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APPENDIX B

MATHEMATICAL FORMALITIES AND STYLE

We collect here a brief account of the various mathematical conventions used throughout this work,
and discuss some basic mathematical issues that arise in probability theory. Careless notation has
led to so many erroneous results in the recent literature that we need to find rules of notation and
terminology that make it as difficult as possible to commit such errors.

A mathematical notation, like a language, is not an end in itself but only a communication
device. Its purpose is best served if the notation, like the language, is allowed to evolve with use.
This evolution usually takes the form of abbreviations for whatever expressions recur often, and
reducing the number of symbols when their meaning can be read from the context.

But a living, changing language still needs a kind of safe harbor in the form of a fixed set of
rules of grammar and orthography, hidden away in a Dictionary for use when ambiguities threaten.
Likewise, probability theory needs a fixed set of normative rules on which we can fall back in case
of doubt. We state here our formal rules of notation and logical hierarchy; all Chapters from #3
on start with these standard forms, and evolve from them. A notation which is so convenient that
it is almost a necessity in one Chapter, might be only confusing in the next; so each separate topic
must be allowed its own independent evolution from the standard beginning.

Notation and Logical Hierarchy

In our formal probability symbols (those with a capital P )

P (A|B) (B–1)

the entries A,B always stand for propositions, with a sufficiently clear meaning (at least to us)
that we are willing to use them as elements of Aristotelian logic, obeying a Boolean algebra. Thus
P (A|B) does not denote a “function” in the usual sense.

We repeat the warning that a probability symbol is undefined and meaningless if the condi-
tioning statement B happens to have zero probability in the context of our problem [for example,
if B = CD, but P (C|D) = 0]. Failure to recognize this can lead to erroneous calculations – just
as inadvertently dividing by an expression that happens to have the value zero, can invalidate all
subsequent results.

To preserve the purity of our probability symbols (B–1) we must have also other symbols for
probabilities. Thus, if proposition A has the meaning

A ≡ “The variable q has the particular value q′ (B–2)

there is a tendency to write, instead of P (A|B),

P (q′|B) (B–3)

But q′ is not a proposition, and so the writer evidently intends the symbol (B–3) to stand now
for an ordinary mathematical function of the variable q′. In our system this is illegitimate, and so
when an ordinary mathematical function is intended, we shall take the precaution of inventing a
different functional symbol such as f( | ), writing (B–3) instead as

f(q′|B) (B–4)
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Now the distinction between (B–3) and (B–4) may appear to some readers as pedantic nit–picking;
so why do we insist on it? Many years ago, the present writer would also have dismissed this
point as too trivial to deserve mention; but later experience has brought to light cases where
failure to maintain the distinction in clear sight has tricked writers into erroneous calculations and
conclusions. The amount of time and effort this has wasted – and which is still being wasted in
this field – justifies our taking protective measures against it.

The point is that a proposition A is a verbal statement that may indeed specify the value of
some variable q; but it generally contains qualifying clauses also:

A ≡ “The variable q has the value q′ if the proposition B is true” (B–5)

If we try to take the short–cut of replacing A by q′ in the probability symbol, we lose sight of the
qualification. Later in the calculation, the same variable q may appear in a proposition A1 with
a different qualification B1; and again one may be tempted to replace A1 by q′ in the probability
symbol. Still later in the calculation the same probability symbol will appear with two different
meanings, and one is tricked into supposing that they represent the same quantity.

This is what happened in the famous “marginalization paradox”, in which the same probability
symbol was used to denote probabilities conditional on two different pieces of prior information,
with bizarre consequences described in Jaynes (1980) and in Chapter 15. This confusion is still
causing trouble in probability theory, for those who have not yet understood it.

However, we are not fanatics about this. In cases so simple that there is very little danger of
error anyway, we allow a compromise and follow the custom of most writers even though it is not
a strictly consistent notation. In probability symbols with a small p, we shall allow the arguments
to be either propositions or numbers: thus if A is a proposition and q a number, the equation

p(A|B) = p(q|B)

is permitted; but with the warning that when small p symbols are used, the reader must judge their
meaning from the context, and there is a possibility of error from failure to read them correctly.

A common and useful custom is to use Greek letters to denote parameters in a probability
distribution, the corresponding Latin letters for the corresponding functions of the data. For
example, one may denote a probability average (the mean of a probability distribution) by µ =
〈x〉 = E(x), and then the average over the data would be m = x = n−1Σxi. We shall adhere to this
except where it would be confusing because of a conflict with some other long established usage.

Our “Cautious Approach” Policy

The derivation of the rules of probability theory from simple desiderata of rationality and consis-
tency in Chapter 2 applied to discrete, finite sets of propositions. Finite sets are therefore our safe
harbor, where Cox’s theorems apply and nobody has ever been able to produce an inconsistency
from application of the sum and product rules. Likewise, in elementary arithmetic finite sets are
the safe harbor in which nobody has been able to produce an inconsistency from applying the rules
of addition and multiplication.

But as soon as we try to extend probability theory to infinite sets, we are faced with the need to
exercise the same kind of mathematical caution that one needs in proceeding from finite arithmetic
expressions to infinite series. The “parlor game” at the beginning of Chapter 15 illustrates how
easy it is to commit errors by supposing that the operations of elementary arithmetic and analysis,
that are always safe on finite sets, may be carried out also on infinite sets.

In probability theory, it appears that the only safe procedure known at present is to derive
our results first by strict application of the rules of probability theory on finite sets of propositions;
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then after the finite set result is before us, observe how it behaves as the number of propositions
increases indefinitely. There are, essentially, three possibilities:

(1) It tends smoothly to a finite limit, some terms just becoming smaller and dropping
out, leaving behind a simpler analytical expression.

(2) It blows up, i.e., becomes infinite in the limit.
(3) It remains bounded, but oscillates or fluctuates forever, never tending to any definite

limit.

In case (1) we say that the limit is “well behaved” and accept the limit as the correct solution
on the infinite set. In cases (2) and (3) the limit is ill–behaved and cannot be considered a valid
solution to the problem. Then we refuse to pass to the limit at all.

