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CHAPTER 16

ORTHODOX METHODS: HISTORICAL BACKGROUND

“With all this confounded trafficking in hypotheses about invisible connections with all man-
ner of inconceivable properties, which have checked progress for so many years, I believe
it to be most important to open people’s eyes to the number of superfluous hypotheses they
are making, and would rather exaggerate the opposite view, if need be, than proceed along
these false lines.” — H. von Helmholtz (1868).

This Chapter and Chapter 13 are concerned with the history of the subject rather than its present
status. There is a complex and fascinating history before 1900, recounted by Stigler (1986), but
we are concerned now with more recent developments. In the period from about 1900 to 1970,
one school of thought dominated the field so completely that it has come to be called “orthodox
statistics”. It is necessary for us to understand it, because it is what most working statisticians
active today were taught, and its ideas are still being taught, and advocated vigorously, in many
textbooks and Universities.

In Chapter 17 we want to examine the “orthodox” statistical practice thus developed and
compare its technical performance with that of the “probability as logic” approach expounded
here. But first, to understand this weird course of events we need to know something about the
problems faced then, the sociology that evolved to deal with them, the roles and personalities of
the principal figures, and the general attitude toward scientific inference that orthodoxy represents.

The Early Problems

As we note repeatedly, the beginnings of scientific inference were laid in the 18’th and 19’th Cen-
turies out of the needs of astronomy and geodesy. The principal figures were Daniel Bernoulli,
Laplace, Gauss, Legendre, Poisson and others, whom we would describe today as mathematical
physicists.

Transitions in the dominant mode of thinking take place slowly over a few decades, the working
lifetime of one generation. But the beginning of our period, 1900, marks roughly the time when
non–physicists moved in and proceeded to take over the field with quite different ideas. The end,
1970, marks roughly the time when those ideas in turn came under serious, concerted attack in our
present “Bayesian Revolution”.

During this period, as we analyzed in Chapter 10, the non–physicists thought that probability
theory was a physical theory of “chance” or “randomness”, with no relation to logic, while “Statis-
tical Inference” was thought to be an entirely different field, based on entirely different principles.
But, having abandoned the principles of probability theory, it seemed that they could not agree
on what those new principles of inference were; or even on whether the reasoning of statistical
inference was deductive or inductive.

The first problems, dating back to the 18’th Century, were of course of the very simplest kind,
estimating one or more location parameters θ from data D = {x1 . . . xn} with sampling distributions
of the form p(x|θ) = f(x− θ). However, in practice this was not a serious limitation, because even
a pure scale parameter problem becomes approximately a location parameter one if the quantities
involved are already known rather accurately, as is generally the case in astronomy and geodesy.

Thus if the sampling distribution has the functional form f(x/σ), and x and σ are already
known to be about equal to x0 and σ0, we are really making inferences about the small corrections
q ≡ x − x0 and δ ≡ σ − σ0. Expanding in powers of δ and keeping only the linear term, we have
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where θ ≡ x0δ/σ0. Thus we may define a new sampling distribution function

h(x − θ) ∝ f(x/σ)

and we are considering an approximately location parameter problem after all. In this way, almost
any problem can be linearized into a location parameter one if the quantities involved are already
known to fairly good accuracy. The 19’th Century astronomers took good advantage of this, as we
should also.

Only toward the end of the 19’th Century did practice advance to the problem of estimating
simultaneously both a location and scale parameter θ, σ from a sampling distribution of the form
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and to the marvelous developments by Galton associated with the bivariate gaussian distribution,
which we studied in Chapter 7. Virtually all of the development of orthodox statistics was concerned
with these three problems or their reverbalizations in hypothesis testing form, and most of it only
with the first. But even that seemingly trivial problem had the power to generate fundamental
differences of opinion and fierce controversy over matters of principle.

Sociology of Orthodox Statistics

During the aforementioned period, the average worker in physics, chemistry, biology, medicine,
economics with a need to analyze data could hardly be expected to understand theoretical principles
that did not exist, and so the approved methods of data analysis were conveyed to him in many
different, unrelated ad hoc recipes in “cookbooks” which in effect told one to “Do this · · · then do
that · · · and don’t ask why.”

R. A. Fisher’s Statistical Methods for Research Workers was the most influential of these
cookbooks. In going through 13 editions in the period 1925–1960 it acquired such an authority
over scientific practice that researchers in some fields such as medical testing found it impossible
to get their work published if they failed to follow Fisher’s recipes to the letter.

Fisher’s recipes include Maximum Likelihood Parameter Estimation (MLE), Analysis of Vari-
ance (ANOVA), fiducial distributions, randomized design of experiments, and a great variety of
significance tests, which make up the bulk of his book. The rival Neyman–Pearson school of
thought offered unbiased estimators, confidence intervals, and hypothesis testing. The combined
collection of the ad hoc recipes of the two schools came to be known as orthodox statistics, although
arguments raged back and forth between them over fine details of their respective ideologies. It
was just the absence of any unifying principles of inference that perpetuated this division; there
was no criterion acceptable to all for resolving differences of opinion.

