-7
moving. See the LabVIEW Help.
overview, 9-11
polymorphism, B-6
resizing. See the LabVIEW Help.
wire patterns, 9-11

Code Interface Node, 19-1
coercion dots, 5-12
color

boxes, 4-9
creating in graphics, 12-6
high-color controls and indicators, 4-7
low-color controls and indicators, 4-7
mapping, 11-11
modifying in graphics, 12-6
options, 3-6
picker, 4-9
ramps, 4-9

rotary controls and indicators, 4-9

coloring
front panel objects, 4-4

background. See the LabVIEW Help.
copying colors. See the LabVIEW

Help.
foreground. See the LabVIEW Help.

transparent objects. See the LabVIEW
Help.

command line
launching VIs. See the LabVIEW Help.

commenting out sections of a block diagram
debugging VIs, 6-6

communication, 17-1
ActiveX, 18-1
Apple events, 17-11
DataSocket, 17-2
DDE, 17-11
executing system-level commands, 17-11
file I/O, 13-1
functions, 7-3
low-level, 17-10
Macintosh, 17-11
overview, 17-1
pipes, 17-11
PPC, 17-11
protocols, 17-10
System Exec VI, 17-11
TCP, 17-10
UDP, 17-10
UNIX, 17-11
VIs, 7-3
VI Server, 16-1

compacting memory. See the LabVIEW Help.
comparing

arrays, C-2
Boolean values, C-1
clusters, C-2
numerics, C-2
strings, C-1
versions of VIs, 7-2

Index

© National Instruments Corporation I-5 LabVIEW User Manual

Comparison functions, C-1
polymorphism, B-6

computer-based instruments
configuring, 1-3

conditional terminals, 8-2
configuration file VIs

format, 13-13
purpose, 13-13
reading and writing .ini files, 13-12

configuring
front panel objects, 4-1
menus, 15-2
VI appearance and behavior, 15-1

connecting terminals, 5-9
connector panes, 2-4

overview, 2-4
printing, 14-3
required and optional inputs and

outputs, 7-7
setting up, 7-6

constants, 5-3
arrays, 9-8
creating. See the LabVIEW Help.
overview, 5-3
setting parameters with ActiveX, 18-4
universal, 5-4
user-defined, 5-4

consulting services, E-1
contacting National Instruments, E-2
Containers

ActiveX, 18-2
continuously running VIs, 6-1
control flow programming model, 5-19
controlling

front panel objects
programmatically, 16-8

instruments, 7-2
source code, 7-2
VIs on the Web, 17-9
VIs programmatically, 16-1
VIs when called as subVIs, 7-3

control refnums, 16-8
creating. See the LabVIEW Help.
strictly typed, 16-8
weakly typed, 16-8

controls, 4-1
2D, 4-7
3D, 4-7
ActiveX, 18-2
adding to libraries, 3-4
array, 4-11
automation refnum, 18-2
Boolean, 4-10

using. See the LabVIEW Help.
captions for subVI tip strips. See the

LabVIEW Help.
changing to indicators, 4-2
classic, 4-7
cluster, 4-11
color box, 4-9
coloring, 4-4
color ramp, 4-9
configuring, 4-1
creating on block diagram. See the

LabVIEW Help.
data types (table), 5-2
dialog, 4-15

using. See the LabVIEW Help.
digital, 4-8
displaying optional elements, 4-1
enumerated type, 4-13

advanced, 4-13
using. See the LabVIEW Help.

grouping and locking, 4-5
guidelines for using on front panel, 4-18
hidden. See the LabVIEW Help.
hiding

See also the LabVIEW Help.
optional elements, 4-1

high-color, 4-7
I/O name, 4-14
keyboard shortcuts, 4-3

Index

LabVIEW User Manual I-6 www.ni.com

listbox, 4-12
using. See the LabVIEW Help.

low-color, 4-7
naming, 7-9
numeric, 4-8

using. See the LabVIEW Help.
optional, 7-7
overview, 4-1
palette, 3-1

customizing, 3-4
navigating and searching, 3-2

path, 4-10
using. See the LabVIEW Help.

printing, 14-3
refnum, 4-14

using. See the LabVIEW Help.
replacing, 4-2
required, 7-7
resizing, 4-5

in relation to window size, 4-5
ring, 4-13

using. See the LabVIEW Help.
rotary, 4-8
slide, 4-8
string, 4-10

display types, 9-2
tables, 9-2

tab, 4-11
terminals (table), 5-2
user interface design, 4-18

conventions used in this manual, xviii
converting

converting arrays to and from clusters.
See the LabVIEW Help.

directories to libraries. See the LabVIEW
Help.

libraries to directories. See the LabVIEW
Help.

numerics to strings, 9-5
cooperation level

setting. See the LabVIEW Help.

copying
objects on front panel or block diagram.

See the LabVIEW Help.
VIs, A-3

correcting
VIs, 6-2

debugging techniques, 6-3
count terminals, 8-2

auto-indexing to set, 8-4
creating

arrays, 9-8
binary files, 13-9
charts. See the LabVIEW Help.
control refnums. See the LabVIEW Help.
datalog files, 13-10
graphs. See the LabVIEW Help.
icons, 7-8
menus, 15-2
object descriptions, 14-2
palette views, 3-5
revision history, 14-2
spreadsheet files, 13-8
subpalettes. See the LabVIEW Help.
subVIs, 7-8

situations to avoid. See the LabVIEW
Help.

text files, 13-8
tip strips, 14-2
user-defined constants, 5-4
VI descriptions, 14-2

cursors
adding to graphs. See the LabVIEW Help.
graph, 11-4

customer
education, E-1
technical support, E-1

customizing
front panel objects, 4-1
menus, 15-2
palettes, 3-4

Index

© National Instruments Corporation I-7 LabVIEW User Manual

VI appearance and behavior, 15-1
work environment, 3-4

D
DAQ

Channel Viewer, 1-4
Channel Wizard, 1-4
Configuration Utility, 1-3
passing channel names, 4-14
Solution Wizard, 1-4
VIs and functions, 7-3

data acquisition. See DAQ.
data bubbles

displaying during execution highlighting.
See the LabVIEW Help.

data dependency, 5-19
artificial, 5-20
controlling with Sequence structures, 8-8
flow-through parameters, 13-12
missing, 5-20
race conditions, 10-4

data flow
observing, 6-3

dataflow programming model, 5-19
managing memory, 5-20

datalog file I/O, 13-4
creating files, 13-10

datalogging, 13-15
automatic, 13-15
changing log-file binding, 13-17
clearing log-file binding, 13-16
deleting records, 13-16
interactive, 13-15
retrieving data programmatically, 13-17

DataSocket, 17-2
block diagram, 17-6
formats for data, 17-4
front panel, 17-5
overview, 17-2
protocols, 17-3

URLs, 17-3
variant data, 17-7

data types
Case structures, 8-7
control and indicator (table), 5-2
HiQ (table), 20-5
MATLAB (table), 20-5
printing, 14-3
waveform, 11-15

date format
options, 3-6

DDE, 17-11
deallocating memory. See the LabVIEW Help.
debugging

broken VIs, 6-2
default data, 6-7
disabling debugging tools, 6-6
executable VIs. See the LabVIEW Help.
hidden wires, 5-21
HiQ and MATLAB scripts, 20-6
loops, 6-7
options, 3-6
structures. See the LabVIEW Help.
techniques, 6-3

Breakpoint tool, 6-4
commenting out sections of a block

diagram, 6-6
error handling, 6-8
execution highlighting, 6-3
Probe tool, 6-4
single-stepping, 6-4
suspending execution, 6-5

tools
disabling, 6-6

undefined data, 6-6
decimal point

localized. See the LabVIEW Help.
default data

arrays, 6-7
While Loops, 6-7

defining errors. See the LabVIEW Help.

Index

LabVIEW User Manual I-8 www.ni.com

deleting
array elements. See the LabVIEW Help.
broken wires, 5-12
datalog records, 13-16
objects on front panel or block diagram.

