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CHAPTER 17

PRINCIPLES AND PATHOLOGY OF ORTHODOX STATISTICS

“The development of our theory beyond this point, as a practical statistical theory, involves
· · · all the complexities of the use, either of Bayes’ Law on the one hand, or of those
terminological tricks in the theory of likelihood on the other, which seem to avoid the
necessity for the use of Bayes’ law, but which in reality transfer the responsibility for its
use to the working statistician, or the person who ultimately employs his results.” · · ·
Norbert Wiener (1948)

To the best of our knowledge, Norbert Wiener never actually applied Bayes’ theorem in a published
work; yet he perceived the logical necessity of its use as soon as one builds beyond the sampling
distributions involved in his own statistical work. In the present Chapter we examine some of the
consequences of failing to use Bayesian methods in some very simple problems, where the paradoxes
of Chapter 15 never arise.

In Chapter 16 we noted that the orthodox objections to Bayesian methods were always philo-
sophical or ideological in nature, never examining the actual numerical results that they give in
real problems, and we expressed astonishment that mathematically competent persons would use
such arguments. In order to give a fair comparison, we need to adopt the opposite tactic here,
and concentrate on the demonstrable facts that orthodoxians never mention. And, since Bayesian
methods have been so egregiously misrepresented in the orthodox literature throughout our life-
times, we must lean over backwards to avoid misrepresenting orthodox methods now; whenever an
orthodox method does yield a satisfactory result in some problem, we shall acknowledge that fact
and we shall not deplore its use merely on ideological grounds. On the other hand, when a common
orthodox procedure leads to a result that insults our intelligence, we shall not hesitate to complain
about it.

Our present goal is to understand: In what circumstances, and in what ways, do the orthodox
results differ from the Bayesian results? What are the pragmatic consequences of this in real
applications? The theorems of Richard Cox provide all the ideology we need, and all of our
pragmatic comparisons only confirm, in many different contexts, what those theorems lead us to
expect.

Information Loss

It is not easy to cover all this ground, because orthodox statistics is not a coherent body of theory
that could be confirmed or refuted by a single analysis. It is a loose collection of independent ad
hoc devices, invented and advocated by many different people on many different intuitive grounds;
and they are often in sharp disagreement with each other. So, to understand the performance of a
dozen such devices may require a dozen different analyses.

But one can see quite generally, once and for all, when and why orthodox methods must waste
information. Consider estimation of a parameter θ from a data set D ≡ {x1 · · ·xn} represented
by a point in Rn. Orthodoxy requires us to choose a single estimator b(D) ≡ b(x1 · · ·xn) before
we have seen the data, and then use only b(x) for the estimation! Now specifying the observed
numerical value of b(x) locates the sample on a manifold (subspace of Rn) of dimension (n − 1).
Specifying the actual data set D tells us that, and also where on the manifold we are. If position on
the manifold is irrelevant to θ, then b(D) is a sufficient statistic for θ and – unless there are further
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technical problems like nuisance parameters – the orthodox method will be satisfactory pragmat-
ically whatever its proclaimed rationale. Otherwise, specifying D conveys additional information
about θ that is not conveyed by specifying b(D).

But it seems that Fisher never did appreciate the further conclusion that follows from this.
Given the actual data set D, of course, all estimators that the orthodoxian might have chosen
{b1, b2, · · · } are known. The Bayesian procedure chooses the estimate after seeing the data, and so
has the benefit of the extra information contained in the specific data set. Therefore it is able to
choose the optimal estimator for that data set. In effect Bayes’ theorem has available for its use
simultaneously all the information contained in the class of all possible estimators.†

If the estimator is not a sufficient statistic, its sampling distribution is irrelevant for us, because
with different data sets we shall use different estimators. We saw this in some detail, from different
viewpoints, in Chapters 8 and 13. The same considerations apply to hypothesis testing; the Bayesian
procedure takes into account all the relevant information in the data, but an orthodox procedure
based on a single statistic often fails to do so. Then we expect that, whenever an orthodox procedure
is not based on a sufficient statistic or conditioned on an ancillary statistic, the Bayesian procedure
will be superior (in the sense of more accurate or more reliable) because its extra information
restricts further the range of possibilities compatible with the estimator b(D).

From the Neyman–Pearson camp of orthodoxy we have the devices of unbiased estimators,
confidence intervals, and hypothesis tests which amount to a kind of decision theory. This line
of thought has been adopted more or less faithfully in the works of Herbert Simon in Economics,
Erich Lehmann in hypothesis testing, and David Middleton in Electrical Engineering.

From the Fisherian (sometimes called the piscatorial) camp there are the principles of max-
imum likelihood, analysis of variance, randomization in design of experiments, and a mass of
specialized “tail area” significance tests. Fortunately, the underlying logic is the same in all such
significance tests, so they need not be analyzed separately. Adoption of these methods has been
almost mandatory in biology and medical testing. Also, Fisher advocated fiducial probability which
most statisticians rejected, and conditioning on ancillary statistics, which we discussed in Chapter 8,
but which does not seem to be used appreciably in applied statistics.‡

Unbiased Estimators

Given a sampling distribution p(x|α) with some parameter α and a data set comprising n obser-
vations D ≡ {x1 · · ·xn}, there are various orthodox principles for estimating α, in particular use
of an unbiased estimator, and maximum likelihood. In the former we choose some function of the
observations β(D) = β(x1 · · ·xn) as our ‘estimator’. The Neyman–Pearson school holds that it
should be ‘unbiased’, meaning that its expectation over the sampling distribution is equal to the
true value of α:

〈β〉 = E(β) =
∫

β(x1 · · ·xn) p(x1 · · ·xn|α) dx1 · · · dxn = α (17–1 )

As noted in Chap. 13, Eq. (13–20), the expected square of the error, over the sampling distribution,
is the sum of two positive terms

† Perhaps it is now clearer why we have described orthodox and Bayesian methods as ‘pre–data’ and
‘post–data’ inferences.
‡ We find an interesting consistency here: the Fisherian methods that have been widely adopted are the
ones whose results often disagree strongly with Bayesian results; the ones that have met with almost no
use are just the ones that, when they are applicable, necessarily agree closely – often exactly – with the
Bayesian ones.
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〈(β − α)2〉 = (〈β〉 − α)2 + var(β) (17–2 )

where what the orthodoxian calls the “sampling variance of β” (more correctly, the variance of the
sampling distribution for β) is var(β) = 〈β2〉 − 〈β〉2. At present we are not after mathematical
pathology of the kind discussed in Chapter 15 and Appendix B, but rather logical pathology –
due to conceptual errors in the basic formulation of a problem – which persists even when all
the mathematics is well behaved. So we suppose that the first two moments of that sampling
distribution, 〈β〉 , 〈β2〉 exist for all the estimators to be considered. If we introduce a fourth
moment 〈β4〉, we are automatically supposing that it exists also; this is the general mathematical
policy advocated in Appendix B. Then an unbiased estimator has, indeed, the merit that it makes
one of the terms of (17–2) disappear. But it does not follow that this choice minimizes the expected
square of the error; let us examine this more closely.

