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CHAPTER 1 

INTRODUCTION 

 
 

Integrated Circuit (IC) technology has dominated the electronic world since their 

introduction in 1960s. Dr. Jack S. Kilby was awarded a Nobel Prize this year (2000) for 

his part in the invention of IC. 

  There were gradual advancements to the IC technology through Small Scale 

Integration (SSI), Medium Scale Integration (MSI), Large Scale Integration (LSI), Very 

Large Scale Integration (VLSI) technology that evolved in the 1970s and the most recent 

is Ultra Large Scale Integration (ULSI) technology. ULSI has made it possible to 

implement powerful and compact digital circuits at low cost, as now it is possible to build 

chips with millions of transistors [15]. New Computer Aided Design (CAD) tools are 

being used. Example, Simulation Program for Integrated Circuit Emphasis (SPICE) is 

used at the circuit level, and there are Hardware Description Languages (HDLs) that are 

used to describe and specify electronic systems at different levels of abstraction – ranging 

from behavioral down to structural level.  

Application Specific Integrated Circuits (ASICs) [11] are specialized type of ICs that 

have evolved from the VLSI technology. ASIC evolved from a simple array of a few 

hundred logic gates into a complete family of full custom and semi custom ICs using 

more than 1 million logic gates. The main reasons for the popularity of ASICs are 
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reduced board space requirements, reduced development cost, increased reliability, 

maximized performance, and security for new designs.  

Full-custom ASICs are designed without using any precompiled or preprocessed 

silicon. The designer works at transistor level to optimize each cell for area and 

performance. They generally require a complete of standard steps for fabrication process. 

Whereas, semi-custom ASICs are preprocessed chips to which the designer only needs to 

add the final metal interconnection. The different types of semi-custom ASICs are 

Standard cell and Gate arrays. 

Standard cells are pre-designed circuit functions at the LSI /VLSI level of complexity 

that can be joined by interconnecting cells. These are cheaper, when manufacturing more 

than 10,000 chips, as the Non-Recurring Engineering (NRE) costs are high. The NRE 

cost includes the cost of work done by the ASIC vendor and the cost of the masks. Gate 

arrays are preprocessed wafers of logic elements. These require only between one to three 

masking steps of metal interconnects to complete the fabrication process. These have 

columns of transistor arrays surrounded by inputs and outputs. The drawback of this type 

is the lack of flexibility to add complex functions; this is due to the difficulties in creating 

the signal routing channels. 

  Programmable devices are a type of semi-custom ASICs, which can have anyone 

of the architecture discussed above. These are general-purpose chips that can be 

configured for a wide variety of applications. The first of these kinds were the 

Programmable Read Only Memories (PROMs)[3], which were one-time programmable 

devices. The more recent versions are Programmable Logic Devices (PLDs), which have 

high speed and high performance logic gates. Step ahead in complexity to PLDs are the 
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Field Programmable Gate Arrays (FPGAs) [15]. There is very little difference between 

an FPGA and a PLD; an FPGA is usually larger and more complex than a PLD. A FPGA 

typically consists of a two-dimensional array of logic blocks that can be connected by 

general interconnection resources. There are a lot of FPGA companies in the market. The 

major competitors are ALTERA and Xilinx. Table 1.1 shows the comparison between the 

architecture, the technology and the main products of these companies. 

 

Table 1.1 Comparison of the ALTERA and XILINX architecture and products. [8] 

 ALTERA Xilinx 

Architecture Deterministic Complex 
PLDs 

Non-deterministic coarse 
grain FPGAs 

Programming 
elements 

EEPROM Static RAM 

High density family APEX 20KE series Virtex series 
Low cost family ACEX series SPARTAN – II series 
Memory elements Embedded Array Blocks 

(EABs) 
Block SelectRAM 

Logic blocks Logic array blocks (product 
– term – based programming 
logic devices) 

Configurable logic blocks 
(Look- up Table 
approach) 

Maximum number of 
gates available 

1,520,640 1,000,000 

Maximum RAM bits 442,368 131,072 
System gates 2,392,000 1,124,022 
Logic cells 51,840 27,648 
Maximum I/O bits 808 512 
Voltage Levels 1.8V, 2.5V, 3.3V 2.5V, 3.3V 
Dual–port memory Two ports are used, one for 

reading and one for writing, 
so need two-memory blocks 
(minimum). 