See the LabVIEW Help.
palette views. See the LabVIEW Help.
structures. See the LabVIEW Help.

designing
block diagram, 5-21
dialog boxes, 4-18
front panel, 4-17
projects, 7-1
subVIs, 7-8

Developer Zone, E-1
developing VIs, 7-1

guidelines, 1-2
tracking development. See documenting

VIs.
development resources, E-1
diagnostic resources, E-1
dialog boxes

controls, 4-15
using. See the LabVIEW Help.

designing, 4-18
font, 4-17
native file. See the LabVIEW Help.
ring controls, 4-13

dialog functions, 5-8
dials

adding color ramps, 4-9
front panel, 4-8

digital controls and indicators, 4-8
digital graphs, 11-12

masking data, 11-14, D-1
dimensions

arrays, 9-5

directories
converting libraries to. See the LabVIEW

Help.
converting to libraries. See the LabVIEW

Help.
directory paths. See paths.
directory structure of LabVIEW

Macintosh, A-2
organization, A-1

disabling
debugging tools, 6-6
sections of a block diagram

debugging VIs, 6-6
disk space

checking. See the LabVIEW Help.
options, 3-6

disk streaming, 13-7
displaying

auto-constant labels. See the LabVIEW
Help.

chain of callers, 6-5
errors, 6-2
hidden front panel objects. See the

LabVIEW Help.
optional elements in front panel

objects, 4-1
terminals, 5-2
tip strips. See the LabVIEW Help.
warnings, 6-2

distributing VIs, 7-11
DLLs

building, 7-12
distributing VIs, 7-12

calling from LabVIEW, 19-1
documentation

conventions used in this manual, xviii
directory structure, A-2
guide, 1-1
introduction to this manual, xvii
online library, E-1
organization of this manual, xvii

Index

© National Instruments Corporation I-9 LabVIEW User Manual

PDF library, 1-2
using this manual, xvii
using with other resources, 1-1

documenting VIs, 14-1
creating object and VI descriptions, 14-2
creating tip strips, 14-2
help files, 14-4
linking to help files you create. See the

LabVIEW Help.
printing, 14-3
programmatically, 14-3
revision history, 14-2

dots
coercion, 5-12

dragging and dropping. See the LabVIEW
Help.

drawing
See also graphics.
smooth updates. See the LabVIEW Help.

drivers
instrument, E-1

LabVIEW. See the LabVIEW Help.
drop-through clicking. See the LabVIEW Help.
dstp DataSocket protocol, 17-3
Dynamic Data Exchange, 17-11

E
editing

front panel objects, 4-1
menus, 15-2
palette views, 3-5
shortcut menus of polymorphic VIs. See

the LabVIEW Help.
embedding objects using ActiveX, 18-4
empty paths, 4-11
enumerated type controls, 4-13

advanced, 4-13
data type (table), 5-2
using. See the LabVIEW Help.

equations
Expression Nodes, 20-3
Formula Nodes, 20-2
HiQ

ActiveX, 20-1
debugging scripts, 20-6
script node, 20-5
VIs, 20-4

integrating into LabVIEW, 20-1
MATLAB

ActiveX, 20-1
debugging scripts, 20-6
script node, 20-5

methods for using, 20-1
errors

broken VIs, 6-2
canceling existing. See the LabVIEW

Help.
checking for, 6-8
clusters, 6-9

components, 6-9
connector pane, 7-6
reports. See the LabVIEW Help.

codes, 6-9
debugging techniques, 6-3
defining. See the LabVIEW Help.
displaying, 6-2
exception control. See the LabVIEW Help.
finding, 6-2
handling, 6-8

methods, 6-9
using Case structures, 6-10
using While Loops, 6-10

instrument control. See the LabVIEW
Help.

I/O, 6-9
list, 6-2
normal conditions as. See the LabVIEW

Help.
notification. See the LabVIEW Help.

Index

LabVIEW User Manual I-10 www.ni.com

units incompatible, 5-17
window, 6-2

events
ActiveX, 18-1

example programs, E-1
examples, 1-3

arrays, 9-6
1D arrays, 9-6
2D arrays, 9-7

overview, 1-3
exception control. See the LabVIEW Help.
executable VIs

debugging. See the LabVIEW Help.
executing system-level commands, 17-11
execution

highlighting
debugging VIs, 6-3
displaying data bubbles. See the

LabVIEW Help.
probing automatically. See the

LabVIEW Help.
suspending

debugging VIs, 6-5
flow, 5-19

controlling with Sequence
structures, 8-8

Expression Nodes, 20-3

F
FAQs, E-1
FIFO

variant data, 5-16
file DataSocket protocol, 17-3
file I/O, 13-1

advanced file functions, 13-6
basic operation, 13-1
binary files, 13-3

creating, 13-9
byte stream files, 13-3

configuration file VIs
format, 13-13
purpose, 13-13
reading and writing .ini files, 13-12

datalog files, 13-4
creating, 13-10

disk streaming, 13-7
flow-through parameters, 13-12
formats, 13-2
functions, 5-8
high-level VIs, 13-5
logging front panel data, 13-15
low-level VIs and functions, 13-6
networking and, 17-1
overview, 13-1
paths, 13-6
reading waveforms, 13-11
refnums, 13-1
spreadsheet files

creating, 13-8
text files, 13-2

creating, 13-8
writing waveforms, 13-10

file sharing, 7-2
finding

controls, VIs, and functions on the
palettes, 3-2

errors, 6-2
objects, text, and VIs. See the LabVIEW

Help.
first-in-first-out

variant data, 5-16
fixing

VIs, 6-2
debugging techniques, 6-3

flattened data
variant data and, 5-16

floating-point numbers
converting, B-1
overflow and underflow, 6-6

flow of execution, 5-19

Index

© National Instruments Corporation I-11 LabVIEW User Manual

flow-through parameters, 13-12
fonts

application, 4-17
dialog, 4-17
options, 3-6
settings, 4-16
system, 4-17

foreground color of front panel objects. See the
LabVIEW Help.

For Loops, 8-2
auto-indexing to set count, 8-4
controlling timing, 8-6
count terminals, 8-2
iteration terminals, 8-2
shift registers, 8-5
unexpected data, 6-7
using. See the LabVIEW Help.

formats for file I/O, 13-2
binary files, 13-3
datalog files, 13-4
text files, 13-2

format string parameter, 9-4
formatting

graph scales, 11-4
strings, 9-4

specifiers, 9-4
text on front panel, 4-16

Formula Nodes, 20-2
entering C-like statements, 20-2
entering equations, 20-2
illustration, 20-2
overview, 20-2
variables, 20-3

formulas. See equations.
free labels, 4-15

creating. See the LabVIEW Help.
frequently asked questions, E-1
front panel, 2-1

adding space without resizing, 4-7
aligning objects. See the LabVIEW Help.

captions, 4-16
creating. See the LabVIEW Help.

changing controls to and from
indicators, 4-2

coloring objects, 4-4
background and foreground. See the

LabVIEW Help.
copying colors. See the LabVIEW

Help.
configuring objects, 4-1
controlling objects

programmatically, 16-8
controls, 4-7
copying objects. See the LabVIEW Help.
datalogging, 13-15
DataSocket, 17-5
defining window size. See the LabVIEW

Help.
deleting objects. See the LabVIEW Help.
designing, 4-17
displaying optional object elements, 4-1
displaying with different screen

resolutions, 4-18
finding objects. See the LabVIEW Help.
fonts, 4-16
grouping and locking objects, 4-5
hidden objects. See the LabVIEW Help.
hiding

objects. See the LabVIEW Help.
optional object elements, 4-1

importing graphics, 4-4
indicators, 4-7
inserting objects using ActiveX, 18-4
keyboard shortcuts, 4-3
labels, 4-15

creating. See the LabVIEW Help.
resizing. See the LabVIEW Help.

logging data, 13-15
objects

block diagram terminals and, 5-1
options, 3-6

Index

LabVIEW User Manual I-12 www.ni.com

order of objects, 4-3
overlapping objects, 4-11
overview, 2-1
planning, 7-1
printing, 14-5
publishing images on Web, 17-10
removing objects. See the LabVIEW Help.
reordering objects. See the LabVIEW