Whenever a real scientific problem arose that was not covered by the published recipes, the
scientist was expected to consult a professional statistician for advice on how to analyze his data,
and often on how to gather them as well. There developed a statistician–client relationship rather
like the doctor–patient one, and for the same reason. If there are simple unifying principles (as
there are today in the theory we are expounding), then it is easy to learn them and apply them
to whatever problem one has; each scientist can become his own statistician. But in the absence
of unifying principles, the collection of all the empirical, logically unrelated procedures that a data
analyst might need, like the collection of all the logically unrelated medicines and treatments that
a sick patient might need, was too large for anyone but a dedicated professional to learn.
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Undoubtedly, this arrangement served a useful purpose at the time, in bringing about a sem-
blance of order into the way scientists analyzed and interpreted their data and published their
conclusions. It was workable as long as scientific problems were simple enough so that the cook-
book procedures could be applied and made some intuitive sense, even though they were not derived
from any first principles. Then, had the proponents of orthodox methods behaved with the profes-
sional standards of a good doctor (who notes that some treatments have been found to be effective,
but admits frankly that the real cause of a disorder is not known and welcomes further research to
supply the missing knowledge) there could be no criticism of the arrangement.

But that is not how they behaved; they adopted a militant attitude, each defending his own
little bailiwick against intrusion and opposing every attempt to find the missing unifying principles
of inference. R. A. Fisher (1956) and M. G. Kendall (1963) attacked Neyman and Wald for seeking
unifying principles in decision theory. R. A. Fisher (numerous articles), H. Cramér (1946), R. von
Mises (1951), J. Neyman (1952), Wm. Feller (1950) – and even the putative Bayesian L. J. Savage
(1954, 1980) – accused Laplace and Jeffreys of committing metaphysical nonsense for thinking that
probability theory was an extension of logic, and seeking the unifying principles of inference on
that basis.

We are at a loss to explain how they could have felt such a certainty about this, since they were
all quite competent mathematically and presumably understood perfectly well what does and what
does not constitute a proof. Yet they did not examine the consistency of probability theory as logic
(as R. T. Cox did); nor did they examine its qualitative correspondence with common sense (as G.
Pólya did). They did not even deign to take note of how it works out in practice (as H. Jeffreys
had shown so abundantly in works which were there for their inspection). In fact, they offered
no demonstrative arguments or factual evidence at all in support of their position; they merely
repeated ideological slogans about “subjectivity” and “objectivity” which were quite irrelevant to
the issues of logical consistency and useful results.

We are equally helpless to explain why James Bernoulli and John Maynard Keynes (who
expounded essentially the same views as did Laplace and Jeffreys) escaped their scorn. Evidently,
the course of events must have had something to do with personalities; let us examine a few of
them.

Ronald Fisher, Harold Jeffreys, and Jerzy Neyman

Sir Ronald Aylmer Fisher (1890 – 1962) was by far the dominant personality in this field in the
period 1925 – 1960. A personal account of his life is given by his daughter (Joan Fisher Box, 1978).
On the technical side, he had a deep intuitive understanding and produced a steady stream of
important research in genetics. Sir Harold Jeffreys (1891 – 1989) working in geophysics, wielded
no such influence, and for most of his life found himself the object of scorn and derision from the
Fisherian camp.

Fisher’s early fame (1915–1925) rested on his mathematical ability: given data D ≡ {x1 . . . xn}
to which we assign a multivariate gaussian sampling probability p(D|θ) with parameters θ ≡
{θ1 . . . θm}, how shall we best estimate those parameters from the data? Probability theory as
logic considers it obvious that in any problem of inference we are always to calculate the probabil-
ity of whatever is unknown and of interest, conditional on whatever is known and relevant; in this
case, p(θ|D, I).

But the orthodox view rejects this on the grounds that p(θ|D, I) is meaningless because it is
not a frequency; θ is not a ‘random variable’, only an unknown constant. Instead, we are to choose
some function of the data f(D) as our “estimator” of θ. The merits of any proposed estimator are
to be determined solely from its sampling distribution p(f |θ). The data are always supposed to be
obtained by ‘drawing from a population’ urn–wise, and p(f |θ) is always supposed to be a limiting
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frequency in many repetitions of that draw. A good estimator is one whose sampling distribution
is strongly concentrated in a small neighborhood of the true value of θ.

But as we noted in Chapter 13, orthodoxy, having no general theoretical principles for con-
structing the ‘best’ estimator, must in every new problem guess various functions f(D) on grounds
of intuitive judgment, and then test them by determining their sampling distributions, to see how
concentrated they are near the true value. Thus calculation of sampling distributions for estimators
is the crucially important part of orthodox statistics; without it one has no grounds for choosing
an estimator.

Now the sampling distribution for some complicated function of the data, such as the sample
correlation coefficient, can become quite a difficult mathematical problem; but Fisher was very
good at this, and found many of these sampling distributions for the first time. Technical details
of these derivations, in more modern language and notation, may be found in Feinberg & Hinkley
(1989).

Many writers have wondered how Fisher was able to acquire the multidimensional space intu-
ition that enabled him to solve these problems. We would point out that just before starting to
produce those results, Fisher spent a year (1912–1913) as assistant to the theoretical physicist Sir
James Jeans, who was then preparing the second edition of his book on kinetic theory and worked
daily on calculations with high–dimensional multivariate gaussian distributions (called Maxwellian
velocity distributions).

But nobody seemed to notice that Jeffreys was able to bypass Fisher’s calculations and derive
his parameter estimates in a few lines of the most elementary algebra. For Jeffreys, using probability
theory as logic, in the absence of any cogent and detailed prior information, the best estimators
were always determined by the likelihood function, which can be written down by inspection of
p(D|θ). This automatically constructed the optimal estimator for him, with no need for intuitive
judgment and without ever calculating a sampling distribution for an estimator. Fisher’s difficult
calculations calling for all that space intuition, although interesting as mathematical results in their
own right, were quite unnecessary for the actual conduct of inference.