This is the “Look before you leap” policy: in principle, we pass to a limit only after verifying
that the limit is well–behaved. Of course, in practice this does not mean that we conduct such a
test anew on every problem; most situations arise repeatedly, and rules of conduct for the standard
situations can be set down once and for all. But in case of doubt, we have no choice but to carry
out this test.

In cases where the limit is well–behaved, it may be possible to get the correct answer by
operating directly on the infinite set, but one cannot count on it. If the limit is not well–behaved,
then any attempt to solve the problem directly on the infinite set would have led to nonsense, the
cause of which cannot be seen if one looks only at the limit, and not the limiting process. The
paradoxes noted in Chapter 15 illustrate some of the horrors that have resulted from carelessness
in this regard.

Willy Feller on Measure Theory

In contrast to our policy, many expositions of probability theory begin at the outset to try to
assign probabilities on infinite sets, both countable or uncountable. Those who use measure theory
are, in effect, supposing the passage to an infinite set already accomplished before introducing
probabilities. For example, Feller advocates this policy and uses it throughout his second volume
(1971).

In discussing this issue (loc. cit., p. 3), he notes that specialists in various applications some-
times “deny the need for measure theory because they are unacquainted with problems of other
types and with situations where vague reasoning did lead to wrong results.” If Feller knew of any
case where such a thing has happened, this would surely have been the place to cite it – yet he
does not. Therefore we remain, just as he says, unacquainted with instances where wrong results
could be attributed to failure to use measure theory.

But as noted particularly in Chapter 15, there are many documentable cases where careless
use of infinite sets has led to absurdities. We know of no case where our “cautious approach” policy
leads to inconsistency or error; or fails to yield a result that is reasonable.

We do not use the notation of measure theory because it presupposes the passage to an infinite
limit already carried out at the beginning of a derivation – in defiance of the advice of Gauss,
quoted at the start of Chapter 15. But in our calculations we often pass to an infinite limit at the
end of a derivation; then we are in effect using “Lebesgue measure” directly in its original meaning.
We think that failure to use current measure theory notation is not “vague reasoning”; quite the
opposite. It is a matter of doing things in the proper order.

Feller does acknowledge, albeit grudgingly, the validity of our position. While he considers
passage to a well–defined limit from a finite set unnecessary, he concedes that it is “logically
impeccable” and has “the merit of a good exercise for beginners”. That is enough for us; for in
this field we are all beginners. Perhaps the beginners who have the most to learn are those who
now decline to practice this very instructive exercise.
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We note also that measure theory is not always applicable, because not all sets that arise in
real problems are measurable. For example, in many applications we want to assign probabilities
to functions that we know in advance are continuous. But Mark Kac (1956) notes that the class
of continuous functions is not measurable; its inner measure is zero, its outer measure one.† Being
a mathematician, he was willing to sacrifice some aspects of the real world in order to conform to
his preconception that his sets should be measurable. So to get a measurable class of functions he
enlarges it to include the everywhere discontinuous functions. But then the resulting measure is
concentrated ‘almost entirely’ on just the class of functions that, for physical reasons, we need to
exclude most strongly from our set; and so while Kac gets a solution that is satisfactory to him, it
is not always the solution to a real physical problem.

Our value judgment is just the opposite; being concerned with the real world, we are willing to
sacrifice preconceptions about measurable classes in order to preserve the aspects of the real world
that are important in our problem. In this case, a form of our cautious approach policy will be able
to bypass measure theory in order to get the useful results we seek; for example, (1) expand the
continuous functions in a finite number n of orthogonal functions, (2) assign probabilities to the
expansion coefficients in a finite dimensional space Rn; (3) do the probability calculation; (4) pass
to the limit n→ ∞ at the end. In a real problem we find that increasing n beyond a certain value
makes a numerically negligible change in our conclusions (that is, if we are calculating to a finite
number of decimal places, a strictly nil change). So we need never depart from finite sets.‡ Useful
results, in various applications from statistical mechanics to radar detection, are found in this way.

It appears to us that most – perhaps all – of the paradoxes of infinite sets that arise in
calculations are caused by the persistent tendency to pass to infinite limits too soon. In any event,
whatever the cause and the cure, our position is that the paradoxes of infinite sets belong to the
field of infinite set theory, and have no place in probability theory. Our self–imposed inhibition of
considering only finite sets and their well–behaved limits enables us to avoid all of the useless and
unnecessary paradoxing that has appeared in the recent statistical literature. From this experience,
we conjecture that perhaps all correct results in probability theory are either combinatorial theorems
on finite sets or well–behaved limits of them.

But on this issue, too, we are not fanatics. We recognize that the language of set and measure
theory was a useful development in terminology, in some cases enabling one to state mathematical
propositions with a generality and conciseness that is quite lacking in nineteenth century mathe-
matics. Therefore we are happy to use that language whenever it contributes to our goal, and we
could hardly get along without an occasional “almost everywhere” or “of measure zero” phrase.
However, when we use a bit of measure theory, it is never in the thought that this makes the
argument more rigorous; but only a recognition of the compactness of that language.

Of course, we stand ready and willing to use set and measure theory – just as we stand ready
and willing to use number theory, projective geometry, group theory, topology, or any other part
of mathematics – wherever this should prove helpful for the technique of finding a result or for
understanding it. But we see no reason why we must state every proposition in set/measure theory
terminology and notation in cases where plain English is clearer and as far as we can see, not only
more efficient for our purposes but actually safer.

Indeed, an insistence that all of mathematics be stated in that language all of the time can
place unnecessary burdens on a theory, particularly one intended for application in the real world.
It can also degenerate into an affectation, used only linguistically rather than functionally. To give

† A continuous function is defined everywhere by specifying it at each rational point, whose number is
countable. Thus the class of continuous functions is very much smaller than the class of everywhere
discontinuous functions.
‡ But even in the limit, the number of expansion coefficients is only countable, corresponding nicely to the
property of continuous functions noted in the previous footnote.
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every old, familiar notion a new, impressive name and symbol unknown to Gauss and Cauchy, has
nothing to do with rigor. It is, more often than not, a form of gamesmanship whose real purpose is
to conceal the Mickey Mouse triviality of what is being done. One would blush to state it in plain
English.