Help.
replacing objects, 4-2
resizing objects, 4-5

in relation to window size, 4-5
retrieving data

using file I/O functions, 13-18
using subVIs, 13-17

scaling objects, 4-5
setting navigation order, 4-3
spacing objects evenly. See the LabVIEW

Help.
subVIs, 7-8
text characteristics, 4-16
transparent objects. See the LabVIEW

Help.
ftp DataSocket protocol, 17-3
function key settings

overriding defaults. See the LabVIEW
Help.

functions, 5-6
adding terminals, 5-9
advanced, 5-9
application control, 5-9
array, 5-7
block diagram, 5-6
Boolean, 5-6
cluster, 5-7
dialog, 5-8
file I/O, 5-8
finding. See the LabVIEW Help.
numeric, 5-6
palette, 3-1

customizing, 3-4

navigating and searching, 3-2
window titles. See the LabVIEW

Help.
polymorphic, B-1
reference. See the LabVIEW Help.
removing terminals, 5-9
string, 5-7
time, 5-8
waveform, 5-8

G
gauges

adding color ramps, 4-9
front panel, 4-8

generating reports, 14-6
error clusters. See the LabVIEW Help.

getting started, 1-1
GIF files, 14-4
global variables, 10-2

creating, 10-2
initializing, 10-4
memory, 10-5
overview, 10-2
race conditions, 10-4
read and write, 10-3
using carefully, 10-4

GPIB
configuring, 1-3

graphics
adding to VI icon. See the LabVIEW Help.
creating colors, 12-6
dragging and dropping. See the LabVIEW

Help.
drawing shapes, 12-5
entering text, 12-5
formats, 12-6

for HTML files, 14-4
graphs, 12-3
importing, 4-4
modifying colors, 12-6

Index

© National Instruments Corporation I-13 LabVIEW User Manual

picture controls and indicators
data type (table), 5-3
using, 12-1

pixmaps, 12-5
publishing front panels on Web, 17-10

graphs, 11-1
3D, 11-14
adding plots. See the LabVIEW Help.
anti-aliased line plots, 11-2
creating. See the LabVIEW Help.
cursors, 11-4

adding. See the LabVIEW Help.
customizing appearance, 11-2
customizing behavior, 11-3
digital, 11-12

masking data, 11-14
graphics, 12-3
intensity, 11-10

options, 11-12
multiple scales, 11-2
options, 11-2
overview, 11-1
polar, 12-3
scales

formatting, 11-4
scaling, 11-4
Smith plots, 12-4
smooth updates, 11-5
transmission lines, 12-4
types, 11-1
waveform, 11-6

data types, 11-7
XY, 11-6

data types, 11-8, 11-9
zooming. See the LabVIEW Help.

grouping
data

arrays, 9-5
clusters, 9-11
strings, 9-1

front panel objects, 4-5
VIs in libraries, 7-10

guidelines for development, 1-2

H
help

technical support, E-1
help files, 1-2

creating your own, 14-4
HTML, 14-4
linking to VIs. See the LabVIEW Help.
overview, 1-2
RTF, 14-4

hidden front panel objects. See the LabVIEW
Help.

hiding
front panel objects. See the LabVIEW

Help.
menu bar, 4-15
optional elements in front panel

objects, 4-1
scroll bars, 4-15

Hierarchy Window, 7-9
printing, 14-3
searching. See the LabVIEW Help.

highlighting execution
debugging VIs, 6-3

HiQ
ActiveX, 20-1
data types, 20-5
debugging scripts, 20-6
launching from LabVIEW, 20-4
script node, 20-5
support files for LabVIEW

applications, 20-7
VIs, 20-4

history
See also revision history.
charts, 11-5
options, 3-6

Index

LabVIEW User Manual I-14 www.ni.com

hot menus. See the LabVIEW Help.
HTML

creating documents, 17-9
graphics formats, 14-4
help files, 14-4
publishing VIs on Web, 17-9
saving to, 14-3

I
icons, 2-4

creating, 7-8
editing, 7-8
overview, 2-4
printing, 14-3

images. See graphics.
impedance of transmission lines, 12-4
importing graphics, 4-4
incrementally running VIs, 6-4
indexes of arrays, 9-6

display, 9-9
indexing loops, 8-4

For Loops, 8-4
While Loops, 8-5

indicators, 4-1
2D, 4-7
3D, 4-7
ActiveX, 18-2
array, 4-11
Boolean, 4-10

using. See the LabVIEW Help.
changing to controls, 4-2
classic, 4-7
cluster, 4-11
color box, 4-9
coloring, 4-4
color ramp, 4-9
configuring, 4-1
creating on block diagram. See the

LabVIEW Help.
data types (table), 5-2

digital, 4-8
displaying optional elements, 4-1
enumerated type

advanced, 4-13
grouping and locking, 4-5
guidelines for using on front panel, 4-18
hidden. See the LabVIEW Help.
hiding

See also the LabVIEW Help.
optional elements, 4-1

high-color, 4-7
I/O name, 4-14
low-color, 4-7
numeric, 4-8

using. See the LabVIEW Help.
optional, 7-7
overview, 4-1
path, 4-10

using. See the LabVIEW Help.
printing, 14-3
refnum, 4-14

using. See the LabVIEW Help.
replacing, 4-2
required, 7-7
resizing, 4-5

in relation to window size, 4-5
rotary, 4-8
slide, 4-8
string, 4-10

display types, 9-2
tab, 4-11
terminals (table), 5-2
user interface design, 4-18

Inf (infinity) floating-point value
undefined data, 6-6

infinite While Loops, 8-3
ini files

reading and writing, 13-12

Index

© National Instruments Corporation I-15 LabVIEW User Manual

inserting
array elements. See the LabVIEW Help.
objects in palettes. See the LabVIEW

Help.
objects on block diagram. See the

LabVIEW Help.
installers

building, 7-12
instances of subVIs

determining, 6-5
suspending execution, 6-5

instrument drivers, E-1
LabVIEW. See the LabVIEW Help.

instrument library
adding VIs and controls, 3-4

instruments
configuring, 1-3
controlling, 7-2

integers
converting, B-1
overflow and underflow, 6-6

intensity charts, 11-10
color mapping, 11-11
options, 11-12

intensity graphs, 11-10
color mapping, 11-11
options, 11-12

invalid paths, 4-11
Invoke Node, 16-4

ActiveX, 18-2
I/O

controls and indicators
data type (table), 5-3

error, 6-9
file. See file I/O.
I/O name controls and indicators, 4-14

iteration terminals
For Loops, 8-2
While Loops, 8-3

IVI
instrument drivers. See the LabVIEW

Help.
passing logical names, 4-14

J
Joint Photographic Experts Group files, 12-6
JPEG files, 12-6, 14-4

Web Server, 17-10

K
keyboard shortcuts, 4-3

controlling buttons, 4-3
setting navigation order, 4-3

knobs
adding color ramps, 4-9
front panel, 4-8

knowledge bases, E-1

L
labeling, 4-15

captions, 4-16
constants, 5-3
creating free labels. See the LabVIEW

Help.
fonts, 4-16
global variables, 10-3
local variables, 10-2
resizing. See the LabVIEW Help.
units of measure, 5-17

labels
displaying auto-constant. See the

LabVIEW Help.
transparent. See the LabVIEW Help.