Fisher’s later dominance of the field derives less from his technical work than from his flam-
boyant personal style and the worldly power that went with his official position, in charge of the
work and destinies of many students and subordinates. For 14 years (1919–1933) he was at the
Rothamsted agricultural research facility with an increasing number of assistants and visiting stu-
dents, then holder of the Chair of Eugenics at University College, London, and finally in 1943
Balfour Professor of Genetics at Cambridge where he also became President of Caius College. He
was elected Fellow of the Royal Society in 1929, and was knighted in 1952.

Within his field of geophysics, Harold Jeffreys also showed an outstandingly high competence,
was elected Fellow of the Royal Society in 1925, became Plumian Professor of Astronomy at Cam-
bridge in 1946, and was knighted in 1953. The treatise on mathematical physics by Sir Harold and
Lady Jeffreys (1946) was for many years the standard textbook in the field, with far more advanced
and useful mathematics than is contained in all of Fisher’s works. But Jeffreys remained all his
life as a Fellow of St. John’s College, Cambridge, working quietly and modestly, and hardly visible
outside his field of geophysics; he had only one doctoral student in probability theory (V. S. Huzur-
bazar).

In sharp contrast Fisher, possessed of a colossal, overbearing ego, thrashed about in the field,
attacking the work of everyone else† with equal ferocity. Somehow, early in life Fisher’s mind became
captured by the dogma that by “probability” one is allowed to mean only limiting frequency in a

† For the record (we shall not go into them deeply): we consider Fisher’s criticisms of Karl Pearson on
grounds of maximum likelihood vs. moment fitting and the proper number of degrees of freedom in Chi–
squared, and of Jerzy Neyman on grounds of confidence intervals, unbiased estimators, and the meaning of
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random experiment (although he usually stated this as the ratio of two infinite numbers, rather
than the limit of a ratio of finite numbers) and that any other meaning is metaphysical nonsense,
unworthy of a scientist. Conceivably, this view might have come from the philosopher John Venn
(an earlier President of Caius College, Cambridge, where Fisher was an undergraduate in 1909–
1912). In a very influential work which went through three editions, Venn ridiculed Laplace’s
conception of probability theory as logic; and Fisher’s early work sounds very much like this.

However, we see a weakening of resolve in Fisher’s final book (1956) where he actually defends
Laplace against the criticisms of Venn, and suggests that Venn did not understand mathematics
well enough to comprehend what Laplace was saying. His criticisms of Jeffreys are now much toned
down. Noting this, some have opined that, were Fisher alive today, he would now be a Bayesian.†

In both science and art every creative person must, at the beginning of his career, do battle
with an Establishment that, not comprehending the new ideas, is more concerned with putting him
down than with understanding his message. Karl Pearson (1857–1936), as Editor of Biometrika,
performed that ‘service’ for Fisher in his early attempts at publication, and Fisher never forgave
him for this. But curiously, in his last book Fisher’s attacks against Pearson are, if anything, more
violent and personal than ever before. This is hard to understand, for by 1956 the battle was long
since won; Pearson had been dead for twenty years, and it was universally recognized that in all
their disputes Fisher had been in the right. Why should the bitterness remain thirty years after it
had ceased to be relevant? This tells us much about Fisher’s personality.

Fisher’s articles are most easily found today in two “collected works” (Fisher, 1952, 1974).
The ones on the principles of inference have an interesting characteristic pattern. They start with
a paragraph or two of polemical denunciation of Jeffreys’ use of Bayes’ theorem (at that time called
inverse probability). Then he formulates a problem, sees the correct solution intuitively, and does
the requisite calculations in a very efficient, competent way. But just at the point where one more
step of the logical argument would have forced him to see that he was only rediscovering, in his
own way, the results of applying Bayes’ theorem, the article comes to an abrupt end.

Harold Jeffreys (1939) was able to derive all the same results far more easily, by direct use
of probability theory as logic, and this automatically yielded additional information about their
range of validity and how to generalize them, that Fisher never did get. But whenever Jeffreys
tried to point this out, he was buried under an avalanche of criticism which simply ignored his
mathematical demonstrations and substantive results and attacked his ideology. His perceived sin
was that he did not require a probability to be also a frequency, and so admitted the notion of
probability of an hypothesis. Nobody seemed to perceive the fact that this broader conception of
probability was just what was giving him those computational advantages.

significance levels, to be justified on grounds of technical fact. It is perhaps a measure of Fisher’s influence
that the two disputes where we think that Fisher was in the wrong – the one with W. S. Gossett over
randomization and the one with Jeffreys on the whole meaning and philosophy of inference, are still of
serious concern today.
† But against this supposition is the fact that in the last year of his life Fisher published an article (Fisher,
1962) examining the possibilities of Bayesian methods, but with the prior probabilities to be determined
experimentally !! This shows that he never accepted – and probably never comprehended – the position of
Jeffreys about the meaning and function of a prior probability. Anything obtained experimentally would
be, for Jeffreys and for us, part of the data; the prior probabilities represent instead whatever additional
information we bring to the problem, exclusive of the data. In his final pronouncement on this, Fisher
would still leave us no way to take that prior information into account, although we saw in Chapter 6 how
crucially important even qualitative prior information can be in a real problem. It seems to us likely that
Fisher never faced a problem in which we had cogent prior information that cannot be expressed by choice
of a model; for Jeffreys and for us, that is the usual situation.
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Jerzy Neyman, whom we met in Chapter 14, also rejected Jeffreys’ work on the same ideological
grounds as did Fisher (but in turn had his own work rejected by Fisher). Neyman, too, directs
scathing ridicule at Jeffreys, far beyond what would have been called for even if Neyman had been
technically correct and Jeffreys wrong. For example, Neyman (1952, p. 11) becomes heated over a
problem involving five balls in two urns, so simple that it would not be considered worthy of being
a homework problem today, in which Jeffreys (1939, §7.02) is clearly in the right.