Kronecker vs. Weierstrasz

At this point, a question will surely be in the reader’s mind. After our emphasis on the safety of
finite sets it might appear that all of analysis, which seems to do everything on uncountable sets, is
suspect. Let us explain why this is not the case, and why we do place full confidence in the analysis
of Cauchy and Weierstrasz.�

In the late 19’th Century both Karl Weierstrasz (1815–1897) and Leopold Kronecker (1823–
1891) were at the University of Berlin,† lecturing on mathematics. A difference developed between
them, which has been greatly exaggerated by later commentators, and it is only in the past few
years that the real truth about their relationship has started to emerge.

Briefly, Weierstrasz was concerned with perfecting the tools of analysis – particularly power
series expansions – with the specific case of elliptic functions in mind as an application. Kronecker
was more concerned with the foundations of mathematics in number theory, and questioned the
validity of reasoning that does not start back at the integers. On a superficial view, this might seem
to deny us all the beautiful results of analysis. Even Morris Kline (1980) gives the impression that
Kronecker’s asceticism denies us some of the important advances in modern mathematics. But the
record has been distorted.

For example, E. T. Bell (1937, p. 568) tells us, without any supporting documentation, that
Kronecker on hearing of Lindemann’s proof that π is transcendental, asked of what use that could
be, “· · · since irrational numbers do not exist?” The documentable fact is that Kronecker’s own
work on number theory (1901, p. 4) describes the formula of Leibniz:

π
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= 1− 1

3
+

1
5
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7
+ · · ·

as “one of the most beautiful arithmetic properties of the odd integers, namely that of determining
this geometrical irrational number.” Evidently, Kronecker considered irrational numbers as pos-
sessing at least enough “existence” to allow them to be precisely defined. It is true that he did not
consider irrationals to be a necessary part of the foundations; indeed, how could he or anybody else
think that, in view of relations like the above one, which allow irrationals to be defined entirely in
terms of integers? Curiously, Weierstrasz also defined irrationals from the integers in just the same
way; so where was the difference between them?

Bell also paints a picture of Weierstrasz as the great analyst, putting the final finishing touches
on the work of Cauchy, and Kronecker as a mere gadfly, attacking the validity of everything he
did without making any positive contribution. It is true that Kronecker annoyed Weierstrasz on
at least one occasion, documented in Weierstrasz’ correspondence; yet there was not really much
conflict in their principles. To understand Kronecker’s position we just need a better witness than
Eric Temple Bell, and fortunately we have two of them, Henri Poincaré and Harold M. Edwards.

� Indeed, the writer’s first love in mathematics was not probability theory, but the use of Cauchy’s complex
integration to solve systems of differential equations and boundary conditions, choosing the integrand to
satisfy the differential equation, and then the contour of integration to satisfy the boundary conditions.
Three generations of theoretical physicists have exploited this method enthusiastically; it is great fun to
teach and the students love it.
† More specifically, Weierstrasz was there from 1856–1897 and Kronecker from 1861–1891. E. T. Bell
(1937) gives a portrait of the young Weierstrasz and a photograph of the old Kronecker; H. M. Edwards
(1989) gives photographs of the old Weierstrasz and the young Kronecker.
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When Weierstrasz died in 1897, Poincaré (1899) wrote a summary of his mathematical work,
in which he pointed out that: “ · · · all the equations which are the object of analysis and which deal
with continuous magnitudes are nothing but symbols, replacing an infinite collection of inequalities
relating whole numbers.” In the words of Edwards (1989), “ · · · both Weierstrasz and Kronecker
based their mathematics entirely on the whole numbers, so that all their work shared in the certitude
of arithmetic.” Edwards notes that several reactionary views commonly attributed to Kronecker
are hearsay for which no support can be found in Kronecker’s own words.

The difference between Kronecker and Weierstrasz was aesthetic rather than substantive; Kro-
necker wants to keep first principles (the origin in the integers) constantly in view, while Weierstrasz,
having made a new construction, is willing to forget the steps by which it was made, and use it
as an element in its own right for further construction. Put in modern computer terminology,
Weierstrasz did not deny Kronecker’s “machine language” basis of all mathematics, but wanted to
develop analysis in a higher level language. Edwards points out that Kronecker’s principles, “ · · ·
in his mind and in fact, were no different from the principles of his predecessors, from Archimedes
to Gauss.”

Thanks largely to the historical research of Edwards, the truth is emerging and Kronecker is
being vindicated and rehabilitated. Perhaps Kronecker was overzealous, and perhaps he misunder-
stood the position of Weierstrasz; but events since then suggest that he was not zealous enough in
his own cause. His failure to respond to Georg Cantor (1845–1918) seems unfortunate, but easy to
understand.

To Kronecker, Cantor’s ideas were so outré that they had nothing to do with real mathematics,
and there was no reason for a mathematician to take any note of them. If the editors of the
mathematical journals made the mistake of publishing such stuff, that was their problem, not
his. But the messages that Kronecker did communicate contained some very important truth; in
particular he complained that much of set theory was fantasy because it was not algorithmic (that
is, it contained no rule by which one could decide, in a finite number of operations, whether a
given element did or did not belong to a given set). Today, with our computer mentalities, this
seems such an obvious platitude that it is hard to imagine anyone ignoring it, much less denying
it; yet that is just what happened. We think that, had mathematicians paid more attention to this
warning of Kronecker, mathematics might be in a more healthy state today.

What is a Legitimate Mathematical Function?