Same port is used to read 
and write. 

Special features 1.Content Addressable 
Memory (CAM). 

2. Mega-functions to model 
memory. 

 

1. On chip Digital 
Delay-Locked Loops 
(DLLs). 

2. Block RAM can 
be supplemented for 
external memory. 
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The number of devices handled is very large; the popularity of HDLs has thus 

grown tremendously with the growing demands of ASICs in the electronic industry. Very 

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)[5] has 

been the result of this high demand.  

 

          VHDL evolved in the US Department of Defense (DoD) in 1983. It was intended 

for documenting and modeling digital systems ranging from small chip to large systems. 

DoD made it public in 1985, and IEEE immediately adopted it. It was it as a standard in 

1987, under 1076- 1987. It was further upgraded in 1993, the IEEE 1076-1993 standard 

[2]. There are a lot of synthesis tools too that help the designer to check his design. The 

designer creates a behavioral or structural model of his design, which can be synthesized 

by the synthesis tool. Thus the design verification and testing process is made a lot easier 

and faster. The important aspect of VHDL is that the behavior of the circuit is described 

and not the gates to be used, this makes the VHDL code independent of the technology 

[6]. Thus code written for one technology can be easily implemented into some other 

technology, example- the synthesis tool SYNOPSIS supports both Altera and Xilinx 

technology. 

Some of the important applications of Field Programmable Logic Devices 

(FPLDs) are –image enhancement filters, signal processing for digital modulation and 

demodulation, direct digital signal synthesis, fuzzy logic embedded controllers and 

reconfigurable computing [16]. Reconfigurable computing technology is one of the 

upcoming applications. It is the ability to modify a computer system’s hardware 
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architecture in real time. Instead of having ASIC, reconfigurable computing is an effort to 

build ICs that can be used for a set of applications after some minor reconfigurations 

[14]. Thus, parts of the algorithms are hardwired into the device and they are 

implemented on a function-by-function basis. Since these are implementations aimed at 

few applications, they offer tremendous acceleration over traditional programming 

solutions.  

  With such a wide variety of applications, FPLDs are easily available in 

market and this approach is found to be very economical too. The work presented in this 

thesis is one such application of FPLDs. The electronics design for D-zero detector at the 

Fermi National Acceleration Laboratory is to be used to trace the path of the particles 

emitted from the collision of a proton and anti-proton. This experiment has a large 

amount of data to be processed and the available processing time is just few 

microseconds. It was been proven that hardware based algorithms outperform software 

implementations, even though the processors executing the software are much faster than 

the hardware [17]. Thus hardware implementation is chosen for this project. The 

hardware design is developed using VHDL as the description language and implemented 

in ALTERA’s FLEX 10KE FPLDs. The synthesis tool used is ALTERA’s MAXPLUS II. 

This approach gives us the flexibility of software and speed of hardware. 

  In the thesis, Chapter 2 has a brief description about Fermi National 

Acceleration Laboratory, their activities and details about the D-zero (D0) project. There 

is also a summary of the implementation of the main data path. Chapter 3 describes the 

design and implementation of the main data path in detail. The Chapter 4 includes the 

simulation results of the VHDL model and the comparison of the results with a 
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MATLAB model of the design. Chapter 5 describes the different design approaches 

studied for some of the modules of the main data path. The concluding remarks about the 

work are in Chapter 6.  
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CHAPTER 2 

THE D0 DETECTOR AT FERMI NATIONAL ACCELERATION 

LABORATORY 

 

 

Fermi National Accelerator Laboratory (Fermilab) was founded in 1967 [10] and 

has been in the forefront in the exploration of fundamental nature of matter. The 

scientists at Fermilab utilize the latest technology to conduct research at the frontiers of 

high-energy physics and related disciplines. They are working towards finding the 

smallest elementary particles, which are the particles that cannot be divided into anything 

smaller. 