In view of all this, it is pleasant to be able to record that in the end Harold Jeffreys outlived
his critics and the merit of his work, on both the theoretical and the pragmatic levels, was finally
recognized. In the last years of his life he had the satisfaction of seeing Cambridge University –
from the Cavendish Physics Laboratory on the North to the Molecular Biology Laboratory on the
South – well populated with young scientists studying and applying his work and, with the new
tool of computers, demonstrating its power for the current problems of science.

The exchanges between Fisher and Jeffreys over these issues in the British Journals of the
1930’s were recalled recently by S. Geisser (1980) and D. Lane (1989), with many interesting
details. But we want to add some additional comments to theirs, because a fellow physicist is in
a better position to appreciate Jeffreys’ motivations, highly relevant for the applications we are
concerned with today.

Firstly, we need to recognize that a large part of their differences arose from the fact that Fisher
and Jeffreys were occupied with different problems. Fisher studied biological problems where one
had no prior information and no guiding theory (this was long before the days of the DNA helix)
and the data taking was very much like drawing from Bernoulli’s Urn. Jeffreys studied problems of
geophysics where one had a great deal of cogent prior information and a highly developed guiding
theory (all of Newtonian mechanics giving the theory of elasticity and seismic wave propagation,
plus the principles of physical chemistry and thermodynamics); and the data taking procedure had
no resemblance to drawing from an Urn. Fisher, in his cookbook, §1, defines statistics as the study
of populations; Jeffreys devotes virtually all of his analysis to problems of inference where there is
no population.

Late in life, Jerzy Neyman was able to perceive this difference. His biographer Constance
Reid (1982, p. 229) quotes Neyman thus: “The trouble is that what we [statisticians] call modern
statistics was developed under strong pressure on the part of biologists. As a result, there is
practically nothing done by us which is directly applicable to problems of astronomy.”

Fisher advanced, very aggressively, the opposite view; that the methods which were successful
in his biological problems must be also the general basis of all scientific inference. What Fisher
was never able to see is that, from Jeffreys’ viewpoint, Fisher’s biological problems were trivial,
both mathematically and conceptually. In his early Chapters, Jeffreys (1939) disposes of them
in a few lines, obtaining Fisher’s inference results far more easily than Fisher did, as the simplest
possible applications of Bayes’ theorem,� then goes on to more complex problems beyond the ambit
of Fisher’s methods. Jeffreys (1939, Chap. 7) then summarizes the comparisons with Fisher and
Neyman in more general terms.

As science progressed to more and more complicated problems of inference, the shortcomings of
the orthodox methods became more and more troublesome. Fisher would have been nearly helpless,
and Neyman completely helpless, in a problem with many nuisance parameters but no sufficient
or ancillary statistics. Accordingly, neither ever attempted to deal with what is actually the most
common problem of inference faced by experimental scientists; linear regression with both variables

� Of course, Fisher’s randomized planting methods, which we think to be not actually wrong, but for
reasons explained elsewhere in this work hopelessly inefficient, were not reproduced by Jeffreys; nor would
he wish to. It appears to be a quite general principle that, whenever there is a randomized way of doing
something, then there is a nonrandomized way that delivers better performance but requires more thought.
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subject to unknown error. Generations of scientists in several different fields searched the statistical
literature in vain for help on this; but for Bayesian methods [Zellner (1987), Chapter 5; Bretthorst
(1988)] the nuisance parameters are only minor technical details that do not deter one from finding
the straightforward and useful solutions. Scientists, engineers, biologists, and economists with good
Bayesian training are now finding for themselves the correct solutions appropriate to their problems,
which incorporate many different kinds of prior information.

However, we recognize Fisher’s high competence in the problems which concerned him. An
honest man can maintain an ideology only as long as he confines himself to problems where its
shortcomings are not evident. Had Fisher tried more complex problems, we think that he would
have perceived the superior power of Jeffreys’ methods rather quickly; the mathematics forces one
to it, independently of all ideology. As noted, it may be that he started to see this toward the end
of his life.

Secondly, we note the very different personalities and habits of scholarly conduct of the com-
batants. In any field, the most reliable and instantly recognizable sign of a fanatic is a lack of any
sense of humor. Colleagues have reported their experiences at meetings, where Fisher could fly into
a trembling rage over some harmless remark that others would only smile at. Even his most ardent
disciples (for example, M. Kendall, 1963) noted that the character defects that he attributed to
others were easily discernible in Fisher himself; as one put it, “Whenever he paints a portrait, he
paints a self–portrait.”

Harold Jeffreys maintained his composure, never took these disputes personally and, even in
his nineties when the present writer knew him, it was a delight to converse with him because he
still retained a wry, slightly mischevious, sense of humor. The greatest theoretical physicists of the
nineteenth and twentieth Centuries, James Clerk Maxwell and Albert Einstein, showed just the
same personality trait, as testified by many who knew them.

Needless to say (since Fisher’s methods were mathematically only special cases of those of
Jeffreys), Fisher was never able to exhibit a specific problem in which his methods gave a satisfactory
result and Jeffreys’ methods did not. Therefore we see in Fisher’s words almost no pointing to actual
results in real problems. Usually Fisher’s words convey only a spluttering exasperation at the gross
ideological errors of Jeffreys and his failure to repent. His few attempts to address technical details
only reveal his own misunderstandings of Jeffreys.