LabVIEW, 1-1
customizing, 3-6
options, 3-6
overview, 1-1

Index

LabVIEW User Manual I-16 www.ni.com

labview.ini, 3-6
last-in-first-out

variant data, 5-16
launching VIs from command line. See the

LabVIEW Help.
learning and instruction directory

activity, A-2
examples, A-2
tutorial, A-2

libraries
adding VIs and controls, 3-4
converting directories to. See the

LabVIEW Help.
converting to directories. See the

LabVIEW Help.
directory structure, A-1
instrument, A-1
managing, 7-10
marking VIs as top-level. See the

LabVIEW Help.
organization of, A-1
removing VIs from. See the LabVIEW

Help.
saving VIs as, 7-10

suggested location for, A-3
shared, 7-12

distributing VIs, 7-12
user, A-1
VI, A-1

LIFO
variant data, 5-16

lights on front panel, 4-10
line plots

anti-aliased, 11-2
linking VIs to help files you create. See the

LabVIEW Help.
listbox controls, 4-12

using. See the LabVIEW Help.

listing. See displaying.
localized decimal point. See the LabVIEW

Help.
local variables, 10-1

creating, 10-1
finding objects or terminals. See the

LabVIEW Help.
initializing, 10-4
memory, 10-5
overview, 10-1
race conditions, 10-4
read and write, 10-3
using carefully, 10-4

location for saving files, A-3
locking

front panel objects, 4-5
VIs. See the LabVIEW Help.

Logarithmic functions
polymorphism, B-7

log-file binding, 13-15
changing, 13-17
clearing, 13-16

logging data. See datalogging.
logging in automatically. See the LabVIEW

Help.
login prompt at startup

displaying. See the LabVIEW Help.
logos DataSocket protocol, 17-3
loops

auto-indexing, 8-4
controlling timing, 8-6
For, 8-2
infinite, 8-3
shift registers, 8-5
unexpected data, 6-7
using. See the LabVIEW Help.
While, 8-2

low-level communication, 17-10

Index

© National Instruments Corporation I-17 LabVIEW User Manual

M
manual. See documentation.
mapping colors, 11-11
marking VIs as top-level in libraries. See the

LabVIEW Help.
masking digital data, 11-14, D-1
mathematics. See equations.
MATLAB

ActiveX, 20-1
data types, 20-5
debugging scripts, 20-6
script node, 20-5

Measurement & Automation Explorer, 1-3
measurement units, 5-17
memory

coercion dots, 5-12
compacting. See the LabVIEW Help.
deallocating. See the LabVIEW Help.
disabling debugging tools, 6-6
global variables, 10-5
local variables, 10-5
managing with dataflow programming

model, 5-20
reading from and writing to with variant

data, 5-16
menu bar

hiding, 4-15
Menu Editor, 15-2
menus, 3-3

editing, 15-2
handling selections, 15-3
hot. See the LabVIEW Help.
reference. See the LabVIEW Help.
ring controls, 4-13
shortcut, 3-3

editing for polymorphic VIs. See the
LabVIEW Help.

meters
adding color ramps, 4-9
front panel, 4-8

methods
ActiveX, 18-1

moving
arrays. See the LabVIEW Help.
clusters. See the LabVIEW Help.
objects. See the LabVIEW Help.
subpalettes. See the LabVIEW Help.
wires. See the LabVIEW Help.

multiple threads
running. See the LabVIEW Help.

N
naming

controls, 7-9
VIs, 7-11

NaN (not a number) floating-point value
undefined data, 6-6

National Instruments
Alliance Program, E-1
customer education, E-1
Developer Zone, E-1
system integration services, E-1
technical support, E-1
worldwide offices, E-2

native file dialog boxes. See the LabVIEW
Help.

navigation order
setting, 4-3

needles
adding, 4-8

networking. See communication.
NI-DAQ Configuration Utility, 1-3
nodes, 2-3

block diagram, 5-5
Call By Reference, 16-7
execution flow, 5-19
HiQ script node, 20-5
Invoke, 16-4
MATLAB script node, 20-5

Index

LabVIEW User Manual I-18 www.ni.com

overview, 2-3
Property, 16-3

normal conditions as errors. See the LabVIEW
Help.

not a number (NaN) floating-point value
undefined data, 6-6

Not a Path, 4-11
notification of errors. See the LabVIEW Help.
numbers

overflow and underflow, 6-6
numerics

changing representation. See the
LabVIEW Help.

comparing, C-2
controls and indicators, 4-8

using. See the LabVIEW Help.
converting, B-1
data types (table), 5-2
functions, 5-6
out-of-range, 4-13
polymorphism, B-2
strings and, 9-5
units of measure, 5-17
universal constants, 5-4
writing data to spreadsheet or text

files, 9-5

O
objects

ActiveX, 18-1
aligning. See the LabVIEW Help.
block diagram, 5-1
captions on front panel, 4-16

creating. See the LabVIEW Help.
changing controls to and from

indicators, 4-2
coloring on front panel, 4-4

copying colors. See the LabVIEW
Help.

configuring on front panel, 4-1

controlling programmatically, 16-8
creating descriptions, 14-2
creating tip strips, 14-2
displaying optional elements, 4-1
finding. See the LabVIEW Help.
front panel and block diagram

terminals, 5-1
grouping and locking on front panel, 4-5
hidden on front panel. See the LabVIEW

Help.
hiding on front panel

See also the LabVIEW Help.
optional elements, 4-1

inserting in palettes. See the LabVIEW
Help.

inserting on block diagram. See the
LabVIEW Help.

inserting on front panel using
ActiveX, 18-4

labeling, 4-15
creating. See the LabVIEW Help.
resizing. See the LabVIEW Help.

moving. See the LabVIEW Help.
overlapping on front panel, 4-11
reordering. See the LabVIEW Help.
replacing on block diagram. See the

LabVIEW Help.
replacing on front panel, 4-2
resizing on front panel, 4-5

in relation to window size, 4-5
scaling on front panel, 4-5
selecting. See the LabVIEW Help.
setting navigation order on front

panel, 4-3
spacing evenly. See the LabVIEW Help.
transparent. See the LabVIEW Help.
wiring on block diagram, 5-9

OLE for Process Control DataSocket
protocol, 17-3

online technical support, E-1
opc DataSocket protocol, 17-3

Index

© National Instruments Corporation I-19 LabVIEW User Manual

opening VIs in run mode. See the LabVIEW
Help.

options
setting, 3-6

See also the LabVIEW Help.
storing, 3-6

order of execution, 5-19
controlling with Sequence structures, 8-8

out-of-range numbers, 4-13
overflow of numbers, 6-6
overlaid plots, 11-6
overlapping front panel objects, 4-11
overriding default function key settings. See

the LabVIEW Help.
owned labels, 4-15

editing. See the LabVIEW Help.

P
palettes, 3-1

changing. See the LabVIEW Help.
color picker, 4-9
Controls, 3-1

customizing, 3-4
customizing, 3-4
Functions, 3-1

customizing, 3-4
inserting objects. See the LabVIEW Help.
navigating and searching, 3-2
organizing, 3-5
reference. See the LabVIEW Help.
sharing. See the LabVIEW Help.
Tools, 3-2
updating. See the LabVIEW Help.
views, 3-5

panel order
setting, 4-3

parameters
data types (table), 5-2

password protection, 7-12

paths
adding directories to VI search path. See

the LabVIEW Help.
controls and indicators, 4-10

data type (table), 5-3
using. See the LabVIEW Help.

empty, 4-11
file I/O, 13-6
invalid, 4-11
options, 3-6
universal constants, 5-4

patterns
terminal, 7-6

PDF library, 1-2
performance

disabling debugging tools, 6-6
local and global variables, 10-4
options, 3-6

phone technical support, E-2
picture controls and indicators

data type (table), 5-3
using, 12-1

picture ring controls, 4-13
pictures. See graphics.
pipes communication, 17-11
pixmaps, 12-5
planning projects, 7-1
plots

adding to graphs and charts. See the
LabVIEW Help.

anti-aliased, 11-2
overlaid, 11-6
stacked, 11-6

PNG files, 12-6, 14-4
Web Server, 17-10

polar graphs, 12-3
polymorphic

controls and indicators
data type (table), 5-3

Expression Nodes, 20-4
functions, B-1

Index

LabVIEW User Manual I-20 www.ni.com

VIs, 5-13
building, 5-13
editing shortcut menus. See the

LabVIEW Help.
removing subVIs from. See the

LabVIEW Help.
selecting a default instance. See the

LabVIEW Help.
pop-up menus. See shortcut menus.
Portable Network Graphics files, 12-6
postscript printing. See the LabVIEW Help.
PPC Toolbox, 17-11
preferences. See options.
printing, 14-5

active window, 14-5
at completion, 14-6
documentation of VIs, 14-3
options, 3-6
programmatically, 14-6
reports, 14-6
saving

to HTML, 14-3
to RTF, 14-3

techniques, 14-7
using subVIs, 14-7

Probe tool
debugging VIs, 6-4

programming examples, E-1
program-to-program communication, 17-11
project design, 7-1
project planning, 7-1
properties