What is the relative importance of removing bias and minimizing the variance? From (17–2)
it would appear that they are of equal importance; there is no advantage in decreasing one of those
terms if in so doing we increase the other more than enough to compensate. Yet that is what the
orthodox statistician usually does! As the most common specific example, Cramér (1946, p. 351)
considers the problem of estimating the variance µ2 of a sampling distribution p(x1|µ2):

µ2 = 〈x2
1〉 − 〈x1〉2 = 〈x2

1〉 (17–3 )

from n independent observations {x1 · · ·xn}. We assume, in (17–3) and in what follows, that
〈x1〉 = 0, since a trivial change of variables would in any event accomplish this. An elementary
calculation shows that the sample variance (now correctly called the variance of the sample because
it expresses the variability of the data within the sample, and does not make reference to any
probability distribution):

m2 ≡ x2 − x2 =
1
n

n∑
i=1

x2
i −

[
1
n

n∑
i=1

xi

]2

(17–4 )

has expectation, over the sampling distribution p(x1 · · ·xn|µ2) = p(x1|µ2) · · · p(xn|µ2), of

〈m2〉 = n− 1
n

µ2 (17–5 )

and thus, as an estimator of µ2 it has a negative bias. So, goes the argument, we should correct
this by using the unbiased estimator

M2 ≡ n

n− 1 m2 . (17–6 )

Indeed, this has seemed so imperative that in most of the orthodox literature, the term “sample
variance” is defined as M2 rather than m2.

Now, of course, the only thing that really matters here is the total error of our estimate; the
particular way in which you or I separate error into two abstractions labelled “bias” and “variance”
has no effect on the actual quality of the estimate. So, let’s look at the full mean square error
criterion (17–2) with the choices β = m2 and β = M2. Replacement of m2 by M2 removes a term
(〈m2〉 − µ2)2 = µ2

2/n
2, but it also increases the term var(m2) by a factor [n/(n− 1)]2, so it seems

obvious that, at least for large n, this has made things worse instead of better. More specifically,
suppose we replace m2 by the estimator:

β ≡ cm2 (17–7 )
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What is the best choice of c? The expected quadratic loss (17–2) is now

〈(cm2 − µ2)2〉 = c2 〈m2
2〉 − 2c〈m2〉µ2 + µ2

2

= 〈(m2 − µ2)2〉 − 〈m2
2〉(ĉ− 1)2 + 〈m2

2〉(c− ĉ)2
(17–8 )

where

ĉ ≡ µ2 〈m2〉
〈m2

2〉
. (17–9 )

Evidently, the best estimator in the class (17–7) is the one with c = ĉ, and the term −〈m2
2〉(ĉ− 1)2

in (17–8) represents the decrease in mean–square error obtainable by using β̂ ≡ ĉm2 instead of m2.
Another short calculation shows that

〈m2
2〉 = n−3(n− 1) [(n2 − 2n+ 3)µ2

2 + (n− 1)µ4] (17–10 )

where

µ4 ≡ 〈(x1 − 〈x1〉)4〉 = 〈x4
1〉 (17–11 )

is the fourth central moment of p(x1|µ2). We must understand n > 1 in all this, for if n = 1, we
have m2 = 0; in sampling theory, a single observation gives no information at all about the variance
of p(x1|µ2).�

From (17–5) and (17–10) we then find that ĉ depends on the second and fourth moments of
the sampling distribution:

ĉ =
n2

n2 − 2n+ 3 + (n− 1)K (17–12 )

where K ≡ µ4/µ
2
2 ≥ 1 (from a previous remark, we are assuming now that p(xi|µ2) has moments

up to fourth order at least). We see that ĉ is a monotonic decreasing function of K; so if K ≥ 2,
(17–12) shows that ĉ < 1 for all n; instead of removing the bias in (17–5) we should always increase
it.

In the case of a Gaussian distribution, p(x|µ2) ∝ exp[−x2/2µ2], we find K = 3. We will seldom
have K < 3, for that would imply that p(x|µ2) cuts off even more rapidly than gaussian for large
x. If K = 3, (17–12) reduces to

ĉ =
n

n+ 1
(17–13 )

which, by comparison with (17–6), says that rather than removing the bias we should approximately
double it, in order to minimize the mean square sampling error!

How much better is the estimator β̂ than M2? In the Gaussian case the mean square error of
the estimator β̂ is

〈(β̂ − µ2)2〉 = 2
n+ 1

µ2
2 . (17–14 )

The unbiased estimator M2 corresponds to the choice

� In Bayesian theory a single observation could give information about µ2 if µ2 is correlated, in the joint
prior probability p(µ2, θ|I), with some other parameter θ in the problem about which a single observation
does give information; that is, p(µ, θ|I) �= p(µ|I) p(θ|I). This kind of indirect information transfer can be

important in problems where we have cogent prior information but only sparse data.
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c =
n

n− 1 (17–15 )

and thus to the mean square error

〈(M2 − µ2)2〉 = µ2
2

[
2

n+ 1
+
2
n

]
(17–16 )

which is over twice the amount incurred by use of β̂. Most sampling distributions that arise in
practice, if not gaussian, have wider tails than gaussian, so that K > 3; in this case the difference
will be even greater.

Up to this point, it may have seemed that we are quibbling over a very small thing – changes in
the estimator of one or two parts out of n. But now we see that the difference between (17–14) and
(17–16) is not at all trivial. For example, with the unbiased estimator M2 you will need n = 203
observations in order to get as small a mean–square sampling error as the biased estimator β̂ gives
you with only 100 observations. This is typical of the way orthodox methods waste information; in
this example we have, in effect, thrown away half of our data whatever the value of n.

Indeed, R. A. Fisher perceived this long ago, remarking that a procedure that loses half the
information in the data, wastes half of the work expended in acquiring the data. But modern
orthodox practitioners seem never to perceive this, because they continue to fantasize about fre-
quencies, and do not think in terms of information at all.† A fantastic example appeared in a
work on econometrics (Valavanis, 1959, p. 60) where the author attached such great importance to
removing bias that he advocated throwing away not just half the data but practically all them, if
necessary, to achieve this.

Why do they do this? Why do orthodoxians put such exaggerated emphasis on bias? We
suspect that the main reason is simply that they are caught in a psycho–semantic trap of their own
making. When we call the quantity (〈β〉−α) the “bias”, that makes it sound like something awfully
reprehensible, which we must get rid of at all costs. If it had been called instead the “component of
error orthogonal to the variance”, as suggested by the Pythagorean form of (17–2), it would have
been clear to all that these two contributions to the error are on an equal footing; it is folly to
decrease one at the expense of increasing the other. This is just the price one pays for choosing
a technical terminology that carries an emotional load, implying value judgments; orthodoxy falls
constantly into this tactical error.

Chernoff & Moses (1959) give a more forceful example showing how an unbiased estimate may
be far from what we want. A company is laying a telephone cable across San Francisco Bay. They
cannot know in advance exactly how much cable will be needed, and so they must estimate. If they
overestimate, the loss will be proportional to the amount of excess cable to be disposed of; but if
they underestimate and the cable end falls into the water, the result may be financial disaster. Use
of an unbiased estimate here could only be described as foolhardy; this shows why a Wald–type
decision theory is needed to fully express rational behavior.