For example, Jeffreys (1932) gave a beautiful derivation of the dσ/σ prior for a scale parameter,
that we recall in Chapter 12. Given two observations x1, x2 from a Gaussian distribution, the
predictive probability density for the third observation is

p(x3|x1, x2, I) =
∫

dµ

∫
dσ p(x3|µ, σ, I) p(µ, σ|x1, x2, I)

If initially σ is completely unknown, then our estimates of σ ought to follow the data difference
|x2 − x1|, with the result that the predictive probability for the third observation to lie between
them ought to be 1/3, independently of x1 and x2 (with independent sampling, every permutation
of the three observations has the same probability). He shows that this will be true only for the
dσ/σ prior.

But Fisher (1933), failing to grasp the concept of a predictive distribution, takes this to be
a statement about the sampling distribution p(x3|µ, σ, I), which is an entirely different thing; and
jumps to the conclusion that Jeffreys is guilty of a ridiculous elementary error. This launches
him into seven pages of polemical attacks on all of Jeffreys’ work, which display in detail his own
total lack of comprehension of what Jeffreys was doing. All readers who want to understand the
conceptual hangups that delayed the progress of this field for decades, should read this exchange
very carefully.
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But in Jeffreys’ words there is no misunderstanding of Fisher, no heaping of scorn and no
ideological sloganeering; only a bemused sense of humor at the whole business. The issue as Jeffreys
saw it was not any error of Fisher’s actual procedures on his particular biological problems, but the
incompleteness of his methods for more general problems and the lack of any justification for his
dogmatically asserted premises (in particular that one must conjure up some hypothetical infinite
population from which the data are drawn, and that every probability must have an objectively
‘true’ value, independently of human information; Jeffreys’ whole objective was to use probability
to represent human information). Furthermore, Jeffreys always made his point quite gently.

For example, Jeffreys (1939, p. 325), perceiving what we noted above, writes of Fisher that,
“In fact, in spite of his occasional denunciations of inverse probability, I think that he has succeeded
better in making use of what it really says than many of its professed users have.” As another
example, in one of the exchanges Jeffreys complained that Fisher had “reduced his work to non-
sense”. In reply, Fisher pounced upon this, and wrote, gleefully: “I am not inclined to deny it.”
Geisser (1980) concludes that Jeffreys came off second best here; we see instead Jeffreys smiling at
the fact that Fisher was deflected from the issue and fell headlong into the little trap that Jeffreys
had set for him.

Having said something of their differences, we should add that, as competent scientists, Fisher
and Jeffreys were necessarily in close agreement on more basic things; in particular on the role of
induction in science. Neyman, not a scientist but a mathematician, tried to claim that his methods
were entirely deductive. For example, in Neyman (1952, p. 210), he states: “· · · in the ordinary
procedure of statistical estimation there is no phase corresponding to the description of ‘inductive
reasoning.’ · · · all the reasoning is deductive and leads to certain formulae and their properties.”
But Neyman (1950) was willing so speak of inductive behavior .

Fisher and Jeffreys, aware that all scientific knowledge has been obtained by inductive reasoning
from observed facts, naturally enough denied the claim of Neyman that inference does not use
induction, and of the philosopher Karl Popper that induction was impossible. We discussed this
claim at the end of Chapter 9. Jeffreys expressed himself on this more in private conversations (at
one of which the writer was present) than in public utterances; Fisher publicly likened Popper’s
and Neyman’s strictures to political thought–control. As he put it (Fisher, 1956, p. 7): “To one
brought up in the free intellectual atmosphere of an earlier time there is something rather horrifying
in the ideological movement represented by the doctrine that reasoning, properly speaking, cannot
be applied to empirical data to lead to inferences valid in the real world.”

Indeed, their reaction to Popper may be a repetition of what happened in the 18’th Century.
Fisher (1956, p. 10), Stigler (1983), and Zabell (1989) present quite good evidence – which seems
to us, in its totality, just short of proof – that Thomas Bayes had found his result as early as 1748,
and the original motivation for this work was his annoyance at the claim of the 18’th Century
philosopher David Hume of the impossibility of induction. We may conjecture that Bayes sought
to give an explicit counter–example, but found it a bit more difficult than he had at first expected,
and so delayed publishing it. This would give a neat and natural explanation of many otherwise
puzzling facts.

Pre–data and Post–data Considerations

The basic pragmatic difference in the two approaches is in how they relate to the data; orthodox
practice is limited at the outset to “pre–data” considerations. That is, it gives correct answers to
questions of the form:

(A): Before you have seen the data, what data do you expect to get?
(B): If the as yet unknown data are used to estimate parameters by some known

algorithm, how accurate do you expect the estimates to be?
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(C): If the hypothesis being tested is in fact true, what is the probability that we
shall get data indicating that it is true?

Of course, probability theory as logic automatically includes all sampling distribution calculations;
so in problems where such questions are the ones of interest, we shall do the same calculations and
reach the same numerical conclusions, with at worst a verbal disagreement over terminology.

But as we have stressed repeatedly, virtually all real problems of scientific inference are con-
cerned with “post–data questions”:

(A’): After we have seen the data, do we have any reason to be surprised by them?
(B’): After we have seen the data, what parameter estimates can we now make,

and what accuracy are we entitled to claim?
(C’): What is the probability conditional on the data, that the hypothesis is true?

Orthodoxy is prevented from dealing with post–data questions by its different philosophy. The
basic tenet that determines the form of orthodox statistics is that the reason why inference is
needed lies not in mere human ignorance of the true causes operative, but in a “randomness” that
is attributed instead to Nature herself; just what we call the Mind Projection Fallacy. This leads
to the belief that probability statements can be made only about random variables and not about
unknown fixed parameters. However, although the property of being ‘random’ is considered a real
objective attribute of a variable, orthodoxy has never produced any definition of the term “random
variable” that could actually be used in practice to decide whether some specific quantity, such as
the number of beans in a can, is or is not “random”.