 Ordinary matter is made of atoms, which in turn contains electrons that orbit the 

nucleus, which is constituted of protons and neutrons. Electrons have been assumed as 

elementary particles, but protons and neutrons are made up of even smaller particles 

called quarks. The quarks are bound by a strong nuclear force, the binding energy that 

acts over a small distance and at a very large energy. The binding energy of the quarks is 

million times the binding energy of the atom. To be able to explore the internal structure 

of the quarks, there is a need to break their binding energy. This is achieved by using 

high-energy accelerators [10], for example the TeVatron accelerator at Fermilab. These 

are high-energy accelerators, but the number of particles accelerated at a time is very 
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small, thus the total energy is also small. The accelerated particles i.e. the proton and 

anti-proton are made to collide. This collision results in emission of the smaller particles 

that constitute the proton and anti-proton. To detect these emitted particles, Fermilab has 

two detectors on the TeVatron accelerator; they are the D0 detector and the CDF 

detector. These experiments have helped scientists to define the proton, a particle inside 

the atom’s nucleus and identify its constituents i.e. the quarks. The first of the heavy 

quarks was bottom quark that was discovered in 1977 and more recent is the top quark 

that was discovered in 1995 [9]. The scientists predict that further study of the top quark 

may give clues about the mystery of why matter has mass. The top quarks are produced 

very rarely in the proton- anti-proton collision, thus to obtain a few positive events of top 

quark a few million events of the collision have to be scanned. 

 

The D0 detector  

 
The Silicon Track Card (STC) in the D0 detector electronics has been developed 

with the goal of finding events with top quarks. This goal will be achieved by finding the 

vertices of the particles in 3-dimensions with proper time resolution and fully 

reconstructing the decay chains [3]. The vertices are the points in space at which events 

occur. The primary vertex is the primary interaction point at which proton and anti-proton 

collide and produces new particles. The newly formed particles travel in space and then 

decay, such a point is called decay vertex or secondary vertex. 

 The detector has three levels of data acquisition and processing [7]. It uses 

different measurement techniques to help trace the decaying particles. These are 

calorimeter, fiber tracker, muon detector, pre-shower selectors and silicon detector chips. 
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Figure 2.1 The flow of data in the D0 detector [D0 internal presentation]. 

 

The detector chips are silicon wafers made out as reverse biased p-n junctions and have 

aluminum strips for read out. They are located in the central region of the D0 trigger and 

are oriented in three different positions axial, stereo and z-axis. The axial position means 

parallel to the axis of cylinder of the detector, the stereo position means inclined by about 
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2 degrees with respect to the axial direction and the z-axis position means the chips are 

perpendicular to the axial direction. 

 

Level_1 

This level obtains measurement values from the calorimeter, fiber tracker, muon 

detector and the pre-shower [3]. It takes 128 different combinations of these measured 

values and feeds them to a series of FPGAs. The FPGAs examine this data to determine 

if a specific L1 bit has been satisfied, to issue an accept signal, which acts as a trigger for 

Level_2. This level helps to filter out the data, by giving a rough estimate of the group of 

tracks of the fiber-roads, through which the particle has passed, thus reducing the data to 

be processed by the next level by about 1000 times. This level runs at a frequency of 7.5 

MHz.  

 

Level_2 

The trigger from Level 1 acts as a start signal for Level_2. The level runs are 

frequency of 5-10 kHz. The data from the silicon detector chips are digitized and passed 

on to Level_2. The digitization takes place in a full custom, mixed signal integrated 

circuit (SVX-II). These are hardwired directly to the detector. The charge, which is stored 

in terms of voltage across a capacitor, is digitized by the SVX-II to an 8 – bit word. Ten 

SVX-II chips are connected to High Density Interconnect (HDI) that is copper flexible 

printed circuit. Four HDIs are further connected to a one section of the Port Card and 

each Silicon Acquisition and Readout module (SAR) has two Port Cards. Finally a 
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maximum of 16 SARs can be mounted on a VERSAmodule Eurocard (VME) crate. 