ActiveX, 18-1
Property Node, 16-3

ActiveX, 18-2
finding objects or terminals. See the

LabVIEW Help.
modifying listbox items, 4-12

protocols
DataSocket, 17-3
low-level communication, 17-10

publishing VIs on Web, 17-9
pull-down menus on front panel, 4-13
purging datalog records, 13-16

Q
queues

variant data, 5-16

R
race conditions, 10-4
read globals, 10-3
reading from files, 13-1
read locals, 10-3
records, 13-15

deleting, 13-16
specifying while retrieving front panel

data using subVIs, 13-18
refnums

automation, 18-2
Call By Reference Node, 16-7
control, 16-8
controls and indicators, 4-14

data type (table), 5-3
using. See the LabVIEW Help.

file I/O, 13-1
strictly typed, 16-7

remotely calling VIs, 16-1
removing

broken wires, 5-12
objects on front panel or block diagram.

See the LabVIEW Help.
structures. See the LabVIEW Help.
subVIs from polymorphic VIs. See the

LabVIEW Help.
terminals from functions, 5-9
VIs from libraries. See the LabVIEW

Help.
reordering objects. See the LabVIEW Help.

Index

© National Instruments Corporation I-21 LabVIEW User Manual

repeating
blocks of code

For Loops, 8-2
While Loops, 8-2

replacing
array elements. See the LabVIEW Help.
objects on block diagram. See the

LabVIEW Help.
objects on front panel, 4-2
text in strings. See the LabVIEW Help.

reports
generating

error clusters. See the LabVIEW
Help.

printing, 14-6
Report Generation VIs, 14-6

resizing
arrays. See the LabVIEW Help.
clusters. See the LabVIEW Help.
front panel objects, 4-5

in relation to window size, 4-5
labels. See the LabVIEW Help.
tables. See the LabVIEW Help.
user-defined constants, 5-5

retrieving data
programmatically, 13-17
using file I/O functions, 13-18
using subVIs, 13-17

reverting to last saved versions. See the
LabVIEW Help.

revision history
creating, 14-2
numbers, 14-2
printing, 14-3

revision number
displaying in titlebar. See the LabVIEW

Help.
ring controls, 4-13

using. See the LabVIEW Help.
rotary controls and indicators, 4-8

RTF
help files, 14-5
saving to, 14-3

rtm file, 15-2
run mode

opening VIs in. See the LabVIEW Help.
running VIs, 6-1
run-time menu file, 15-2

S
saving files

suggested location for, A-3
saving VIs, 7-9

for previous versions, 7-11
individual files, 7-10
libraries, 7-10
reverting to last saved versions. See the

LabVIEW Help.
scaling

front panel objects, 4-5
graphs, 11-4

scope chart, 11-5
screen resolutions, 4-18
script nodes

HiQ, 20-5
MATLAB, 20-5

scroll bars
hiding, 4-15
listboxes, 4-12
ring controls, 4-13

scrolling through a chart, 11-3
searching

for controls, VIs, and functions on the
palettes, 3-2

VI hierarchy. See the LabVIEW Help.
selecting

default instance of a polymorphic VI. See
the LabVIEW Help.

objects. See the LabVIEW Help.

Index

LabVIEW User Manual I-22 www.ni.com

tools. See the LabVIEW Help.
wires, 5-12

selector terminals, 8-6
values, 8-7

sequence local terminals, 8-9
Sequence structures, 8-8

controlling execution order, 5-19
overusing, 8-9
using. See the LabVIEW Help.

serpdrv file, A-2
servers

ActiveX, 18-4
setting

cooperation level. See the LabVIEW Help.
work environment options, 3-6

See also the LabVIEW Help.
shared libraries

building, 7-12
distributing VIs, 7-12

calling from LabVIEW, 19-1
sharing

files, 7-2
live data with other VIs and

applications, 17-2
palette views. See the LabVIEW Help.
VIs, 7-11

shift registers, 8-5
default data, 6-7

shortcut menus, 3-3
in run mode, 3-3

single-stepping
debugging VIs, 6-4

sink terminals. See indicators.
sizing. See resizing.
slide controls and indicators, 4-8
sliders

adding, 4-8
smart buffers

variant data, 5-16
Smith plots, 12-4

smooth updates
during drawing. See the LabVIEW Help.
for graphs, 11-5

sound, 12-7
source code. See block diagram.
source code control, 7-2
source terminals. See controls.
spacing objects evenly. See the LabVIEW

Help.
speed of execution

controlling, 8-6
splitting

strings. See the LabVIEW Help.
spreadsheet files

creating, 13-8
writing numeric data to, 9-5

stacked plots, 11-6
stacks

variant data, 5-16
stand-alone applications

building, 7-12
distributing VIs, 7-12

static front panel images, 17-10
stepping through VIs

debugging VIs, 6-4
storing

work environment options, 3-6
strictly typed refnums

control, 16-8
VI, 16-7

strict type checking, 5-17
strings, 9-1

comparing, C-1
controls

data type (table), 5-2
controls and indicators, 4-10

display types, 9-2
editing programmatically, 9-3
formatting, 9-4

specifiers, 9-4
functions, 5-7

Index

© National Instruments Corporation I-23 LabVIEW User Manual

global variables, 10-5
numerics to, 9-5
polymorphism, B-5
replacing text. See the LabVIEW Help.
splitting. See the LabVIEW Help.
tables, 9-2
universal constants, 5-4

strip chart, 11-5
structure and support directory

menus, A-2
project, A-2
resource, A-2
templates, A-2
WWW, A-2

structure of LabVIEW directories, A-1
structures, 8-1

Case, 8-6
debugging. See the LabVIEW Help.
deleting. See the LabVIEW Help.
For Loops, 8-2
global variables, 10-2
local variables, 10-1
on block diagram, 2-4
overview, 8-1
removing. See the LabVIEW Help.
Sequence, 8-8
using. See the LabVIEW Help.
While Loops, 8-2
wiring. See the LabVIEW Help.

subpalettes
building ActiveX, 3-5
creating. See the LabVIEW Help.
moving. See the LabVIEW Help.
organizing, 3-5

subroutines. See subVIs.
subVIs, 7-4

building, 7-4
control captions for tip strips. See the

LabVIEW Help.
controlling behavior, 7-3
copying, A-3

creating, 7-8
situations to avoid. See the LabVIEW

Help.
designing, 7-8
determining current instance, 6-5
displaying chain of callers, 6-5
displaying names when placed. See the

LabVIEW Help.
front panel, 7-8
hierarchy, 7-9
overview, 7-4
polymorphic VIs, 5-13
printing VIs, 14-7
removing from polymorphic VIs. See the

LabVIEW Help.
retrieving front panel data, 13-17
suspending execution, 6-5

support
files for calling HiQ, 20-7
technical, E-1

suspending execution
debugging VIs, 6-5

sweep chart, 11-5
switches on front panel, 4-10
System Exec VI, 17-11
system font, 4-17
system integration services, E-1
system-level commands, 17-11