Much of the difference between current pure and applied mathematics lies in their different con-
ceptions of the notion of a “function”. Historically, one started with the well–behaved analytic
functions like f(x) = x2 or f(x) = sinx. Then these were generalized, but in two different ways. In
pure mathematics, the idea was generalized in such a way that set theory notions remained valid;
first to piecewise continuous functions, then to quite arbitrary rules by which, given a number x,
one can define another number f . Then, perceiving that a function or its argument need not be
limited to real or complex numbers, this was generalized to an arbitrary mapping of one set X onto
another set F , the elements of which could be almost anything.

In applied mathematics, the notion of a function was generalized in a very different way; so
that the useful analytical operations that we perform on functions remain valid. Perhaps the most
important hint was provided by the operation of the fourier transform. This is still a mapping, but
at the higher level of mapping one function f(x) onto another F (k). This mapping was defined by
the integrals

F (k) =
∫
eikx f(x) dx , f(x) =

1
2π

∫
e−ikx F (k) dk . (B–6)

If we indicate this fourier transform pair symbolically as
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[
f(x) ↔ F (k)

]
(B–7)

we find the interesting properties that under translation, convolution, and differentiation,
[
f(x− a) ↔ eika F (k)

]
(B–8)

[ ∫
f(x− y) g(y) dy ↔ F (k)G(k)

]
(B–9)

[
f ′(x) ↔ ikF (k)

]
,

[
− ix f(x) ↔ F ′(k)

]
(B–10)

In other words, analytical operations on one function correspond to algebraic operations on the
other.

In practice these are very useful properties. Thus to solve a linear differential equation, or
difference equation, or integral equation of convolution form [

∫
K(x − y) f(y)dy = λ g(x)] or,

indeed a linear equation which contains all three of these operations, one may take its fourier
transform, which converts it into an algebraic equation for F(k). This may be solved directly. Then,
if a solution exists satisfying the conditions (B–8) – (B–10), taking the inverse fourier transform
yields the solution f(y) of the original equation. Thus the fourier transform mapping reduces
the solution of linear analytical equations to that of ordinary algebraic equations. In the early
twentieth Century, the theoretical physicist Arnold Sommerfeld in Munich became a great artist
in the technique of evaluating these solutions by fancy contour integrals, and some of the greatest
of the next generation learned this from him. Today, physicists and engineers could hardly survive
without it.

But this procedure seemed to apply only to a limited class of functions. In the Dirichlet form
of fourier theory, one shows that if f(x) is absolutely integrable, then the integral (B–6) surely
converges to a well–behaved continuous function F (k) on the real axis, and all is well. If f(x)
also vanishes for negative x, then F (k) is analytic and bounded in one half of the complex plane,
and all is even better. But if f(x) is absolutely integrable, then f ′(x) or f ′′(x) may not be; and
there is some doubt whether the useful properties are still valid. In the early work on fourier
transforms, such as Titchmarsh (1937), virtually all one’s attention was concentrated on the theory
of convergence of the integrals, and any function for which the integral did not converge was held
not to possess a fourier transform. This placed an intolerable restriction on the range of useful
applications of fourier theory.

Then a more sophisticated view emerged in theoretical physics. One realized that the usefulness
of the fourier transform lies, not in convergence of any integral, but in the above properties (B–
8) – (B–10) of the mapping. Therefore, as long as our functions are sufficiently well–behaved so
that the operations in (B–8) – (B–10) make sense, then if by any means we can define the mapping
such that those properties are preserved, then the customary use of fourier transforms to solve
linear integrodifferential equations will be perfectly rigorous and it does not make the slightest
difference whether the integrals (B–6) or the analogous fourier series do or do not converge. A
divergent fourier series is still a unique ordered sequence of numbers, conveying all the needed
information (that is, it is uniquely determined by, and uniquely determines, its Fourier transform).
It was only an historical accident that this mapping was first discovered through series and integral
representations, which exist only in special cases.
Delta Functions: Although its beginnings can be traced back to Duhamel and Green in the 19’th
Century, this movement is commonly held to start with P. A. M. Dirac, who in the 1920’s invented
the notation of the delta–function δ(x− y) generalizing the Kronecker δij , and showed how to use
it to good advantage in applications. It is the “fourier transform of a constant” in the sense that
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as F (k) → 1, we have f(x) → δ(x). Mathematicians thinking in terms of the set theory definition
of a ‘function’ were horrified and held this to be nonrigorous on the grounds that delta–functions
do not ‘exist’. But that was only because of their inappropriate definitions of the term ‘function’.
A delta–function is not a mapping of any set onto any other. Laurent Schwartz (1950) tried to
make the notion of a delta–function rigorous, but from our point of view awkwardly, because he
persisted in defining the term ‘function’ in a way inappropriate to the subject.

Perceiving this, G. Temple (1955) and M. J. Lighthill (1957) showed how to remove the awk-
wardness simply by adopting a definition of functions as meaning “good” functions and limits of
sequences of good functions (thus in our system, a discontinuous function is defined as the limit
of a sequence of continuous functions). For this, there is almost no need to mention such things
as open and closed sets. Lighthill saw that this definition of ‘function’ is the one appropriate to
fourier theory. It is now clear that it is also the one appropriate to probability theory and to all of
analysis; with it our theorems become simpler and more general, without a long list of exceptions
and special cases. For example, any fourier series may now be differentiated term by term any
number of times and the result, whether convergent or not, identifies (by 1:1 correspondence) a
unique function in our sense of the word. Physicists had seen this intuitively and used it correctly
long before the work of Schwartz, Temple, and Lighthill.

Lighthill produced a very thin book (1957) on the new form of fourier analysis, which included
a table of fourier transforms in which every entry is a function which was held formerly not to
possess a fourier transform. Yet that table is a gold mine for the useful solution of linear integro–
differential equations. In a famous review of Lighthill’s book, the theoretical physicist Freeman J.
Dyson (1958), a former student of the Cambridge mathematician G. H. Hardy, said that Lighthill’s
book “ · · · lays Hardy’s work in ruins, and Hardy would have enjoyed it more than anybody.”
Throughout the present work we take Lighthill’s approach, as summarized briefly in Appendix F,
for granted and assume that the reader is familiar with it.
Nondifferentiable Functions: The issue of nondifferentiable functions arises from time to time
in probability theory. In particular, when one solves a functional equation like those studied in
Chapter 2, to assume differentiability is to have a horde of mathematical nit–pickers descend upon
one, with claims that we are excluding a large class of potentially important solutions. However,
we noted that this is not the case; Aczel demonstrated that Cox’s functional equations can all be
solved without assuming differentiability (at the cost of much longer derivations) and with just the
same solutions that we found above.