Level_2 has eight VME crates around the detector. Thus Level_2 electronics has eight 

channels. Level_2 helps to locate a particular strip on the SVX-II chip through which the 

particle may have passed. The strip value from Level_2 and the fiber tracks from the 

Level_1 are compared in this level to eliminate data due to any stray particles. Finally, 

sophisticated Digital Signal Processing (DSP) microprocessors in the Track Fit Card 

(TFC) are used to run curve-fitting algorithms to find the decay chains of the emitted 

particles, top quarks in particular.  Thus the data is further reduced by an order of 1000 

times. 

 

 

 

 

 

 

Figure 2.2 Block diagram of the Level_2. 

Level_3 

 This is the final level in the D0 electronics. This is a data acquisition level that 

acquires data from each module of the both Level_1 and Level_2. This data is transferred 

to VME Receiver Card (VRC) on fiber using low-level fiber channel hardware [3]. The 

data transfer takes place only after the Level_2 accept signal is issued. This level runs at 

1000 Hz. 
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The electronics for main data path [18] 

 
 The main data path is a part of Level_2. It performs the functions of preprocessing the 

SMT data, finding clusters and to associate the centroids with the Fiber Road Card (FRC) 

tracks. It has three modules Strip Reader, Centroid Finder, and the Hit Filter. This level 

also has a storage module L3 buffers. 

Strip Reader 

 
 This is the front end of the data path. It has two sub-modules, SMT Data Filter and the 

Strip Reader Control. It accepts the 8- bit SMT data from the VME bus at the rate of 

53MHz. This data is filtered of excess “C0” – end of event markers. The filtered data is 

corrected after checking for bad strips and a second check for the gain and offset values 

for the individual strips. At the output the Strip Reader formats the data obtained in a 23-

bit word to be read by the Centroid Finder. The data is written into a 23-bit wide First In 

First Out (FIFO) bank of registers at the rate of 32Mhz. The format of the 23-bit register 

is given in Table 2.1 below. 

 

 

Table 2.1 The 23-bit data at the output of the Strip Reader. 

22..21 20 19 18..11 10..7 6..0 

Data-type New data 
Bit 

End of event 
bit Data SVX-II 

Chip ID 
Strip 

number 
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Centroid Finder 

 This module also runs at 32 MHz. It has two tasks (i) to determine a cluster and (ii) to 

find the centroid for the cluster. The two sub-modules in this module are Cluster Finder 

and the Centroid Calculator. The module has the ability to find three– or five–strips 

clusters, based on the requirements of a particular experiment. The Centroid Calculator 

algorithm finds the centroid depending on the centroid mass principle. These centroids 

are the strip addresses (SVX-II chip id (4) and strip number (7)), through which a particle 

is supposed to have passed. The data type of the centroid is also important for the study 

of the top quark as it indicates which direction (axial, stereo or z-axis) is represented by 

the data. Hence this is tagged along with centroid, when it is passed on to the Hit Filter. 

The centroids tagged with the end of event bit, data type, and the pulse area are stored in 

the FIFO at the end of the module in the format given in Table 2.2. 

 

Table 2.2 The 17-bit data word from Centroid Finder to the Hit Filter. 

17 16..15 14..13 12..0 
End of 

event bit 
Data type 

 
Pulse area Centroid 

 

Hit Filter 

 The Hit Filter has 46 parallel Comparators that can hold a maximum of 46 pairs of the 

road groups from Level_1. The two road values represent the upper limit and the lower 

limit of the road groups. The centroid values are pulled out of the FIFO. Only the 

centroids with axial data-type are compared with the roads. The z-axis centroids are 

stored in this module to be readout by the hit interface module. The hits are the centroids 
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that match the road groups. These are also stored in a FIFO. The hit interface module 

reads them out. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The data flow in the main data path with reference to the modul

electronics. 

 

L3 buffer 

 The L3 buffer is a group of five buffers that store the data processed at eac
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Level_3 are obtained.  
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2. Corrected data: The corrected data is the raw data checked for bad      strips 

and also the data from the strips is processed for gain correction and offset 

correction. 