T
tabbing through front panel objects, 4-3
tab controls and indicators, 4-11
tables, 9-2

resizing. See the LabVIEW Help.
tank

slide controls and indicators, 4-8
TCP, 17-10

VI Server, 16-1
technical support, E-1
telephone technical support, E-2

Index

LabVIEW User Manual I-24 www.ni.com

terminals, 2-3
adding to functions, 5-9
block diagram, 5-1
coercion dots, 5-12
conditional, 8-2
constants, 5-3
control and indicator (table), 5-2
count, 8-2

auto-indexing to set, 8-4
displaying, 5-2
displaying tip strips. See the LabVIEW

Help.
finding. See the LabVIEW Help.
front panel objects and, 5-1
iteration

For Loops, 8-2
While Loops, 8-3

overview, 2-3
patterns, 7-6
removing from functions, 5-9
selector, 8-6
sequence local, 8-9
wiring, 5-9

text
dragging and dropping. See the LabVIEW

Help.
entry boxes, 4-10
finding. See the LabVIEW Help.
formatting, 4-16
ring controls, 4-13

text files
creating, 13-8
file I/O, 13-2
writing numeric data to, 9-5

thermometer
slide controls and indicators, 4-8

threads
running multiple. See the LabVIEW Help.

time format
options, 3-6

time functions, 5-8
timing

controlling, 8-6
tip strips

control captions. See the LabVIEW Help.
creating, 14-2
displaying. See the LabVIEW Help.
displaying over terminals. See the

LabVIEW Help.
toolbar, 3-3
tools

palette, 3-2
selecting. See the LabVIEW Help.

toolsets, 1-1
in palettes, 3-5

tracking development. See documenting VIs.
training

customer, E-1
Transmission Control Protocol, 17-10
transmission lines, 12-4
transparent

labels. See the LabVIEW Help.
objects. See the LabVIEW Help.

trees
variant data, 5-16

troubleshooting. See debugging.
troubleshooting resources, E-1
tunnels, 8-1

input and output, 8-8
tutorial, 1-1
type completion, 4-12

listboxes, 4-12
ring controls, 4-13

type controls
enumerated, 4-13

advanced, 4-13

Index

© National Instruments Corporation I-25 LabVIEW User Manual

U
UDP, 17-10
undefined data, 6-6

arrays, 6-7
checking for, 6-7
For Loops, 6-7
Inf (infinity), 6-6
NaN (not a number), 6-6
preventing, 6-8
While Loops, 6-7

underflow of numbers, 6-6
undo options, 3-6
ungrouping front panel objects, 4-5
unit labels, 5-17
universal constants, 5-4
unlocking

front panel objects, 4-5
VIs. See the LabVIEW Help.

updating palettes. See the LabVIEW Help.
upgrading VIs, 7-11
URLs for DataSocket, 17-3
User Datagram Protocol, 17-10
user-defined constants, 5-4
user-defined errors. See the LabVIEW Help.
user interface. See front panel.
user library

adding VIs and controls, 3-4

V
variables

global, 10-2
creating, 10-2
initializing, 10-4
memory, 10-5
overview, 10-2
race conditions, 10-4
read and write, 10-3
using carefully, 10-4

local, 10-1
creating, 10-1
initializing, 10-4
memory, 10-5
overview, 10-1
race conditions, 10-4
read and write, 10-3
using carefully, 10-4

variant data, 5-15
ActiveX, 18-2
controls and indicators

data type (table), 5-3
converting to, 5-16
DataSocket, 17-7
editing attributes. See the LabVIEW Help.
flattened data and, 5-16
handling, 5-15

versions
comparing, 7-2
reverting to last saved. See the LabVIEW

Help.
saving VIs for previous, 7-11

views, 3-5
changing. See the LabVIEW Help.
creating, 3-5
deleting. See the LabVIEW Help.
editing, 3-5
sharing. See the LabVIEW Help.

VI object
editing settings, 16-3
VI Server, 16-3

virtual instruments. See VIs.
VIs, 2-1

adding to libraries, 3-4
broken, 6-2
building, 7-1
calling dynamically, 16-6
calling remotely, 16-1
comparing versions, 7-2
configuring appearance and

behavior, 15-1

Index

LabVIEW User Manual I-26 www.ni.com

controlling on Web, 17-9
controlling programmatically, 16-1
controlling when called as subVIs, 7-3
copying, A-3
correcting, 6-2
creating descriptions, 14-2
creating tip strips, 14-2
debugging techniques, 6-3
developing, 7-1
distributing, 7-11
documenting, 14-1
dragging and dropping. See the LabVIEW

Help.
error handling, 6-8
examples, 1-3
executable

debugging. See the LabVIEW Help.
finding. See the LabVIEW Help.
hierarchy, 7-9
launching from command line. See the

LabVIEW Help.
libraries, 7-10
loading dynamically, 16-6
locking. See the LabVIEW Help.
marking as top-level in libraries. See the

LabVIEW Help.
naming, 7-11
opening in run mode. See the LabVIEW

Help.
overview, 2-1
polymorphic, 5-13
printing, 14-5
publishing on Web, 17-9
reference. See the LabVIEW Help.
removing from libraries. See the

LabVIEW Help.
reverting to last saved versions. See the

LabVIEW Help.
running, 6-1
saving, 7-9
sharing, 7-11

strictly typed refnums, 16-7
unlocking. See the LabVIEW Help.
upgrading, 7-11

VISA
passing resource names, 4-14

VI search path
editing. See the LabVIEW Help.

VI Server, 16-1
Application object, 16-3
building applications, 16-2
Call By Reference Node, 16-7
calling other instances of LabVIEW on

Web, 16-1
calling VIs remotely, 16-1
capabilities, 16-1
controlling front panel objects, 16-8
editing settings, 16-3
Invoke Node, 16-4
networking and, 17-1
overview, 16-1
Property Node, 16-3
remote applications, 16-8
strictly typed VI refnums, 16-7
VI object, 16-3

VXI
configuring, 1-3
VIs, 1-3

W
warnings

button, 6-2
displaying, 6-2
displaying by default. See the LabVIEW

Help.
waveform

charts, 11-9
controls and indicators

data type (table), 5-3
data type, 11-15

Index

© National Instruments Corporation I-27 LabVIEW User Manual

functions, 5-8
graphs, 11-6

data types, 11-7
graphics, 12-3

waveforms
reading from files, 13-11
writing to files, 13-10

weakly typed control refnums, 16-8
Web

calling other instances of LabVIEW, 16-1
controlling VIs, 17-9
creating HTML documents, 17-9
publishing VIs, 17-9
technical support, E-1

Web Publishing Tool, 17-9
Web Server, 17-9

enabling, 17-9
options, 17-9

While Loops, 8-2
auto-indexing, 8-5
conditional terminals, 8-2
controlling timing, 8-6
default data, 6-7
error handling, 6-10
infinite, 8-3
iteration terminals, 8-3
shift registers, 8-5
using. See the LabVIEW Help.

Windows Help files, 14-5
window size

defining. See the LabVIEW Help.
window titles in Functions palette. See the

LabVIEW Help.
wires, 2-4

broken, 5-12
moving. See the LabVIEW Help.
overview, 2-4
selecting, 5-12

wiring
automatically, 5-11
block diagram, 5-9
guides. See the LabVIEW Help.
manually, 5-11
structures. See the LabVIEW Help.
techniques, 5-21
tool, 5-11
units, 5-17

work environment options
setting, 3-6

See also the LabVIEW Help.
storing, 3-6

working space
adding to front panel or block

diagram, 4-7
worldwide technical support, E-2
write globals, 10-3
write locals, 10-3
writing to files, 13-1

X
x-scales

formatting, 11-4
multiple, 11-2

XY graphs, 11-6
data types, 11-8, 11-9

Y
y-scales

formatting, 11-4
multiple, 11-2

Z
zooming on graphs and charts. See the

LabVIEW Help.