Let us take a closer look at the notion of nondifferentiable functions in general. This was not
well received at first by pure mathematicians. Charles Hermite wrote to Stieltjès: “I turn away in
horror from this awful plague of functions which have no derivatives.” The one generally blamed
for this plague was Henri Lebesgue (1875–1941), although Weierstrasz had noted them before him.
The Weierstrasz nondifferentiable function is

f(x) ≡
∞∑

n=0

an cos(mn x) (B–11)

where 0 < a < 1) and m is a positive odd integer. It is an ordinary fourier series with period 2π,
since mn is always an integer. Furthermore, the series is uniformly convergent for all real x (since
it must converge at least as well as does

∑
an ), so it defines a continuous function. But if ma > 1,

term–by–term differentiation yields a badly divergent series, whose coefficients grow exponentially
in n. The proof that

f ′(x) ≡ lim
h→0

f(x+ h)− f(x)
h

(B–12)
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then does not exist for any x is rather tedious.† Weierstrasz’ function is, in fact, the limit of a
sequence of good functions (the partial sums Sk of the first k terms), but it is not a very well–
behaved limit and such functions are of no apparent use to us because they fail to satisfy condition
(B–10). Nevertheless, functions like this do arise in applications; for example, in Chapter 7 our
attempt to solve the integral equation (7–43) by fourier transform methods ran up against this
difficulty if the kernel was too broad. Then our conclusion was that the integral equation does not
have any usable solution unless the kernel φ(x− y) is at least as sharp as the “driving force” f(x).
This is discussed further in Appendix F.

Bogus Nondifferentiable Functions The case most often cited as an example of a nondifferen-
tiable function is derived from a sequence fn(x) , each of which is a string of isosceles right triangles
whose hypotenuses lie on the real axis and have length 1/n. As n → ∞, the triangles shrink to
zero size. For any finite n, the slope of fn(x) is ±1 almost everywhere. Then what happens as
n → ∞? The limit f∞(x) is often cited carelessly as a nondifferentiable function. Now it is clear
that the limit of the derivative, f ′n(x) does not exist; but it is the derivative of the limit that is
in question here; f∞(x) ≡ 0 and this is certainly differentiable. Any number of such sequences
fn(x) with discontinuous slope on a finer and finer scale may be defined. The error of calling the
resulting limit f∞(x) nondifferentiable on the grounds that the limit of the derivative does not
exist, is common in the literature. In many cases, the limit of such a sequence of bad functions is
actually a well–behaved function (although awkwardly defined) and we have no reason to exclude
it from our system.

Lebesgue defended himself against his critics thus: “If one wished always to limit himself to
the consideration of well–behaved functions, it would be necessary to renounce the solution of many
problems which were proposed long ago and in simple terms.” The present writer is unable to cite
any specific problem which was thus solved; but we can borrow Lebesgue’s argument to defend our
own position.

To reject limits of sequences of good functions is to renounce the solution of many current real
problems. Those limits can and do serve many useful purposes, which much current mathematical
education and practice still tries to stamp out. Indeed, the refusal to admit delta–functions as
legitimate mathematical objects has led mathematicians into error. For example, H. Cramér (1946,
Chap. 32) gives an inequality, which we derived in Chapter 17, placing a lower limit to the variance
of the sampling distribution for a parameter estimator θ∗:

var(θ∗) ≥ (1 + db/dθ)2

n
∫
(∂ log f/∂θ)2 f(x|θ) dx (B–13)

where we have made n observations from a sampling distribution f(x|θ), and b(θ∗) ≡ E(θ∗ − θ) is
the bias of the estimator.

Then Cramér notes that if f(x|θ) has discontinuities, then “the conditions for the regular case
are usually not satisfied. In such cases it is often possible to find unbiased estimates of ‘abnormally
high’ precision, i.e., such that the variance is smaller than the lower limit [(B–13)] for regular
estimates.” How could he have reached such a remarkable conclusion, since (B–13) is only the
Schwartz inequality, which does not seem to admit of exceptions? We find that he has used the
set–theory definition of a function, and concluded that the derivative ∂ log f/∂θ does not exist at
points of discontinuity. So he takes the integral in (B–13) only over those regions where f(x|θ) is
continuous.

† G. H. Hardy, Proc. London Math. Soc.(2), 9, pp. 126–144). Titchmarsh (1939, pp. 350–353) gives only
a shorter proof valid when ma > 1 + 3π/2. Some authors state that f(x) is nondifferentiable only in this
case; but to the best of our knowledge, nobody has ever claimed that Hardy’s proof contains an error.
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But the definition of a discontinuous function which is appropriate in analysis is our limit of
a sequence of continuous functions. As we approach that limit, the derivative develops a higher
and sharper spike. However close we are to that limit, the spike is part of the correct derivative
of the function, and its contribution must be included in the exact integral. Thus the derivative
of a discontinuous function necessarily contains a delta–function at points of discontinuity, whose
contribution is always present in the differentiated fourier series, and must be included in order to
get the correct physical solution. Had Cramér included this term, (B–13) would have reduced in the
limit to var(θ∗) ≥ 0, hardly a useful statement, but at least there would have been no anomalous
case, and no seeming violation of the Schwartz inequality.