Another reason for such an undue emphasis on bias is a belief that if we draw N successive
samples of n observations each and calculate the estimators β1 · · ·βN , the average β = N−1

∑
βi

† Note that this difficulty does not arise in the Bayesian approach in spite of a mathematical similarity.
Again choosing any function β(x1 · · ·xn) of the data as an estimator, and letting the brackets 〈 〉 stand
now for expectations over the posterior pdf for α, we have the expected square of the error of 〈(β −
α)2〉 = (β − 〈α〉)2 + var(α), rather like (17–2). But now changing the estimator β does not change
var(α) = (〈α2〉 − 〈α〉2), and so by this criterion, the optimal estimator over the class of all estimators is

always β = 〈α〉.
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of these estimates will converge in probability to 〈β〉 as N → ∞, and thus an unbiased estimator
will, on sufficiently prolonged sampling, give an arbitrarily accurate estimate of α. Such a belief is
almost never justified even for the fairly well controlled measurements of the physicist or engineer;
not only because of unknown systematic error, but because successive measurements lack the logical
independence required for these limit theorems to apply.

In such uncontrolled situations as economics, the situation is far worse; there is in principle
no such thing as “asymptotic sampling properties” because the “population” is always finite, and
it changes uncontrollably in a finite time. The attempt to use only sampling distributions, always
interpreted as frequencies, in such a situation forces one to expend virtually all his efforts on
irrelevant fantasies. What is relevant to inference is not any non–existent frequencies, but the
actual state of knowledge that we have about the real situation. To reject that state of knowledge –
or any human information – on the grounds that it is “subjective” is to destroy any possibility of
finding useful results; for human information is all we have.‡

But even if we accept these limit theorems, and believe faithfully that our sampling probabilities
are also the limiting frequencies, unbiased estimators are not the only ones which approach perfect
accuracy with indefinitely prolonged sampling. Many biased estimators approach the true value of
α in this limit, and do it more rapidly . Our β̂ is an example. Furthermore, asymptotic behavior of
an estimator is not really relevant, because the real problem is always to do the best we can with
a finite data set; therefore the important question is not whether an estimator tends to the true
value, but how rapidly it does so.

Long ago, R. A. Fisher disposed of the unbiased estimate by a different argument that we gave
in Chap. 6, Eq. (6–90). The criterion of bias is not really meaningful, because it is not invariant
under a change of parameters; the square of an unbiased estimate of α is not an unbiased estimate
of α2. With higher powers αk, the difference in conclusions can become arbitrarily large, and
nothing in the formulation of a problem tells us which choice of parameters is “right”. However,
many orthodoxians simply ignore these arguments (although they can hardly be unaware of them)
and continue to use unbiased estimators whenever they can, aware that they are violating a rather
basic principle of rationality, but unaware that they are also wasting information.

But note that, after all this argument, nothing in the above entitles us to conclude that β̂
is the best estimator of µ2 by the criterion of mean–square sampling error! We have considered
only the restricted class of estimators (17–7) constructed by multiplying the sample variance (17–4)
by some preassigned number; we can say only that β̂ is the best one in that class. The question
whether some other function of the sample values, not a multiple of (17–4), might be still better
by the criterion of mean–square sampling error, remains completely open. That the orthodox
approach to parameter estimation does not tell us how to find the best estimator, but only how to
compare different intuitive guesses, was noted in Chap. 13 following Eq. (13–21); and we showed
that the difficulty is overcome by a slight reformulation of the problem, which leads inexorably to
the Bayesian algorithm as the one which accomplishes what we really want.

‡ “Objectivity” in inference consists, then, in carefully considering all the information we have about the
real situation; and carefully avoiding fantasies about situations that do not actually exist. It seems to us
that this should have been obvious to orthodoxians from the start, since it was obvious already to ancient
writers such as Herodotus (ca. 500 B.C.) in his discussion of the policy decisions of the Persian kings.
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Exercise (17.1): Try to extend sampling theory to deal with the many questions left unan-
swered by the orthodox literature and the above discussion. Is there a general theory of optimal
sampling theory estimators for finite samples? If so, does bias play any role in it? We know
already, from the analysis in Chapter 13, that this cannot be a variational theory; but it seems
conceivable that a theory somewhat like dynamic programming might exist. In particular, can
you find an orthodox estimator that is better than β̂ by the mean–square error criterion? Or
can you prove that β̂ cannot be improved upon within sampling theory?

In contrast to the difficulty of these questions in sampling theory, we have noted above and in
Chapter 13 that the Bayesian procedure automatically constructs the optimal estimator for any
data set and loss function, whether or not a sufficient statistic exists; and it leads at once to a
simple variational proof of its optimality not within any restricted class, but with respect to all
estimators. And it does this without making any reference to the notion of bias, which plays no
role in Bayesian theory.

Pathology of an Unbiased Estimate

On closer examination, an even more disturbing feature of unbiased estimates appears. Consider
the Poisson sampling distribution; the probability that, in one time unit, we observe n events, or
‘counts’, is

p(n|λ) = e−λ λn

n!
, n = 0, 1, 2, · · · (17–17 )

in which the parameter λ is the sampling expectation of n: 〈n〉 = λ Then what function f(n) gives
an unbiased estimate of λ? Evidently, the choice f(n) = n will achieve this; to prove that it is
unique, note that the requirement 〈f(n)〉 = λ, is

∞∑
n=0

e−λ λn

n!
f(n) = λ (17–18 )

and from the formula for coefficients of a Taylor series, this requires

f(n) =
dn

dλn
(λeλ)

∣∣∣
λ=0

= n (17–19 )

A reasonable result. But suppose we want an unbiased estimator of some function g(λ); by the
same reasoning, the unique solution is

f(n) =
dn

dλn
[eλg(λ)]

∣∣∣
λ=0

(17–20 )

Thus the only unbiased estimator of λ2 is

f(n) =

{
0, n = 0, 1

n(n− 1), n > 1

}
(17–21 )

which is absurd for n = 1. Likewise, the only unbiased estimator of λ3 is absurd for n = 1, 2. Here
the unbiased estimator does violence to elementary logic; if we observe n = 2, we are advised to
estimate λ = 0; but if λ were zero, it would be impossible to observe n = 2! An unbiased estimator
for 1/λ does not exist, and the only unbiased estimator of e−λ is

f(n) =

{
1, n = 0
0, n > 0

}
(17–22 )
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which is absurd for all positive n. Unbiased estimators can stand in conflict with deductive logic
not just for a few data sets, but for all data sets.

In contrast, with uniform prior the Bayesian posterior mean estimate of any function g(λ) is

〈g(λ)〉 = 1
n!

∫ ∞

0

e−λλng(λ)dλ (17–23 )

which is readily verified to be mathematically well–behaved and intuitively reasonable for all the
above examples. The Bayes estimate of 1/λ is just 1/n. It is at first surprising that the Bayes
estimate of e−λ is

f(n) = 2−(n+1) . (17–24 )

Why would it not be just e−n? To see why, note that the posterior distribution for λ is not
symmetric but strongly skewed for small n; the posterior probability that λ > n is

P =
∫ ∞

n

e−λ λn

n!
dλ =

e−n

n!

n∑
m=0

(
n

m

)
nm

∫ ∞

0

e−xxn−mdx = e−n
n∑

m=0

nm

m!
(17–25 )

This decreases monotonically from 1 at n = 0 to 1/2 as n → ∞. Thus given n, the parameter λ is
always more likely to be greater than n than less, so e−n would systematically overestimate e−λ.
Bayes’ theorem automatically detects this and corrects for it.