	LabVIEW User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions

	Part I LabVIEW Concepts
	Chapter 1 Introduction to LabVIEW
	LabVIEW Documentation Resources
	LabVIEW Example VIs and Tools
	LabVIEW Example VIs
	LabVIEW Tools

	Chapter 2 Introduction to Virtual Instruments
	Front Panel
	Figure 2-1. Example of a Front Panel

	Block Diagram
	Figure 2-2. Example of a Block Diagram and Corresponding Front Panel
	Terminals
	Nodes
	Wires
	Structures

	Icon and Connector Pane
	Using and Customizing VIs and SubVIs

	Chapter 3 LabVIEW Environment
	Controls Palette
	Functions Palette
	Navigating the Controls and Functions Palettes
	Tools Palette
	Menus and the Toolbar
	Menus
	Shortcut Menus
	Shortcut Menus in Run Mode

	Toolbar

	Customizing Your Work Environment
	Customizing the Controls and Functions Palettes
	Adding VIs and Controls to the User Library and the Instrument Library
	Creating and Editing Palette Views
	Building ActiveX Subpalettes
	Representing Toolsets in the Palettes

	Setting Work Environment Options
	How LabVIEW Stores Options

	Chapter 4 Building the Front Panel
	Configuring Objects on the Front Panel
	Showing and Hiding Optional Elements
	Changing Controls to Indicators and Vice Versa
	Replacing Front Panel Objects
	Setting Keyboard Shortcuts for Controls
	Controlling Button Behavior with Key Navigation
	Setting the Navigation Order of Front Panel Objects

	Coloring Objects
	Using Imported Graphics
	Grouping and Locking Objects
	Resizing Objects
	Scaling Front Panel Objects
	Figure 4-1. Front Panel with Object Set to Scale

	Adding Space to Front Panel without Resizing Window

	Front Panel Controls and�Indicators
	3D and Classic Controls and Indicators
	Slides, Knobs, Dials, and Digital Displays
	Slide Controls and Indicators
	Rotary Controls and Indicators
	Digital Controls and Indicators
	Color Boxes
	Color Ramps

	Buttons, Switches, and Lights
	Text Entry Boxes, Labels, and Path Displays
	String Controls and Indicators
	Path Controls and Indicators

	Array and Cluster Controls and Indicators
	Tab Controls and Indicators

	Listboxes
	Ring and Enumerated Type Controls and Indicators
	Ring Controls
	Enumerated Type Controls

	I/O Name Controls and Indicators
	References to Objects or Applications
	Dialog Controls

	Labeling
	Captions

	Text Characteristics
	Designing User Interfaces
	Using Front Panel Controls and Indicators
	Designing Dialog Boxes
	Selecting the Screen Size

	Chapter 5 Building the Block Diagram
	Relationship between Front Panel Objects and Block Diagram Terminals
	Block Diagram Objects
	Block Diagram Terminals
	Control and Indicator Data Types
	Table 5-1. Control and Indicator Terminals
	Constants

	Block Diagram Nodes

	Functions Overview
	Numeric Functions
	Boolean Functions
	String Functions
	Array Functions
	Cluster Functions
	Comparison Functions
	Time and Dialog Functions
	File I/O Functions
	Waveform Functions
	Application Control Functions
	Advanced Functions
	Adding Terminals to Block Diagram Functions

	Using Wires to Link Block Diagram Objects
	Figure 5-1. Wire Segment, Bend, and Junction
	Automatically Wiring Objects
	Manually Wiring Objects
	Selecting Wires
	Removing Broken Wires
	Coercion Dots

	Polymorphic VIs and Functions
	Polymorphic VIs
	Building Polymorphic VIs
	Figure 5-2. Example of a Polymorphic VI
	Figure 5-3. Polymorphic VI Calling a SubVI

	Polymorphic Functions

	Handling Variant Data
	Figure 5-4. Cluster of Flattened Numeric Data

	Numeric Units and Strict Type Checking
	Units and Strict Type Checking
	Figure 5-5. Wiring Objects with Compatible Units
	Figure 5-6. Wiring Objects with Incompatible Units Results in Broken Wires
	Figure 5-7. Creating an Increment Function with Units

	Block Diagram Data Flow
	Data Dependency and Artificial Data Dependency
	Missing Data Dependencies

	Data Flow and Managing Memory

	Designing the Block Diagram

	Chapter 6 Running and Debugging VIs
	Running VIs
	Configuring How a VI Runs

	Correcting Broken VIs
	Finding Causes for Broken VIs
	Common Causes of Broken VIs

	Debugging Techniques
	Execution Highlighting
	Single-Stepping
	Probe Tool
	Breakpoints
	Suspending Execution
	Determining the Current Instance of a SubVI

	Commenting Out Sections of Block Diagrams

	Disabling Debugging Tools
	Undefined or Unexpected Data
	Unexpected and Default Data in Loops
	For Loops
	While Loops

	Default Data in Arrays
	Preventing Undefined Data

	Error Checking and Error Handling
	Checking for Errors
	Error Handling
	Error Clusters
	Using While Loops for Error Handling
	Using Case Structures for Error Handling

	Chapter 7 Creating VIs and SubVIs
	Planning and Designing Your Project
	Designing Projects with Multiple Developers

	Using Built-In VIs and Functions
	Building Instrument Control and Data Acquisition VIs and Functions
	Building VIs That Access Other VIs
	Building VIs That Communicate with Other Applications

	SubVIs
	Watching for Common Operations
	Setting up the Connector Pane
	Figure 7-1. Improperly and Properly Aligned Error Clusters
	Setting Required, Recommended, and Optional Inputs and Outputs

	Creating an Icon
	Creating SubVIs from Portions of a VI
	Designing SubVIs
	Viewing the Hierarchy of VIs

	Saving VIs
	Advantages of Saving VIs as Individual Files
	Advantages of Saving VIs as Libraries
	Managing VIs in Libraries
	Naming VIs
	Saving for a Previous Version

	Distributing VIs
	Building Stand-Alone Applications and Shared Libraries

	Part II Building and Editing VIs
	Chapter 8 Loop and Case Structures
	For Loop and While Loop Structures
	For Loops
	While Loops
	Avoiding Infinite While Loops
	Figure 8-1. Infinite While Loop

	Auto-Indexing Loops
	Auto-Indexing to Set the For Loop Count
	Auto-Indexing with While Loops

	Shift Registers in Loops
	Controlling Timing

	Case and Sequence Structures
	Case Structures
	Case Selector Values and Data Types
	Input and Output Tunnels
	Using Case Structures for Error Handling

	Sequence Structures
	Avoiding Overusing Sequence Structures

	Chapter 9 Grouping Data Using Strings, Arrays, and Clusters
	Strings
	Strings on the Front Panel
	String Display Types
	Table 9-1. String Display Types

	Tables
	Figure 9-1. Parts of a Table

	Programmatically Editing Strings
	Formatting Strings
	Format Specifiers

	Numerics and Strings
	Figure 9-2. Converting a String to Numerics

	Grouping Data with Arrays and Clusters
	Arrays
	Indexes
	Examples of Arrays
	Figure 9-3. Waveform in an Array of Numerics
	Figure 9-4. Graph in an Array of Points
	Figure 9-5. 6-Column by 4-Row 2D Array
	Figure 9-6. Multiple Waveforms in a 2D Array of Numerics
	Restrictions for Arrays
	Creating Array Controls, Indicators, and Constants
	Figure 9-7. Array Shell
	Array Index Display
	Figure 9-8. Array Control
	Array Functions
	Figure 9-9. Indexing a 2D Array

	Clusters

	Chapter 10 Local and Global Variables
	Local Variables
	Creating Local Variables

	Global Variables
	Creating Global Variables

	Read and Write Variables
	Using Local and Global Variables Carefully
	Initializing Local and Global Variables
	Race Conditions
	Figure 10-1. Race Condition

	Memory Considerations when Using Local Variables
	Memory Considerations when Using Global Variables

	Chapter 11 Graphs and Charts
	Types of Graphs and Charts
	Graph and Chart Options
	Multiple X- and Y-Scales on Graphs and Charts
	Anti-Aliased Line Plots for Graphs and Charts
	Customizing Graph and Chart Appearance
	Customizing Graphs
	Figure 11-1. Graph Elements
	Graph Cursors
	Scale Options
	Graph Scale Formatting
	Using Smooth Updates

	Customizing Charts
	Chart History Length
	Chart Update Modes
	Overlaid Versus Stacked Plots
	Figure 11-2. Charts with Overlaid and Stacked Plots