Therefore, although the question: “Which quantities are random?” is crucial for everything he
does, we are unable to explain how the orthodoxian actually decides this; we can only observe what
decisions he makes. For some reason, data are always considered random, almost everything else
is nonrandom; but to the best of our knowledge, there is no principle in orthodox statistics which
would have enabled one to predict this choice. Indeed, in a real situation the data are usually the
only things that are definite and known, and almost everything else in the problem is unknown
and only conjectured; so the opposite choice would seem far more natural.

But this orthodox choice has the consequence that orthodox theory does not admit the existence
of prior or posterior probabilities for a fixed parameter or an hypothesis, because they are not
considered random variables. We want, then, to examine how orthodoxy manages to pass off the
answer to a pre–data question as if it were the answer to a post–data one. Mostly this is possible
because of mathematical accidents, such as symmetry in parameter and estimator.

The sampling distribution for an estimator

We have noted why a major part of the orthodox literature is devoted, necessarily, to calculating,
approximating, and comparing sampling pdf ’s for estimators; this is the only criterion orthodoxy
has for judging estimators and in a new problem one may need to find sampling distributions for
a half–dozen different estimators before deciding which one is best.

The sampling pdf for an estimator does not have the same importance in Bayesian analysis,
because we do have the needed theoretical principles; if an estimator has been derived from Bayes’
theorem and a specified loss function, then we know from perfectly general theorems that it is the
optimal estimator for the problem as defined, whatever its sampling distribution may be. In fact,
the sampling pdf for an estimator plays no functional role in post–data inference, and so we have
no reason to mention it at all, unless pre–data considerations are of some interest (for example, in
planning an experiment and deciding what kind of data to take and when to stop).
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But in addition to this negative (non–functionality) reason, there is a stronger positive reason
for diverting attention away from the sampling pdf for an estimator; it is not the proper criterion
of the quality of an inference. Suppose a scientist is estimating a physical parameter α such as the
mass of a planet. If the sampling pdf for the estimator is indeed equal to the long–run frequencies
in many repetitions of the measurement, then its width would answer the pre–data question:

Q1: How much would the estimate of α vary over the class of all data sets that
we might conceivably get?

But that is not the relevant question for the scientist. His concern is with the post–data one:

Q2: How accurately is the value of α determined by the one data set D that we
actually have?

and according to probability theory as logic, the correct measure of this is the width of the posterior
pdf for the parameter, not the sampling pdf for the estimator. Since this is a major bone of
contention between the Orthodox and Bayesian schools of thought, let us understand why they can
sometimes be the same, with resulting confusion of pre–data and post–data considerations. In the
next Chapter, we shall see some of the horrors that can arise when they are not the same.

Historically, since the time of Laplace, scientific inference has been dominated overwhelmingly
by the case of Gaussian sampling distributions which have the aforementioned symmetry. Suppose
we have a data set D = {y1 . . . yn} and a sampling distribution

p(D|µ, σ, I) ∝ exp

[
−

∑
i

(yi − µ)2

2σ2

]
(16–1 )

with σ known. Then the Bayesian posterior pdf for µ, with uniform prior, is

p(µ|D, σ, I) ∝ exp
[
−n(µ − ȳ)2

2σ2

]
(16–2 )

from which the post–data (mean ± standard deviation) estimate of µ is

(µ)est = ȳ ± σ√
n

(16–3 )

which shows that the sample mean ȳ ≡ n−1
∑

yi is a sufficient statistic. Then if the orthodoxian
decided to use ȳ as an estimator of µ, he would find its sampling distribution to be

p(ȳ|µ, σ, I) ∝ exp
[
−n(ȳ − µ)2

2σ2

]
(16–4 )

and this would lead him to make the pre–data estimate

(ȳ)est = µ ± σ√
n

(16–5 )

But although (16–3) and (16–5) have entirely different meanings conceptually, they are mathemati-
cally so nearly identical that the Bayesian and Orthodoxian would make the same actual numerical
estimate of µ and claim the same accuracy. In problems like this, which have sufficient statistics
but no nuisance parameters, there is a mathematical symmetry (approximate or exact) which can
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make the answers to a pre–data question and a post–data question closely related if we have no
very cogent prior information which would break that symmetry.

This accidental equivalence has produced a distorted picture of the field; the Gaussian case
is the one in which orthodox methods do best because the symmetry is exact, and the difference
between pre–data and post–data results is the least. On the basis of such limited evidence, orthodox
theory tried to claim general validity for its methods.

But had the early experience referred instead to Cauchy sampling distributions:

p(y|µ) = 1
π

1
1 + (y − µ)2

(16–6 )

the distinction could never have been missed because the answers to the pre–data and post–data
questions are so different that common sense would never have accepted the answer to one as the
answer to the other. In this case, with an uninformative prior the Bayesian posterior pdf for µ is

p(µ|D, I) ∝
n∏

i=1

1
1 + (µ − yi)2

(16–7 )

which is still straightforward, although analytically inconvenient. Numerically, the (posterior mean
± standard deviation) or (posterior median ± interquartile) estimates are readily found by com-
puter, but there is no sufficient statistic and therefore no good analytical solution.

But orthodoxy has never found any satisfactory estimator at all for this problem! If we try
again to use the sample mean ȳ as an estimator, we find to our dismay that its sampling pdf is

p(ȳ|µ, I) ∝ [1 + (ȳ − µ)2]−1

which is identical with (16–6); the mean of any number of observations is, according to orthodox
criteria, no better than a single observation. Although Fisher noted that for large samples, the
sample median tends to be more strongly concentrated near the true µ than does the sample mean,
this gives no reason to think that it is the best estimator by orthodox criteria even in the limit of
large samples, and the question remains open today.