Exercise 17.2 Consider the truncated Poisson distribution:

p(n|λ) = 1
eλ − 1

λn

n!
, n = 1, 2, · · ·

Show that the unbiased estimator of λ is now absurd for n = 1, and the unbiased estimator of
e−λ is absurd for all even n and queer for all odd n.

Many other examples are known in which the attempt to find unbiased estimates leads to similar
pathologies; several were noted by the orthodoxians Kendall & Stuart (1961). But their anti–
Bayesian indoctrination (from Fisher) was so strong that they would not deign to examine the
corresponding Bayesian results; and so they failed to learn that in all cases Bayesian methods
overcome the difficulty effortlessly. Maurice Kendall could have learned this in five minutes from
Harold Jeffreys, whom he saw almost daily because they were both Fellows of St. John’s College,
Cambridge and ate at the same high table.

Periodicity: The Weather in Central Park

A common problem, important in economics, meteorology, geophysics, astronomy and many other
fields, is to decide whether certain data taken over time provide evidence for a periodic behavior.
Any clearly discernible periodic component (in births, diseases, rainfall, temperature, business cy-
cles, stock market, crop yields, incidence of earthquakes, brightness of a star) provides an evident
basis for improved prediction of future behavior, on the presumption (that is, inductive reasoning)
that periodicities observed in the past are likely to continue in the future. But even apart from
prediction, the principle for analyzing the data for evidence of periodicity in the past is still con-
troversial: is it a problem of significance tests, or one of parameter estimation? Different schools
of thought come to opposite conclusions from the same data.
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Let us consider in detail an example, from the recent literature, of orthodox reasoning and pro-
cedure here; this will also provide an easy introduction to Bayesian spectrum analysis. Bloomfield
(1976, p. 110) gives a graph showing mean January temperatures observed over about 100 years in
Central Park, New York. The presence of a periodicity of roughly 20 years with a peak–to–peak
amplitude of about 4o Fahrenheit is perfectly evident to the eye, since the irregular ‘noise’ is only
about 0.5o. Yet Bloomfield, applying an orthodox significance test introduced by Fisher, concludes
that there is no significant evidence for any periodicity!

The folly of pre–filtering data: In trying to understand this we note first that the data of
Bloomfields’s graph have been “pre–filtered” by taking a 10 year moving average. What effect does
this have on the evidence for periodicity? Let the original raw data be D = {y1 · · · yn} and consider
the discrete fourier transform

Y (ω) ≡
n∑

t=1

yt e
iωt (17–26 )

This is well defined for continuous values of ω and is periodic: Y (ω) = Y (ω + 2π). Therefore
there is no loss of information if we confine the frequency to |ω| < π. But even that is more than
necessary; the values of Y (ω) at any n consecutive and discrete ‘Nyquist’ frequencies‡

ωk ≡ 2πk/n, 0 ≤ k < n (17–27 )

already contain all the information in the data, for by the orthogonality n−1
∑

k exp[iωk(s−t)] = δst,
the data can be recovered from them by the fourier inversion:

1
n

n∑
k=1

Y (ωk) e−iωkt = yt, 1 ≤ t ≤ n . (17–28 )

But suppose the data were replaced with anm–year moving average over past values, with weighting
coefficient of ws for lag s:

zt ≡
m−1∑
s=0

yt−s ws (17–29 )

The new fourier transform would be, after some algebra,�

‡ Harry Nyquist was a mathematician at the Bell Telephone Laboratories who in the 1920’s discovered a
great deal of the fundamental physics and information theory involved in electrical communication. The
work of Claude Shannon is a continuation, 20 years later, of some of Nyquist’s pioneering work. All of it is
still valid and indispensible in modern electronic technology. In Chapter 7 we have already considered the
fundamental, irreducible “Nyquist noise” in electrical circuits due to thermal motion of electrons.
� At this point, many authors get involved in an annoying little semantic hangup over exactly what one
means by the term ‘m–year moving average’ for a series of finite length. If we have only yt for t > 0, then
it seems to many that the m–year moving average (17–29) could start only at t = m. But then they find
that their formulas are not exact, but require small ‘end–effect’ correction terms of order m/n. We avoid
this by a slight change in definitions. Consider the original time series {yt} augmented by ‘zero–padding’;
we define yt ≡ 0 when t < 1 or t > n, and likewise the weighting coefficients are defined to be zero when
s < 0 or s ≥ m. Then we may understand the above sums over t, s to be over (−∞, +∞), and the first
few terms (z1, · · · , zm−1), although averages over m years of the padded data, are actually averages over
less than m years of nonzero data. The differences are numerically negligible when m << n, but we gain
the advantage that the simple formulas (17–26)–(17–32) with sums taken instead over ±∞ and t in (17–29)
allowed to take all positive values, are all exact as they stand, without our having to bother with messy
correction terms. Furthermore, it is evident that failure to do this means that some of the information in
the first m and last m data values is lost. This particular definition of the term ‘moving average’ for a
finite series (which was basically arbitrary anyway) is thus the one appropriate to the subject.
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Z(ω) =
n∑

t=1

zt e
iωt =W (ω)Y (ω) (17–30 )

where

W (ω) ≡
m−1∑
s=0

ws e
iωs (17–31 )

is the fourier transform of the weighting coefficients. This is just the convolution theorem of fourier
theory. Thus taking any moving average of the data merely multiplies its fourier transform by a
known function. In particular, for uniform weighting:

ws =
1
m

, 0 ≤ s < m (17–32 )

we have

W (ω) =
1
m

m−1∑
s=0

e−iωs = exp[−i
ω

2
(m− 1)]

(
sin mω

2

m sin ω
2

)
. (17–33 )

In the case m = 10 we find, for a ten–year and twenty–year periodicity respectively,

W (2π/10) = 0 ; W (2π/20) = 0.639 exp[−9πi/20] . (17–34 )

Thus, taking a ten–year moving average of any time series data represents an irreversible loss
of information; it completely wipes out any evidence for a ten–year periodicity, and reduces the
amplitude of a twenty–year periodicity by a factor .639 while shifting its phase by 9π/20 = 1.41
radians. We conclude that the original data had a periodicity of roughly 20 years with a peak–to–
peak amplitude of about 4/.639 = 6.3o F, even more obvious to the eye and nearly 90 degrees out
of phase with the periodicity visible in Bloomfield’s graph.