In a similar way, the solution of an integral equation with finite limits, of the form

∫ b

a

K(x, y)f(y)dy = λg(x) (B–14)

generally involves delta–functions like δ(y− a) or δ′(y− b) at the end–points, and so those who do
not believe in delta–functions consider such integral equations as not having solutions. But in real
physical problems, exactly such integral equations occur repeatedly, and again the delta–functions
must be included in order to get the correct physical solution. Some examples are given by D.
Middleton (1960), and we hope to give many more in the planned second volume of this work;
they are virtually ubiquitous in the prediction of irreversible processes in statistical mechanics. It
is astonishing that so few people have yet perceived this need to include delta–functions, but we
think it only illustrates what we have observed independently; those who think of fundamentals
in terms of set theory fail to see its limitations because they almost never get around to useful,
substantive analytical calculations.

Yet bogus nondifferentiable functions are manufactured as limits of sequences of rows of tinier
and tinier triangles, and this is accepted without complaint. Those who do this while looking
askance at delta functions, are in the position of admitting limits of sequences of bad functions
as legitimate mathematical objects, while refusing to admit limits of sequences of good functions!
This seems to us a sick policy, for delta–functions serve many essential purposes in real, substan-
tive calculations, but we are unable to conceive of any useful purpose that could be served by a
nondifferentiable function. It seems that their only use is to provide trouble makers with artifi-
cially contrived counter–examples to almost any sensible and useful mathematical statement one
could make. Henri Poincaré (1909) noted this in his characteristically terse way: “In the old days
when people invented a new function they had some useful purpose in mind: now they invent them
deliberately just to invalidate our ancestors’ reasoning, and that is all they are ever going to get out
of them.”

Indeed, this fad of artificially contrived mathematical pathology seems nearly to have run its
course, and for just the reason that Poincaré foresaw; nothing useful can be done with it. While
we still see exhortations not to assume differentiability of an unknown function, it is difficult to
find even one specific example of a nondifferentiable function appearing – much less actually being
used for anything – in the recent literature. To the best of our knowledge, they play no role in the
discussions of any mathematical question or useful application and one must go back to old works
like Titchmarsh (1939) to see them at all.

Note, therefore, that we stamp out this plague too, simply by our defining the term “function”
in the way appropriate to our subject. The definition of a mathematical concept that is ‘appropriate’
to some field is the one that allows its theorems to have the greatest range of validity and useful
applications without the need for a long list of exceptions, special cases, and other anomalies. In
our work the term ‘function’ includes good functions as defined in Appendix F, and well–behaved
limits of sequences of good functions; but not nondifferentiable functions. We do not deny the
existence of other definitions which do include nondifferentiable functions, any more than we deny
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the existence of fluorescent purple hair dye in England; in both cases, we simply have no use for
it.†

Counting Infinite Sets?

It is well known that Lewis Carroll’s children’s books were really expositions of principles of logic,
but conveyed by the device of stating the opposite in a form that would appear ludicrous even to
small children. One of his poems ends thus:

He thought he saw an Argument that proved he was the Pope:
He looked again and found it was a Bar of Mottled Soap.
“A fact so dread,” he faintly said, “Extinguishes all hope!”

Indeed, many of the arguments seriously proposed in probability theory are seen on second glance
to be nothing but mottled soap. The idea was appropriated in a famous anecdote† about the Cam-
bridge mathematician G. H. Hardy; J. E. McTaggart expressed doubt that from a false proposition
all propositions can be derived, by challenging him thus: “Given 2 + 2 = 5: prove that I am the
Pope.” Whereupon Hardy replied: “Subtract 3 from each side and we have 1 = 2. Now we agree
that the Pope and you are two; therefore the Pope and you are one!” But that was only a play
on words; infinite set theory gives us a superior grade of mottled soap, with which we can prove
McTaggart’s papacy much more convincingly.

We start from the premise that two sets have the same number of elements if they can be
put into 1:1 correspondence with each other. Then by the association (n ↔ 2n), n = 1, 2, . . . we
can put the positive integers into 1:1 correspondence with the positive even integers. And by the
association (2n↔ 2n− 1), n = 1, 2, . . . we can, equally well, put the positive even integers into 1:1
correspondence with the positive odd integers; so by such logic it seems that we would be driven
to conclude that

(A) (Number of integers) = (number of even integers)
(B) (Number of even integers) = (number of odd integers)
(C) (Number of integers) = 2 × (number of even integers)

and from (A) and (C) it follows that 1 = 2. The reasoning here is not very different from we did
in (15–95).

Our view is that the “set of all integers” is undefined except as a limit of finite sets, and if
it is approached in that way, by introducing the explicit limiting process, no contradiction can be
produced whatever limiting process we choose, even though the limiting ratio of (Number of even
integers)/(Number of integers) can be made to be any x we please in 0 ≤ x ≤ 1. That is, the limit
of (Number of odd integers)/(Number of integers) will be (1 − x) and our counting will remain
consistent in the limit.

For example, every integer is included once and only once in the sequence {1, 3, 2, 5, 7, 4, . . .},
in which we take alternately two odd and one even. Then counting elements only in the finite sets
consisting of the first n elements of this sequence, and passing to the limit n→ ∞ after doing the
counting, we would find in place of the inconsistent statements (A), (B), (C) above, the consistent
set

(A’) (Number of integers) = 3 × (number of even integers)
(B’) (Number of even integers) = 1

2 × (number of odd integers)
(C’) (Number of integers) = (Number of even integers) + (Number of odd integers).

† On a different topic, we follow the same policy by defining the term “moving average” for a finite time
series in such a way that our theorems are all exact, without any need for messy “end effect” corrections.
Of course, it then develops that this is the definition most directly useful in applications (Chapter 23).
† Cited by Jeffreys (1957, p. 18).
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These ideas are not as new as one might think. Galileo (1638), in his Dialogues Concerning Two
New Sciences, notes two curious facts. On the one hand, each integer has one and only one square
and no two of them have the same square; from which it would seem that the number of integers
and the number of squares must be the same. On the other hand, it is evident that there are
many integers (in a certain sense, the ‘great majority’ of them) which are not squares. From this
he draws the eminently sensible conclusion: “This is one of the difficulties which arise when we
attempt, with our finite minds, to discuss the infinite, assigning to it those properties which we
give to the finite and limited; but this I think is wrong, for we cannot speak of infinite quantities
as being the one greater or less than or equal to another.” Three hundred years later, Hermann
Weyl expressed almost exactly the same judgment, as noted below.