We expect that both the Bayesian posterior mean and posterior median value estimators
would prove to be considerably better, by orthodox criteria of performance, than any presently
known orthodox estimator. Simple computer experiments would be able to confirm or refute this
conjecture; but we doubt whether they will be done, because the question is of no interest to
a Bayesian, while a well–indoctrinated orthodoxian will never voluntarily examine any Bayesian
result.�

� For example, many years ago the writer attempted to publish an article demonstrating the superior
performance of Bayesian estimation with a Cauchy distribution, in the small sample case which can be solved
analytically – and had the work twice rejected. The Referee accused me of unfair tactics for bringing up
the matter of the Cauchy distribution at all, because “· · · it is well known that the Cauchy distribution is a
pathological, exceptional case.” Thus did one orthodoxian protect the journal’s readers from the unpleasant
truth that Bayesian analysis does not break down on this problem. To the best of our knowledge Bayesian
analysis has no pathological, exceptional cases; a reasonable question always has a reasonable answer.
Finally, after 13 years of struggling, we did manage to get that analysis published after all by slipping it
into a longer article (Jaynes, 1976).
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Pro–Causal and Anti–Causal Bias

A criticism of orthodox methods that we shall find in the next Chapter is not ideological, but that
they have technical shortcomings (waste of information) which, in practice, all tend to bias our
inferences in the same direction. The result is that, when we are testing for a new phenomenon,
orthodoxy in effect considers it a calamity to give credence to a phenomenon that is not real, but
is quite unconcerned about the consequences of failing to recognize a phenomenon that is real.

But to be fair, at this point we should keep in mind the historical state of affairs, and the far
worse practices that the early workers in this field had to counteract. As we noted in Chapter 5,
the uneducated mind always sees a causal relation – even where there is no conceivable physical
mechanism for it – out of the most far–fetched coincidence.

Johannes Kepler (1571–1630) was obliged to waste much of his life casting horoscopes for
his patron (and complained about it privately). No amount of evidence showing the futility of
this seems to shake the belief in it; even today, more people make their living as astrologers than
astronomers.

In the 18’th and 19’th Centuries, science was still awash with superstitious beliefs in causal in-
fluences that do not exist, and Laplace (1819) warned against this in terms that seem like platitudes
today, although they made him enemies then. Our opening quotation from Helmholtz shows his
exasperation at the fact that progress in physiology was made almost impossible by common belief
in all kinds of causal influences for which there was no physical mechanism and no evidence. Louis
Pasteur (1822–1895) spent much of his life trying to overcome the universal belief in spontaneous
generation.

Although the state of public health was intolerable by present standards, hundreds of plants
were credited with possessing miraculous medicinal properties; at the same time, tomatoes were
believed to be poisonous. As late as 1910 it was still being reported as scientific fact that poison
ivy plants emit an ‘effluvium’ which infects those who merely pass by them without actual contact,
although the simplest controlled experiment would have disproved this at once.

Today, science has advanced far beyond this state of affairs, but common understanding has
hardly progressed at all. On the package of a popular brand of rice, the cooking instructions tell
us that we must use a closed vessel, because “the steam does the cooking”. Since the steam does
not come into contact with the rice, this seems to be on a par with the poison ivy myth. Surely,
a controlled experiment would show that the temperature of the water does the cooking. But at
least this myth does no harm.

Other spontaneously invented myths can do a great deal of harm. If we have a single unusually
warm Summer, we are besieged with dire warnings that the Earth will soon be too hot to support
life. Next year we will have an unusually cold Winter, and the same disaster mongers will be
right there shouting about the imminent ice age. Both times they will receive the most full and
sympathetic coverage by the news media, who with their short memory and in their belief that
they are doing a public service, amplify a thousandfold the capacity of the disaster monger to do
mischief, and encourage ever more irresponsible disaster–mongering as the surest way to get free
personal publicity.

In 1991, some persons without the slightest conception of what either electricity or cancer
are, needed only to hint that the weak 60Hz fields around home wiring or power lines are causing
cancer; and the news media gave it instant credence and full prime time radio and TV coverage,
throwing the uneducated public into a panic. They set up picket lines and protest marches to
prevent installation of power lines where they were needed. The right of the public to be protected
against the fraud of false advertising is recognized by all; so when will we have the right to be free
of the fraud of sensationally false news reporting – which is also sold to us for profit?
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To counter this universal tendency of the untrained mind to see causal relations and trends
where none exist, responsible science requires a very skeptical attitude, which demands cogent
evidence for an effect; particularly one which has captured the popular imagination. Thus we can
easily understand and sympathize with the orthodox conservatism in accepting new effects.

But there is another side to this; skepticism can be carried too far. The orthodox bias against
a real effect does help to hold irresponsibility in check, but today it is also preventing recognition
of effects that are real and important. The history of science offers many examples of important
discoveries that had their origin in the perception of someone who saw a small unexpected thing in
his data, that an orthodox significance test would have dismissed as a random error.† The discovery
of argon by Lord Rayleigh, and of cosmic rays by Victor Hess, are examples that come to mind
immediately. Of course, they did not jump to sweeping conclusions from a single observation as
do the disaster mongers; they used the single surprising observation rather to motivate a careful
investigation that culminated in overwhelming evidence for the new phenomenon.

In other fields we must wonder how many important discoveries, particularly in medicine, have
been prevented by editorial policies which refuse to publish that necessary first evidence for some
effect, because the one data set that the researcher was able to obtain did not quite achieve an
arbitrarily imposed significance level in an orthodox test. This could well defeat the whole purpose
of scientific publication; for the cumulative evidence of three or four such data sets might have
yielded overwhelming evidence for the effect. Yet this evidence will never be found unless the first
data set can manage to get published.