At several places we warn against the common practice of pre–filtering data in this way before
analyzing them.† The only thing it can possibly accomplish is the cosmetic one of making the graph
of the data look prettier to the eye. But if the data are to be analyzed by a computer, this does
not help in any way; it only throws away some of the information that the computer could have
extracted from the original, unmutilated data. It renders the filtered data completely useless for
certain purposes. For all we know, there might have been a strong periodicity of about ten years
in the original data; but taking a ten–year moving average has wiped out the evidence for it.‡

The periodogram of the data is then the power spectral density:

P (ω) ≡ 1
n
|Y (ω)|2 = 1

n

∑
t,s

yt ys e
iω(t−s) . (17–35 )

† We hasten to add that Fisher and Bloomfield are not guilty of this; but it is practiced egregiously by
others such as Blackman and Tukey (1958).
‡ This data prefiltering is the one–dimensional version of the practice of ‘apodization’ in optics. But as we
have noted elsewhere (Jaynes, 1988) this throws away highly cogent information about the fine details in
the image, which a computer could have extracted, leading to much better resolution than that apparent
to the eye, if one had refrained from apodization. The term ‘apodization’ means literally ‘removing the
foot’. It is singularly well–chosen; one who commits apodization is, in effect, shooting himself in the foot.
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Note that P (0) = (
∑

yt)2/n = ny2 determines the mean value of the data, while the average of
the periodogram at the Nyquist frequencies is the mean square value of the data:

P (ωk)av =
1
n

n∑
k=1

P (ωk) = y2 . (17–36 )

Fisher’s proposed test statistic for a periodicity is the ratio of peak/mean of the periodogram:

q =
P (ωk)max

P (ωk)av
(17–37 )

and one computes its sampling distribution p(q|H0) conditional on the null hypothesis H0 that the
data are Gaussian white noise. Having observed the value q0 from our data, we find the so–called
‘P -value’, which is the sampling probability, conditional on H0, that chance alone would have
produced a ratio as great or greater:

P ≡ p(q > q0|H0) =
∫ ∞

q0

p(q|H0) dq (17–38 )

and if P > 0.05 the evidence for periodicity is rejected as “not significant at the 5% level”. This is
a typical orthodox “tail area” significance test.�

But this test looks only at probabilities conditional on the “null hypothesis” that there is no
periodic term. It takes no note of probabilities of the data conditional on the hypothesis that a
periodicity is present; or on any prior information indicating whether it is reasonable to expect a
periodicity! We commented on this kind of reasoning in Chapter 5; how can one test any hypothesis
rationally if he fails to specify (1) the hypothesis to be tested; (2) the alternatives against which it
is to be tested; and (3) the prior information that we bring to the problem? Until we have done
that much, we have not asked any definite, well–posed question.

Equally puzzling, how can one expect to find evidence for a phenomenon that is real, if he
starts with all the cards stacked overwhelmingly against it? The only hypothesis H0 that this test
considers is one which assumes that the totality of the data are part of a ‘stationary gaussian random
process’ without any periodic component. According to that H0, the appearance of anything
resembling a sine wave would be purely a matter of chance; even if the noise conspires, by chance,
to resemble one cycle of a sine wave, it would still be only pure chance – equally unlikely according
to the orthodox sampling distribution – that would make it resemble a second cycle of that wave;
and so on.

But in almost every application one can think of, our prior knowledge about the real world
tells us that in speaking of “periodicity” we have in mind some systematic physical influence that
repeats itself; indeed, our interest in it is due entirely to the fact that it we expect it to repeat . Thus
we expect to see some periodicity in the weather because we know that this is affected by periodic
astronomical phenomena; the rotation of the earth on its axis, its yearly orbital motion about the
sun, and the observed periodicity in sunspot numbers, which affect atmospheric conditions on the
earth. So the hypothesis H1 that we want to test for is quite unrelated to the hypothesis H0 that
is used in Fisher’s test.†

� The choice of the 5% significance level is, of course, only an arbitrary convention; yet it has been adopted
so religiously that it has become almost mandatory. Anyone who failed to use it would be considered queer
by many of his colleagues.
† If an apparent periodicity were only a momentary artifact of the noise as suposed by H0, we would not
consider it a real periodicity at all, and would not want our statistical test to take any note of it. But
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But this is the kind of logic that underlies all orthodox significance tests. In order to argue
for an hypothesis H1 that some effect exists, one does it indirectly: invent a “null hypothesis”
H0 that denies any such effect, then argue against H0 in a way that makes no reference to H1 at
all (that is, using only probabilities conditional on H0)! To see how far this procedure takes us
from elementary logic, suppose we decide that the effect exists; that is, we reject H0. Surely, we
must also reject probabilities conditional on H0; but then what was the logical justification for the
decision? Orthodox logic saws off its own limb.‡

Harold Jeffreys (1939, p. 316) expressed his astonishment at such reasoning by looking at a
different side of it:

“An hypothesis that may be true is rejected because it has failed to predict observable results that
have not occurred. This seems a remarkable procedure. On the face of it, the evidence might more
reasonably be taken as evidence for the hypothesis, not against it. The same applies to all the current
significance tests based on P–values.”

Thus if we say that there is a periodicity in temperature, we mean by this that there is some periodic
physical influence at work, the nature of which may not be known with certainty, but about which
we could make some reasonable conjectures. For example, the aforementioned periodicity in solar
activity, already known to occur by the 11–year periodic variation in sunspot numbers (which many
believe, with good reason, to be a rectified 22–year periodicity), causes a periodic variation in the
number of charged particles entering our atmosphere (indicated by the aurora borealis), varying the
ion concentration and therefore the number of raindrop condensation centers. This would cause
periodic variations in the cloud cover, and hence in the temperature and rainfall, which might
be very different in different locations on the earth because of prevailing atmospheric circulation
patterns.

We do not mean to say that we firmly believe this mechanism to be the dominant one; only that
it is a conceivable one, which does not violate any known laws of physics, but whose magnitude is
difficult to estimate theoretically. But already, this prior information prepares us not to be surprised
by a periodic variation in temperature in Central Park somewhat like that observed‡ and leads us
to conjecture that the July temperatures (the record of which presumably still exists) might give
even better evidence for periodicity.

Once a data set has given mild evidence for such a periodicity, its reality could be definitely
confirmed or refuted by other observations, correlating other data (astronomical, atmospheric elec-
tricity, fish populations, etc.) with weather data at many different locations. A person trained only
in orthodox statistics would not hesitate to consider all these phenomena “independent”; a scientist
with some prior knowledge of astrophysics and meteorology would not consider them independent
at all.

unfortunately, it is always possible for noise artifacts to appear momentarily real to any test one can devise.
The remedy is to check whether the apparent effect is reproducible; a noise artifact will in all probability
never occur again in the same way. A physicist can, almost always, use this remedy easily; an economist
usually cannot.
‡ An historical study has suggested that the culprit who started this kind of reasoning was not any
statistician, but the physicist Arthur Schuster (1897), who invented the periodogram for the purpose of
refuting some claims of periodicity in earthquakes in Japan. He achieved his preconceived goal by the
simple device of analyzing the data in a way that threw away the information about that periodicity; and
then this was taken up by many others. Nevertheless, we shall see that the periodogram does contain basic
information that Schuster, and Blackman & Tukey, failed to recognize. They thought that the information
was contained in the sampling distribution of the periodogram; whereas it was actually contained in the
shape of the periodogram.
‡ One who was also aware of the roughly 20–year periodicity in crop yields, well known to Kansas wheat
farmers for a Century, would be even less surprised.
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But if Editors of scientific journals refuse to publish that first mild evidence on the grounds
that it is not significant in itself by an orthodox significance test at the 5% level, the confirmatory
observations will, in all probability, never be made; a potentially important discovery could be
delayed by a Century. Physicists and engineers have been largely spared from such fiascos because
they hardly ever took orthodox teachings seriously anyway; but others working in economics,
biology, or medical research who in the past allowed themselves to cowed by Fisher’s authority,
have not been so fortunate.