	Waveform and XY Graphs
	Figure 11-3. Waveform and XY Graphs
	Single-Plot Waveform Graph Data Types
	Multiplot Waveform Graph
	Figure 11-4. Array of Cluster y
	Single-Plot XY Graph Data Types
	Multiplot XY Graph Data Types

	Waveform Charts
	Intensity Graphs and Charts
	Figure 11-5. Intensity Chart Color Map
	Color Mapping
	Intensity Chart Options
	Intensity Graph Options

	Digital Graphs
	Figure 11-6. Graphing Integers Digitally
	Figure 11-7. Using Bundle Function with Digital Graph
	Figure 11-8. Using Interleave Function with Digital Graph
	Masking Data

	3D Graphs
	Waveform Data Type

	Chapter 12 Graphics and Sound VIs
	Using the Picture Indicator
	Picture Plots VIs
	Using the Polar Plot VI as a SubVI
	Using the Waveform Plot VI as a SubVI
	Using the Smith Plot VIs as SubVIs

	Picture Functions VIs
	Creating and Modifying Colors with the Picture Functions VIs

	Graphics Formats VIs
	Sound VIs

	Chapter 13 File I/O
	Basics of File I/O
	Choosing a File I/O Format
	When to Use Text Files
	When to Use Binary Files
	When to Use Datalog Files

	Using High-Level File I/O VIs
	Figure 13-1. Using a High-Level VI to Write to a Spreadsheet

	Using Low-Level and Advanced File I/O VIs and Functions
	Figure 13-2. Using a Low-Level VI to Write to a Spreadsheet
	Disk Streaming

	Creating Text and Spreadsheet Files
	Formatting and Writing Data to Files
	Scanning Data from Files

	Creating Binary Files
	Creating Datalog Files
	Writing Waveforms to Files
	Figure 13-3. Writing Multiple Waveforms to a Spreadsheet File

	Reading Waveforms from Files
	Figure 13-4. Reading a Waveform from a File
	Figure 13-5. Reading Multiple Waveforms from a File

	Flow-Through Parameters
	Creating Configuration Files
	Using Configuration Settings Files
	Figure 13-6. Reading Data from an .ini File

	Windows Configuration Settings File Format

	Logging Front Panel Data
	Automatic and Interactive Front Panel Datalogging
	Viewing the Logged Front Panel Data Interactively
	Figure 13-7. Data Retrieval Toolbar
	Deleting a Record
	Clearing the Log-File Binding
	Changing the Log-File Binding

	Retrieving Front Panel Data Programmatically
	Retrieving Front Panel Data Using a SubVI
	Figure 13-8. Retrieving Logged Data
	Figure 13-9. Retrieving Logged Data through SubVI Terminals
	Retrieving Front Panel Data Using File I/O Functions
	Figure 13-10. Retrieving Logged Data Using the File Open Function

	Chapter 14 Documenting and Printing VIs
	Documenting VIs
	Creating VI and Object Descriptions
	Setting up the VI Revision History
	Revision Numbers

	Printing Documentation
	Saving to HTML or RTF Files
	Creating Your Own Help Files

	Printing VIs
	Printing the Active Window
	Printing Reports
	Printing Programmatically
	Printing at Completion
	Using a SubVI to Selectively Print at Completion

	Additional Printing Techniques

	Chapter 15 Customizing VIs
	Configuring the Appearance and Behavior of VIs
	Customizing Menus
	Creating Menus
	Menu Selection Handling
	Figure 15-1. Block Diagram Using Menu Handling

	Chapter 16 Programmatically Controlling VIs
	Capabilities of the VI Server
	Building VI Server Applications
	Application and VI References

	Editing Application and VI Settings
	Property Nodes
	Implicitly Linked Property Nodes

	Invoke Nodes
	Manipulating Application Class Properties and Methods
	Figure 16-1. Displaying All VIs in Memory on a Local Computer
	Figure 16-2. Displaying All VIs in Memory on a Remote Computer

	Manipulating VI Class Properties and Methods
	Figure 16-3. Using VI Class Property and Invoke Nodes

	Manipulating Application and VI Class Properties and Methods
	Figure 16-4. Using Application and VI Class Properties and Methods

	Dynamically Loading and Calling VIs
	Call By Reference Nodes and Strictly Typed VI Refnums
	Figure 16-5. Using the Call By Reference Node

	Editing and Running VIs on Remote Computers
	Control Refnums
	Strictly Typed and Weakly Typed Control Refnums

	Chapter 17 Networking in LabVIEW
	Choosing among File I/O, VI Server, ActiveX, and Networking
	LabVIEW as a Network Client and Server
	Using DataSocket Technology
	Specifying a URL
	Table 17-1. Example DataSocket URLs

	Data Formats Supported by DataSocket
	Using DataSocket on the Front Panel
	Reading and Writing Live Data through the Block Diagram
	Figure 17-1. Publishing Data Using DataSocket Write
	Figure 17-2. Reading a Single Value Using DataSocket Read
	DataSocket and Variant Data
	Figure 17-3. Converting Live Temperature Data to Variant Data
	Figure 17-4. Converting Live Variant Data to Temperature Data

	Publishing VIs on the Web
	Web Server Options
	Creating HTML Documents
	Publishing Front Panel Images
	Front Panel Image Formats

	Low-Level Communications Applications
	TCP and UDP
	DDE (Windows)
	Apple Events and PPC Toolbox (Macintosh)
	Pipe VIs (UNIX)
	Executing System-Level Commands (Windows and UNIX)

	Chapter 18 ActiveX
	ActiveX Objects, Properties, Methods, and Events
	ActiveX VIs, Functions, Controls, and Indicators

	LabVIEW as an ActiveX Client
	Accessing an ActiveX-Enabled Application
	Inserting an ActiveX Control or Document on the Front Panel

	LabVIEW as an ActiveX Server
	Using Constants to Set Parameters in ActiveX�VIs
	Figure 18-1. Setting a Data Value with a Ring Constant
	Figure 18-2. Setting a Data Value with a Numeric Constant

	Chapter 19 Calling Code from Text-Based Programming Languages
	Call Library Function
	Code Interface Node

	Chapter 20 Formulas and Equations
	Methods for Using Equations in LabVIEW
	Formula Nodes
	Using the Formula Node
	Variables in the Formula Node

	Expression Nodes
	Polymorphism in Expression Nodes

	Using HiQ with LabVIEW
	HiQ and MATLAB Script Nodes
	Table 20-1. LabVIEW, HiQ, and MATLAB Data Types
	Programming Suggestions for HiQ and MATLAB Scripts

	HiQ Support Files Required with a LabVIEW Application

	Appendix A Organization of LabVIEW
	Organization of the LabVIEW Directory Structure
	Libraries
	Structure and Support
	Learning and Instruction
	Documentation
	Miscellaneous File
	Macintosh

	Suggested Location for Saving Files

	Appendix B Polymorphic Functions
	Numeric Conversion
	Polymorphism for Numeric Functions
	Polymorphism for Boolean Functions
	Polymorphism for Array Functions
	Polymorphism for String Functions
	Polymorphism for String Conversion Functions
	Polymorphism for Additional String to Number Functions

	Polymorphism for Cluster Functions
	Polymorphism for Comparison Functions
	Polymorphism for Log Functions

	Appendix C Comparison Functions
	Comparing Boolean Values
	Comparing Strings
	Comparing Numerics
	Comparing Arrays and Clusters
	Arrays
	Compare Elements Mode
	Compare Aggregates Mode

	Clusters
	Compare Elements Mode
	Compare Aggregates Mode

	Appendix D Masking Digital Data
	Figure D-1. Masking Digital Data
	Figure D-2. Example of a Mask Array Control
	Figure D-3. Specifying the Same Bits in Different Elements
	Figure D-4. Creating Two Plots of Masked Data on a Digital Waveform Graph

	Appendix E Technical Support Resources
	Glossary
	Numbers/Symbols
	A
	B-C
	D
	E
	F
	G-H
	I-L
	M-N
	O-P
	R
	S
	T-U
	V-W

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-L
	M-N
	O
	P
	Q-R
	S
	T
	U-V
	W
	X-Z