The Hausdorff Sphere Paradox and Mathematical Diseases

The inconsistent statements above are structurally almost identical with the Hausdorff paradox
concerning congruent sets on a sphere, except for the promotion up to uncountable sets (here
X, Y, Z are disjoint sets which nearly cover the sphere, and X is congruent to Y , in the sense
that a rotation of the sphere makes X coincide with Y , and likewise Y is congruent to Z. But
what is extraordinary is the claim that X is also congruent to the union of Y and Z, even though
Y �= Z). We are, like Poincaré and Weyl, puzzled by how mathematicians can accept and publish
such results; why do they not see in this a blatant contradiction which invalidates the reasoning
they are using?

Nevertheless, L. J. Savage (1962) accepted this antinomy as literal fact and, applying it to
probability theory, said that someone may be so rash as to blurt out that he considers congruent
sets on the sphere equally probable; but the Hausdorff result shows that his beliefs cannot actually
have that property. The present writer, pondering this, has been forced to the opposite conclusion:
my belief in the existence of a state of knowledge which considers congruent sets on a sphere
equally probable, is vastly stronger than my belief in the soundness of the reasoning which led to
the Hausdorff result.

Presumably, the Hausdorff sphere paradox and the Russell Barber paradox have similar ex-
planations; one is trying to define weird sets with self–contradictory properties, so of course, from
that mess it will be possible to deduce any absurd proposition we please. Hausdorff entitled his
work ‘Mengenlehre’, and Poincaré made the famous quip that “Future generations will regard Men-
genlehre as a disease from which one has recovered.” But Poincaré would be appalled to see this
recovery not yet achieved 80 years later; nevertheless, his views are still alive and well today among
users of applied mathematics.

For example, in 1983 the writer heard a talk by a very prominent statistician, reporting on an
historical investigation. He remarked: “I was surprised to learn that, before the days of Bourbaki, the
French actually produced some useful mathematics.” More recently, the Nobel Laureate theoretical
physicist Murray Gell–Mann (1992), interpreted this differently. He opined that there is still much
in modern mathematics of value to physics, and the divergence of pure mathematics from science is
in part only an illusion produced by the obscurantist language of Bourbakists and their reluctance
to write up any non–trivial example in explicit detail. He concludes: “Pure mathematics and
science are finally being reunited and, mercifully, the Bourbaki plague is dying out.”

We wish we could feel that optimistic. In our view, the disease is far more serious than mere
obscure language; it infects the substantive content of pure mathematics. A sane person can have
no confidence in any of it; rules of conduct must be found which prevent the appearance of these
ridiculous paradoxes; and then our mathematics textbooks must be rewritten. Russell’s theory
of types can dispose of a few paradoxes, but far from all of them. Even with the best of good
will on both sides, It would require at least another generation to bring about the reconciliation
of pure mathematics and science. For now, it is the responsibility of those who specialize in
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infinite set theory to put their own house in order before trying to export their product to other
fields. Until this is accomplished, those of us who work in probability theory or any other area of
applied mathematics have a right to demand that this disease, for which we are not responsible, be
quarantined and kept out of our field.

In this view, too, we are not alone; and indeed have the support of many non–Bourbakist
mathematicians. In our Preface we quoted Morris Kline (1980) on the dangers of allowing infinite
set theory to get a foothold in applied mathematics. He in turn quotes Hermann Weyl (loc. cit.,
p. 237). Both Brouwer and Weyl noted that classical logic had been developed for application to
finite sets. The attempt to apply classical logic, without justification, to infinite sets is, in Weyl’s
words: “- - the Fall and original sin of set theory, for which it is justly punished by the antinomies.
It is not that such contradictions showed up that is surprising, but that they showed up at such a
late stage of the game.”

But there is a plausible explanation for this late appearance: if an erroneous argument leads
to an absurd result immediately, it will be abandoned and we shall never hear about it. If it yields
a reasonable result on the first two or three tries, then there is some range of problems where it will
succeed. One will continue using it, but at first conservatively; on problems that are quite similar,
so it is likely to continue giving reasonable results. Only later, when one becomes confident and
tries to extend the application to different kinds of problems, do the contradictions appear.

Just the same phenomenon occurred in orthodox statistics, where the ad hoc inventions such
as confidence intervals yielded acceptable results for a long time because they were used at first
only on simple problems which were free of nuisance parameters, and where sufficient statistics
existed. Nobody took any note of the fact that the numerical results were then the same as the
Bayesian posterior probability intervals at the same level – and confidence intervals were widely
held, by mathematicians such as Neyman, Cramér, Wilks, to be great advances over Bayesian
methods – before their contradictions began to appear when one tried to apply them to more
general problems.† Finally, we were able to show (see Chapter 17) that confidence intervals are
satisfactory as inferences (i.e. that they take into account all the relevant information in the data),
only in those special cases where they happen to agree with the Bayesian intervals after all.

Kline (loc. cit., p 285) also quotes J. Willard Gibbs on this subject: “The pure mathematician
can do what he pleases, but the applied mathematician must be at least partially sane.” In any
event, no sane person would try to use such anomalies as the Hausdorff sphere paradox in a real
application.

Finally, we offer a few more general comments on mathematical style.

What Am I Supposed to Publish?
L. J. Savage (1962) asked this question to express his bemusement at the fact that, no matter what
topic he chose to discuss and no matter what style of writing he chose to adopt, he was sure to
criticized for not making a different choice. In this he was not alone. We would like to plead for a
little more tolerance of our individual differences.

If anyone wants to concentrate his attention on infinite sets, measure theory, and mathematical
pathology in general, he has every right to do so. And he need not justify this by pointing to useful
applications or apologize for the lack of them; as was noted long ago, abstract mathematics is worth
knowing for its own sake.