Contrast our position just stated with that of Feller (II, p 76–77), who delivers another polemic
against what he calls the “Old Wrong Way”. Suppose the data expanded in sinusoids:

yt =
n∑

j=1

(Aj cosωjt+Bj sinωjt)

We can always approximate yt this way. Then it seems that Aj , Bj must be “random variables”
if the {yt} are. Feller warns us against that Old Wrong Way: fit such a series to the data with
well–chosen frequencies {ω1 . . . ωn} and assume all Aj , Bj ∼ N(0, σ). If one of the R2

j = A2
j + B2

j

is big, conclude that there is a true period. He writes of this:

“For a time it was fashionable to introduce models of this form and to detect ‘hidden periodicities’
for sunspots, wheat prices, poetic creativity, etc. Such hidden periodicities used to be discovered as
easily as witches in medieval times, but even strong faith must be fortified by a statistical test. A
particularly large amplitude Rj is observed; One wishes to prove that this cannot be due to chance
and hence that ωj is a true period. To test this conjecture one asks whether the large observed value
of R is plausibly compatible with the hypothesis that all n components play the same role.”

Apparently, Feller did not even believe in the sunspot periodicity, which no responsible scientist has
doubted for over a Century; the evidence for it is so overwhelming that nobody needs a “statistical
test” to see it. He states that the usual procedure was to assume the Aj , Bj iid normal N(0, σ),�

then the R2
j are held to be independent with an exponential distribution with expectation 2σ

2. “If
an observed value R2

j deviated ‘significantly’ from this predicted expectation it was customary to
jump to the conclusion that the hypothesis of equal weights was untenable, and Rj represented a
‘hidden periodicity’.” At this point, Feller detects that we are using the wrong sampling distribution:

“The fallacy of this reasoning was exposed by R. A. Fisher (1929) who pointed out that the maximum
among n independent observations does not obey the same probability distribution as each variable
taken separately. The error of treating the worst case statistically as if it had been chosen at random
is still common in medical statistics, but the reason for discussing the matter here is the surprising
and amusing connection of Fisher’s test of significance with covering theorems.”

He then states that the quantities

Vj =
R2

j∑
R2

i

, 1 ≤ j ≤ n

are distributed as the lengths of the n segments into which the interval (0,1) is partitioned by a
random distribution of n − 1 points. The probability that all Vj < a is given by the covering
theorem of W. L. Stevens (I, 9.9).

� The abbreviation “iid” is orthodox jargon standing for “Independently and Identically Distributed”. For
us, this is another form of the Mind Projection Fallacy; In the real world, each individual coefficient Aj , Bj

is a definite, fixed quantity that is known from the data; it is not “distributed” at all! Quite generally,
orthodoxy tries to draw inferences from imaginary data sets that one thinks might have been seen, but
were not. The pragmatic consequences of this nonsense are probably the most dangerous error in orthodox
reasoning. In our closing comments we shall note why orthodox ideology forces one to it.



1714 17: Periodicity: The Weather in Central Park 1714

Of course, our position is that both Feller’s “old wrong” and “new right” sampling distributions
are irrelevant to the inference; the two quantities that are relevant (the prior information that
expresses our knowledge of the phenomenon and the likelihood function that expresses the evidence
of the data) are not even mentioned by Fisher, Feller, or Bloomfield, so they are in no position to
draw inferences about periodicity.

In any event, the bottom line of this discussion is that Fisher’s test fails to detect the perfectly
evident 20 year periodicity in the New York Central Park January temperatures. But this is not
the only case where simple visual examination of the data is a more powerful tool for inference than
the principles taught in orthodox textbooks. Crow, Davis & Maxfield (1960) present applications
of the orthodox F–test and t–test which we examine in Jaynes (1976) with the conclusions that (1)
the eyeball is a more reliable indicator of an effect than an orthodox equal–tails test, and (2) the
Bayesian test confirms quantitatively what the eyeball sees qualitatively. This is also relevant to
the notions of domination and admissibility discussed below.

A Bayesian analysis. Now we examine a Bayesian analysis of these same data, and for pedagogi-
cal reasons we want to explain its rationale in great detail. There may be various different Bayesian
treatments of data for periodicity, corresponding to different information about the phenomenon,
expressed by different choices of a model. Our Bayesian model is: we consider it possible that the
data have a periodic component due to some systematic physical influence on the weather:

A cosωt+B sinωt (17–39 )

where as noted, we may suppose |ω| ≤ π (with yearly data it does not make sense to consider
periods shorter than a year). In addition the data are contaminated with variable components et

that we call “irregular” because we cannot control them or predict them and therefore cannot make
allowance for them. This could be because we do not know their real causes or because, although
we know the causes we lack the data on initial conditions that would enable predictions.† Then,
as explained in Chapter 7, it will almost always do justice to the real prior information that we
have to assign a gaussian sampling distribution with parameters (µ, σ) to the irregulars. There is
hardly any real problem in which we would have the detailed prior information that would justify
any more structured sampling distribution.

Thus µ is the “nominal true mean temperature” not known in advance; we can estimate it
from the data very easily (intuition can see already that the mean value of the data y is about as
good an estimate of µ that we can make from the information we have); but it is not of present
interest and so we treat it as a nuisance parameter. We do not know σ in advance either, although
we can easily estimate it too from the data. But that is not our present interest and so we shall let
σ also be a nuisance parameter to be integrated out as explained in Chapter 7. Our model equation
for the data is then

yt = A cosωt+B sinωt+ et, 1 ≤ t ≤ n (17–40 )

and our sampling distribution for the irregular component is

p(e1 · · · en|µ, σ, I) =
(

1
2πσ2

)n/2

exp

[
− 1
2σ2

∑
t

(et − µ)2
]

(17–41 )

† In meteorology, although the laws of thermodynamics and hydrodynamics that determine the weather
are well understood, weather data taken on a 50–mile grid are grossly inadequate to predict the weather
24 hours in advance; partial differential equations require an enormous amount of information on initial
conditions to determine anything like a unique solution.
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Then the sampling (density) distribution for the data is

p(y1 · · · yn|µ, σ, I) =
(

1
2πσ2

)n/2

exp[−Q/2σ2] (17–42 )

with the quadratic form

Q(A,B, ω) ≡
∑

(yt − µ−A cosωt−B sinωt)2 (17–43 )
or,

Q = n[y2 − 2yµ+ µ2 − 2Ayt cosωt− 2Byt sinωt+ 2µAcosωt

+ 2µBsinωt+ 2ABcosωt sinωt+A2cos2 ωt+B2sin2 ωt]
(17–44 )

where all the overbar symbols denote sample averages over t. A great deal of detail has suddenly
appeared that was not present in the orthodox treatment; but now all of this detail is actually
relevant to the inference.‡ In any nontrivial Bayesian solution we may encounter much analytical
detail because every possible contingency allowed by our information is being taken into account.
Most of this detail is not perceived at all by orthodox principles, and it would be difficult to handle
by paper–and–pencil calculation.