How can editors recognize that scientific discovery is not a one–step process, but a many–step
one, without thereby releasing a new avalanche of irresponsible, sensational publicity seekers? The
problem is genuinely difficult, and we do not pretend to know the full answer.

In the next Chapter we study some very instructive case histories of science gone wrong, when
orthodox statistics was used to support either an unreasonable belief or an unreasonable disbelief
in some phenomenon. In every case, a Bayesian analysis – taking into account all the evidence, not
just the evidence of one data set – would have led to far more defensible conclusions; so editorial
policies that required Bayesian standards of reasoning would go a long way toward solving this
problem.

This orthodox bias against an effect is seen in the fact that Feller and others heap ridicule on
“cycle hunters” as being irresponsible, seeing in phenomena such as economic time series, weather,
and earthquakes periodicities that are not there. It is conceivable that there may be instances of
this; but those who make the charge do not document specific examples which we can verify, and
so we do not know of any. In economics, belief in business cycles goes in and out of style cyclically.
Those who, like the economist Arthur Burns, merely look at a plot of the data, see the cycles at
once. Those who, like Fisher, Feller, and Tukey (1958), use orthodox data analysis methods, do
not find them.‡ Those who, like Bretthorst (1988) use probability theory as logic are taking into
account more evidence than either of the above groups, and may or may not find them. More

† Jeffreys (1939, p. 321) notes that there has never been a time in the history of gravitational theory when
an orthodox significance test (which takes no note of alternatives) would not have rejected Newton’s law
and left us with no law at all. But nevertheless Newton’s law did lead to constant improvements in the
accuracy of our accounting of the motions of the moon and planets for Centuries, and it was only when an
alternative (Einstein’s law) had been stated fully enough to make very accurately known predictions of its
own that a rational person could have ceased using Newton’s law.
‡ Indeed, orthodox spectrum analysis was invented by Arthur Schuster (1897) for the specific purpose of
refuting some claims of periodicities in earthquakes. As noted later, Schuster’s periodogram is relevant to
this problem; but the evidence lies in its shape rather than its sampling distribution. Very clear – even
overwhelming – evidence for periodicity can be missed by those who do not understand this.
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generally, the reason why some skeptics do not see real effects is that they use methods of data
analysis which violate the likelihood principle, and therefore waste some of the information in the
data.

What is Real; the Probability or the Phenomenon?

This Orthodox reluctance to see causal effects even when they are real, has another psychological
danger because eventually it becomes extrapolated into a belief in the existence of “stochastic
processes” in which no causes at all are operative, and probability itself is the only real physical
phenomenon. When the search for any causal relation whatever is deprecated and discouraged,
scientific progress is brought to a standstill.

Belief in the existence of “stochastic processes” in the real world; (i.e. that the property
of being “stochastic” rather than “deterministic” is a real physical property of a process, that
exists independently of human information) is another example of the Mind Projection Fallacy:
attributing one’s own ignorance to Nature instead. The current literature of probability theory is
full of claims to the effect that a ‘Gaussian random process’ is fully determined by its first and
second moments. If it were made clear that this is only the defining property for an abstract
mathematical model, there could be no objection to this; but it is always presented in verbiage
that implies that one is describing an objectively true property of a real physical process. To one
who believes such a thing literally, there could be no motivation to investigate the causes more
deeply than noting the first and second moments, and so the real processes at work might never
be discovered.

This is not only irrational because one is throwing away the very information that is essential
to understand the physical process; if carried into practice it can have disastrous consequences.
Indeed, there is no such thing as a “stochastic process” in the sense that the individual events have
no specific causes. One who views human diseases or machine failures as “stochastic processes” as
described in some orthodox textbooks, would be led thereby to think that in gathering statistics
about them he is measuring the one controlling factor; the physically real “propensity” of a person
to get a disease or a machine to fail; and that is the end of it.

Yet where our real interests are involved, such foolishness is usually displaced rather quickly.
Every individual disease in every individual person has a definite cause; fortunately, Louis Pasteur
understood this in the 19’th Century and our medical researchers understand it today. In medicine
one does not merely collect statistics about the incidence of diseases; there are large organized
research efforts to find their specific causes.

Likewise, every machine failure has a definite cause; after every airplane crash the Federal
Aviation Officials arrive and, if necessary, spend months sifting through all the evidence trying to
determine the exact cause. Only by this pursuit of each individual cause can the level of public
health and the safety and reliability of our machines be improved.

COMMENTS

An important general conclusion is that in analyzing data – particularly when searching for new
effects – scientists are obliged to find a very careful compromise between seeing too little and
seeing too much. Only methods of inference which realize all the “resolving power” possible, by
taking careful account of all the relevant prior information, all the previously obtained data, and
all the information in the likelihood function, can steer a safe course between these dangers and
yield justifiable conclusions. Throughout this work we adduce theoretical arguments and numerical
examples showing why probability theory as logic cannot give us misleading conclusions unless we
feed it false information or withhold true and relevant information from it.
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For many years orthodox methods of data analysis, through their failure to take into account
all the relevant evidence, have been misleading us in ways that have increasingly serious economic
and social consequences. Often, orthodox methods are unable to find significant evidence for effects
so clear that they are obvious at once from a mere glance at the data. More rarely, from failure to
note cogent prior information orthodox methods may hallucinate, seeing nonexistent effects. We
document cases of both in the next Chapter, and see how in all cases Bayesian analysis would have
avoided the difficulty automatically.