But others in turn have equal rights. If we choose to concentrate on those aspects of mathe-
matics which are useful in real problems and which enable us to carry out important substantive

† Confidence intervals are always correct as statements about sampling properties of estimators; yet they
can be absurd as statements of inference about the values of parameters. For example, the entire confidence
interval may lie in a region of the parameter space which we know, by deductive reasoning from the data,
to be impossible.
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calculations correctly – but which the mathematical pathologists never get around to – we feel free
to do so without apology.

Ultimately, the mathematical level and depth of this work were chosen with the aim of making
it possible for all readers to get what they want from it. Since those who approach a work with the
sole purpose of finding fault with its style of presentation will always be able to do so no matter how
it is presented, our aim was to ensure that those who approach it with sincere desire to understand
its content will also be able to do so. Thus we try to give cogent reasons why the ideas we advocate
are “obvious,” while those we deplore are not, when this can be done briefly enough not to interrupt
the line of argument. This inevitably leaves some lacunae, in part filled in by the Comments at the
end of most Chapters.

In this connection, the question of what is and is not “obvious” is a matter of gamesmanship
that is played in two opposite directions. On the one hand, the standard way of introducing notions
that do not stand up to critical examination – or to deprecate those that stand up too well to be
safely opposed – is to call them “obvious.” On the other hand, to express grave doubts about simple
matters that are obvious, is the equally standard technique for imputing to one’s self deep critical
faculties not possessed by others. We try to steer a middle course between these, but like Savage
do so in the knowledge that whatever our choice, it will receive opposite criticisms from the two
types of gamesman.

But we avoid one common error; nothing could be more pathetically mistaken than the prefa-
tory claim of one author in this field that mathematical rigor “guarantees the correctness of the
results.” On the contrary, much experience teaches us that the more one concentrates on the ap-
pearance of rigor, the less attention he pays to the validity of the premises in the real world, and
the more likely he is to reach final conclusions that are absurdly wrong in the real world.

Mathematical Courtesy

A few years ago the writer attended a Seminar talk by a young mathematician who had just received
his Ph.D. degree and, we understood, had a marvelous new limit theorem of probability theory. He
started to define the sets he proposed to use, but three blackboards were not enough for them and
he never got through the list. At the end of the hour, having to give up the room, we walked out
in puzzlement, not knowing even the statement of his theorem.

A “Nineteenth Century (C19) Mathematician” like Poincaré would have been into the meat
of the calculation within a few minutes and would have completed the proof and pointed out its
consequences in time for discussion.

The young man is not to be blamed; he was only doing what he had been taught a “Twentieth
Century (C20) Mathematician” must do. Although he has perhaps now learned to plan his talks
a little better, he is surely still wasting much of his own time and that of others in reciting all the
preliminary incantations that are demanded in C20 mathematics before one is allowed to proceed
to the actual problem. He is a victim of what we consider to be, not higher standards of rigor, but
studied mathematical discourtesy.

Nowadays, if you introduce a variable x without repeating the incantation that it is in some
set or “space” X, you are accused of dealing with an undefined problem. If you differentiate a
function f(x) without first having stated that it is differentiable, you are accused of lack of rigor.
If you note that your function f(x) has some special property natural to the application, you are
accused of lack of generality. In other words, every statement you make will receive the discourteous
interpretation.

Obviously, mathematical results cannot be communicated without some decent standards of
precision in our statements. But a fanatical insistence on one particular form of precision and
generality can be carried so far that it defeats its own purpose. C20 mathematics often degenerates
into an idle adversary game instead of a communication process.
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The fanatic is not trying to get your substantive message at all, but only trying to find fault
with your style of presentation. He will strive his utmost to read nonsense into what you are saying,
if he can possibly find any way of doing so. In self–defense, writers are obliged to concentrate their
attention on every nit–picking detail of how things are said rather on what is said. The length
grows, the content shrinks.

Mathematical communication would be much more efficient and pleasant if we adopted a
different attitude. For one who makes the courteous interpretation of what others write, the fact
that x is introduced as a variable already implies that there is some set X of possible values. Why
should it be necessary to repeat that incantation every time a variable is introduced, thus using up
two symbols where one would do? [Indeed, the range of values is usually indicated more clearly at
the point where it matters; by adding conditions like (0 < x < 1) after an equation].

For a courteous reader, the fact that a writer differentiates f(x) twice already implies that
he considers it twice differentiable; why should he be required to say everything twice? If he
proves proposition A in enough generality to cover his application, why should he be obliged to use
additional space for irrelevancies about the most general possible conditions under which A would
be true?

C19 mathematicians were not being nonrigorous by their style; they merely, as a matter of
course, extended simple civilized courtesy to others, and expected to receive it in return. This will
lead one to try to read sense into what others write, if it can possibly be done in view of the whole
context; not to pervert our reading of every mathematical work into a witch–hunt for deviations
from the Official Style.

Therefore, sympathizing with the young man’s plight but not intending to be enslaved like
him, we issue the following:

EMANCIPATION PROCLAMATION

Every variable x that we introduce is understood to have some set X of possible
values. Every function f(x) that we introduce is understood to be sufficiently
well behaved so that what we do with it makes sense. We undertake to make
every proof general enough to cover the application we make of it. It is an
assigned homework problem for the reader who is interested in the question, to
find the most general conditions under which the result would hold.

We could convert many C19 mathematical works to C20 standards by making a rubber stamp
containing this Proclamation, with perhaps another sentence using the terms “Sigma–algebra,
Borel field, Radon–Nikodym derivative”, and stamping it on the first page.

Modern writers could shorten their works substantially, with improved readability and no
decrease in content, by including such a Proclamation in the Copyright message, and writing
thereafter in C19 style. Perhaps some publishers, seeing these words, may demand that they do
this for economic reasons; it would be a service to science.

In this Appendix we have presented many short quotations without the references. Supporting
documentation and many further interesting details may be found in Bell (1937), Félix (1960), Kline
(1980), and Rowe & McCleary (1989).