In practice, a Bayesian learns to recognize that much of this detail actually makes a negligibly
small difference for the final conclusions, and so we can almost always make approximations so
good that we can do the special calculation needed for our present purpose with pencil and paper
after all. But fortunately, details are no deterrent to a computer, which can happily grind out the
exact solution.� Now in the present problem, (A,B, ω) are the interesting parameters that we want
to estimate, while (µ, σ) are nuisance parameters to be eliminated. We see that of the nine sums
in (17–44), four involve the data yt; and since this is the only place where the data appear, these
four sums are the jointly sufficient statistics for all the five parameters in the problem. The other
five sums can be evaluated analytically once and for all, before we have the data.

Now, what is our prior information? Surely, we knew in advance that A,B must be less than
100o F. If there were a temperature variation that large, New York City would not exist; there would
have been a panic evacuation of that area long before, by anyone who happened to wander into it
and survived long enough to escape. Thus the empirical fact that New York City exists is highly
cogent information relevant to the question being asked; it is already sufficient to ensure proper
priors for (A,B) in the Bayesian calculation. Also, we have no prior information about the phase
θ = tan−1(B/A) of any periodicity. We could cite various other bits of relevant prior information,
but we know already [from the results found in Chapter 6, Exercise (6.6)] that unless we have prior
information that reduces the possible range to something like 10o F, it will make a numerically
negligible difference in the conclusions (a strictly nil difference if we record our conclusions only
to two or three decimal digits). So let us see what Bayesian inference gives with just this. By an
argument essentially the same as the Herschel derivation of the gaussian distribution in Chapter 7,
we may assign a joint prior

‡ This is just the expression of the fact that probability theory as logic is the exact system for inference;
therefore it will seek out relentlessly every scrap of information that has any relevance at all to the question
being asked.
� Indeed, the exact general solution is often easier to program than is any particular special case of it or
approximation to it, because one need not go into the details that make the case special. And the program
for the exact solution has the merit of being crash–proof if written to prevent underflow or overflow (for
approximations will almost surely break down for some data sets, but the exact solution – with proper
priors – must always exist for every possible data set.
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p(A,B|I) = 1
2πδ2

exp
[
−A2 +B2

2δ2

]
(17–45 )

where δ is of the order of magnitude of 100o F; we anticipate that its exact numerical value can have
no visible effect on our conclusions (nevertheless, such a proper prior may be essential to prevent
computer crashes).

Now the most general application of Bayes’ theorem for this problem would proceed as follows.
We first find the joint posterior distribution for all five parameters:

p(A,B, ω, µ, σ|D, I) = p(A,B, ω, µ, σ|I) p(D|A,B, ω, µ, σ, I)
p(D|I) (17–46 )

then integrate out the nuisance parameters:

p(A,B, ω|D, I) =
∫

dµ

∫
dσ p(A,B, ω, µ, σ|D, I) (17–47 )

But this is a far more general calculation than we need for present purposes; it is prepared to take
into account arbitrary correlations in the prior probabilities. Indeed, we can always factor the prior
thus:

p(A,B, ω, µ, σ|I) = p(A,B, ω|I) p(µ, σ|A,B, ω, I) (17–48 )

and thus the most general solution appears formally simpler:

p(A,B, ω|D, I) = C p(A,B, ω|I)L∗(A,B, ω) (17–49 )

where C is a normalization constant, and L∗ the quasi–likelihood

L∗(A,B, ω) ≡
∫

dµ

∫
dσ p(µ, σ|A,B, ω, I) p(D|A,B, ω, µ, σ, I) (17–50 )

In (17–49) the nuisance parameters are already out of sight. But in our present problem, evidently
knowledge of the parameters (A,B, ω) of the systematic periodicity would tell us nothing about
the parameters (µ, σ) of the irregulars; so the prior for the latter is just

p(µ, σ|A,B, ω, I) = p(µ, σ|I) (17–51 )

so what is our prior information about (µ, σ)? Surely we know also, for the same “panic evacuation”
reason, that neither of these parameters could be as large as 100o F. And we know that σ could not
be as small as 10−6 degrees F, because after all our data are taken with a real thermometer, and
no meteorologist’s thermometer can be read to that accuracy (if it could, it surely would not give
reproducible readings to that accuracy over many years). We could just as well ignore that practical
information and argue that σ could not be as small as 10−20 degrees F because temperature is not
defined, in statistical mechanics, to that accuracy. Numerically, it will make no difference at all in
our final conclusions; but it is still conceivable that a proper prior may be needed to avoid computer
crashes in all contingencies; so to be on the safe side we assign the prior gaussian in µ because it
is a location parameter, a truncated Jeffreys prior for σ because we have seen in Chapter 12 that
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the Jeffreys prior is uniquely determined as the only completely uninformative prior for a scale
parameter:

p(µ, σ|I) = 1√
2πα2

exp[−µ2/2α2] · 1
σ
, a ≤ σ ≤ b (17–52 )

in which α and b are also of the order of 100o F, while a � 10−6; we are only playing it extremely
safe in the expectation that most of this care will prove in the end to have been unnecessary.

Our quasi–likelihood is then

L∗(A,B, ω) =
∫ ∞

−∞
dµ exp[−µ2/2α2]

∫ b

a

dσ

σn+1
exp[−Q/2σ2] (17–53 )

But now it is evident that the finite limits on σ are unnecessary; for if n > 0 the integral over σ
converges both at zero and infinity, and

∫ ∞

0

dσ

σn+1
exp[−Q/2σ2] =

1
2
(n/2− 1)!
(Q/2)n/2

(17–54 )

and the integral of this over µ is also guaranteed to converge. But for tactical reasons, let us do
the integration over µ first.

Q = n[s2 − (µ− y)2

************** MUCH, MUCH MORE HERE! *****************

COMMENTS

Let us try to summarize and understand the underlying technical reasons for the facts noted in the
last two Chapters. Sampling theory methods of inference were satisfactory for the relatively simple
problems considered by R. A. Fisher in the 1930’s. These problems had the features of:

(A) Few parameters
(B) No nuisance parameters
(C) No important prior information
(D) Presence of sufficient statistics.

When all these conditions are met and we have a reasonably large amount of data (say, n ≥ 30),
orthodox methods become essentially equivalent to the Bayesian ones and it will make no pragmatic
difference which ideology we prefer. But today we are faced with important problems in which
some or all of these conditions are violated. Only Bayesian methods have the analytical apparatus
capable of dealing with such problems without sacrificing much of the relevant information in the
data. They are more powerful (i.e., if there is no sufficient statistic, Bayesian methods extract
more information from the data because they make use of all the data, while an orthodox method
will still use only one function of the data, namely some arbitrarily chosen ‘estimator’ β(x1 · · ·xn).

But at the same time Bayesian methods are safer (i.e., they have automatic built–in safety
devices that prevent them from misleading us with the over–optimistic or over–pessimistic conclu-
sions that orthodox methods can produce). In parameter estimation, for example, whether or not
there is a sufficient statistic, the log–likelihood function is
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logL(α) =
n∑

i=1

log p(xi|α) = n log p(xi|α) (17–sam)

in which we see the average of the log–likelihoods over each individual data point. The log–likelihood
is always spread out over the full range of variability of the data, so if we happen to get a very
bad (spread out) data set, no good estimate is possible and Bayes’ theorem warns us about this
by returning a wide posterior distribution. With a location parameter and an uninformative prior,
the width of the posterior distribution for α is essentially (R+W )

(range of the data) + (width of individual likelihoods)
If we happen to get a very good (sharply concentrated) data set, a more accurate estimate of α
is possible and Bayes’ theorem takes advantage of this, returning a posterior distribution whose
width approaches a lower bound determined by that of the single point likelihood Li(α) = p(xi|α).

In the orthodox method the accuracy claim is essentially the width of the sampling distribution
for whatever estimator β we have chosen to use. But this takes no note of the range of the data!
Whether the data range is large or small, orthodoxy will claim just the same accuracy for its
estimate. Far worse, that accuracy expresses entirely the variability of the estimator over other
data sets that we might have obtained but did not . But as noted, unobserved data sets are entirely
a figment of our imagination, and so are irrelevant to the inference being made.

One wonders how is is possible that this orthodox logic continues to be taught year after year
as ‘objective’, while charging Bayesians with ‘subjectivity’. When we examine the rationale of their
procedures, it is evident that orthodoxians are in no position to charge anybody with ‘subjectivity’.
If there is no sufficient statistic, the orthodox accuracy claim simply ignores all the evidence in the
data that is relevant to the accuracy.

We shall illustrate this in later Chapters with several examples including interval estimation,
dealing with trend, linear regression, detection of cycles, and prediction of time series. In all
these cases, “orthodox” methods can miss important evidence in the data; but they can also yield
conclusions not justified by the data. No case of such failure of Bayesian methods has been found;
indeed, the optimality theorems well known in the Bayesian literature lead one to expect this from
the start. Psychologically, however, practical exemples seem to have more convincing power than
do optimality theorems.

Historically, scientific inference has been dominated overwhelmingly by the case of univariate
or bivariate Gaussian sampling distributions. This has produced a distorted picture of the field;
the Gaussian case is the one in which “orthodox”, or “sampling theory” methods do best, and the
difference between pre–data and post–data procedures is the least. On the basis of this limited
evidence, orthodox theory (in the hands of Fisher) tried to claim general validity for its methods,
and attacked Bayesian methods savagely without ever examining the results they give.

But even in the multivariate Gaussian case, there are important problems where sampling
theory methods fail for technical reasons. An example is linear regression with both variables
subject to error of unknown variance; indeed, this is perhaps the most common problem of inference
faced by experimental scientists. Yet sampling theory is helpless to deal with it, because each new
data point brings with it a new nuisance parameter. The orthodox statistical literature offers us
no satisfactory way of dealing with this problem. See, for example, Kempthorne & Folks (1971),
in which the (for them) necessity of deciding which quantities are “random”, and which are not,
leads them to formulate sixteen different linear regression models to describe what is only a single
inference problem; then they find themselves helpless to deal with most of them.

When we depart from the Gaussian case, we open up a Pandora’s box of anomalies, logical
contradictions, absurd results, and technical difficulties beyond the means of sampling theory to
handle [several examples were noted already by the devout orthodoxians Kendall & Stuart (1961)].
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These show the fundamental error in supposing that the quality of an estimate can be judged
merely from the sampling distribution of the estimator. This is true only in the simpler Gaussian
cases; in general, as Fisher noted, many different samples which all lead to the same estimator
nevertheless determine the values of the parameters to very different accuracy because they have
different configurations (ranges). But Fisher’s remedy – conditioning on ancillary statistics – is
seldom possible, and when it is possible, it is mathematically equivalent to use of Bayes’ theorem.

Unfortunately, what the orthodox literature fails to recognize is that all of these problems
are solved effortlessly by the uniform application of the single Bayesian method. In fact, once the
Bayesian analysis has shown us the correct answer, one can often study it, understand intuitively
why it is right; and with this deeper understanding see how that answer might have been found by
some ad hoc device acceptable to orthodoxy.

We will illustrate this by giving the solution to the aforementioned regression problem, and
to some inference problems with the Cauchy sampling distribution. To the best of our knowledge,
these solutions cannot be found in any of the orthodox statistical literature.

But we must note with sadness that in much of the current Bayesian literature, very little of
the orthodox baggage has been cast off. For example, it is rather typical to see a Bayesian article
start with such phrases as: “Let X be a random variable with density function p(x|θ), where the
value of the parameter θ is uknown. Suppose this parametric family contains the true distribution
of X · · · .” The analytical solutions thus obtained will doubtless be valid Bayesian results; but one
is still clinging to the orthodox fiction of ‘random variables’ and ‘true distributions’, unaware that
this is restricting the application to a small fraction of the real situations where the solution might
be useful. In the vast majority of real applications there there are no ‘random variables’ and no
‘true distribution’; yet probability theory as logic applies to all of them.

Unlike orthodox tests, Bayesian posterior probabilities or odds ratios can tell us quantitatively
how strong the evidence is for some effect, taking into account all the evidence at hand, not merely
the evidence of one data set.

L. J. Savage (1962, pp. 63–67) gives by a rather long, closely reasoned argument using only
sampling probabilities, a rationale for the Bayesian algorithm. The Bayesian argument expounded
here in Chapter 4, which he rejects as a “necessary” view, yields the same conclusion, in greater
generality, by three lines of elementary algebra.

These comparisons show that in order to deal successfully with current real problems, it may be
essential to jettison tradition and authority, which have retarded progress throughout this Century.
It is a major scandal that orthodox methods continue to be taught at all to young statisticians,
economists, biologists, and medical researchers; this has done irreparable damage in these fields for
decades.

Yet everywhere we look there are glimmerings of hope. For example, in medical diagnosis
the great physician Sir William Osler (1849 – 1919) long ago noted that:† Medicine is a science
of uncertainty and an art of probability . The book of Dr. Lee Lusted (1965) gives worked–out
examples, with flow charts and source code, of the Bayesian Computer diagnoses of six important
medical conditions, as well as a great deal of qualitative wisdom in medical testing. Lusted later
founded the Society for Medical Decision Making in 1978, and served as the first Editor of its
journal, Medical Decision Making . At the time of his death in February 1994 he was retired but
still serving as Adjunct Professor at the Stanford University Medical School, advising medical
students in problems of Decision Analysis. Dr. Peter Cheeseman has been developing Expert
Systems for medical diagnosis based on Bayesian principles.‡

† Quoted by Wm. B. Bean (1950); p. 125
‡ As noted in Jaynes (1990b) this aroused fierce opposition from those with an entrenched vested interest in
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the old ad hoc principles; but in all their statistical training they had never seen a Bayesian solution, and did
not understand what Bayesian methods are. Once the final results are in hand, such uninformed opposition
melts away like an ice cube in a furnace. As we noted in Chapter 5 under “Evolution into Bayesianity”, Cox’s
theorems show that Bayesian methods are uniquely determined by elementary requirements of consistency.
Therefore, to deny that the human mind reasons according to Bayesian principles is to assert that it operates
in a deliberately inconsistent way. Nobody could maintain such a position if he were aware of this.