3. Strip clusters: This buffer holds the data values and addresses of the strips that 

form the cluster, the threshold values used and the cluster type. 

4. Centroids: The centroids calculated in the Centroid Calculator, with their data 

type are stored in this buffer. 

5. Hits: This buffer holds the hits out of the Hit Filter. 

 

Main control module 

 
 The main control module is the control unit that monitors the flow of data to and 

from the eight STC channels. This module is the gateway between the eight channels and 

the other electronics of the Level_2. The reading of hits and z- axis centroids from the Hit 

Filter, downloading the parameters in the channel memory and reading out the L3 buffers 

are some of the functions of this module. The hit interface module of each channel talks 

to this main control module. 

 

 With this background of the D0 detector and the part of the main data path in Level_2, 

the further chapters discuss the design methodologies and the implementation of the main 

data path.  
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CHAPTER 3 

DETAILED DESCRIPTION OF THE MAIN DATA PATH 

 

 

The main data path consists of three modules the Strip Reader, Centroid Finder 

and the Hit Filter. The data flow through each of the module and the data processing in 

the module is described in detail in this chapter.  

 

Design features 

 
The design is implemented in a FPLD and VHDL is used to describe the design 

behaviour. The design defines the logic for one channel of the Silicon Track Card (STC). 

Each STC has eight such identical channels operating in parallel. Each channel can be 

enabled or disabled according to incoming data from the experiment. The whole design 

(except for the Silicon Micro-strip Tracker (SMT) data filter) is designed to operate with 

system clock of frequency 32 MHz. The logic has a synchronous reset signal at startup 

that is used to initialize the design. All the modules are in their initial states and do not 

start the data processing till an EVENT_START signal is issued. The SMT Data Filter in 

the Strip Reader runs synchronously when the channel is enabled, and the Centroid 

Calculator in the Centroid Finder and the Comparator module in the Hit Filter run 

asynchronously when the channel is enabled. 
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All the control modules are designed with the Moore type Finite State Machine 

(FSM) approach. A FSM is a state machine with finite number of states. The machine 

always resets into an initial state and updates states on each clock cycle. FIFO buffers are 

provided at the end of each module in the data path to maintain a synchronous data flow. 

The logic can process data for only one event, but the design can hold more than one 

event at the input in the SMT data, and output in the Hit Filter. 

 

Design parameters 

 
The parameters required for the data processing are unique for each channel. 

These parameters are downloaded in the channel memory on start up. The memory 

spaces are allocated to facilitate the main control logic to write into the memory and read 

out of the memory through a bi-directional bus. The control logic uses 15 address lines to 

access this memory space. The memory allocated area are as given in the Table 3.1. 

 
Table 3.1 Memory mapping for the single channel. 

 
Memory area Memory space Memory address 
Monitor space 1K X 32 0000 – 03FF 
Miscellaneous 1K X 32 0400 – 07FF 

Gain Offset LUT 4K X 8 0800 – 17FF 
Test data LUT 256 X 18 

(1K min.) 
1800 – 1BFF 

Empty Space (for future use) – 1C00 – 3FFF 
Road data LUT 16 K X 22 4000 – 7FFF 

 

Monitor space 

This space holds the monitoring counters from the Strip Reader and the Centroid 

Finder. These counters are defined as –  
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1. SMT counters  

i. Mismatch Counter: This counter counts the number of times there 

was a mismatch in SEQ ID and HDI ID. 

ii. SMT error (SERR) Counter: This counter keeps track of the error in 

reading the data VTM data. 

iii. Zero Error Counter: This counter increments every time a byte of 

zeros is not present in the data stream after the SVX-II chip-id. 

2. Chip activity counters: There are nine SVX-II chip activity counters, one 

for each SVX-II chip. The counter for the SVX-II chip is incremented 

when a strip from that SVX-II chip has data on it. Thus it is an indication 

of the activity on that SVX-II chip for an event. 

3. Cluster counters: There are three cluster counters, one for each data type. 

These counters count the number of clusters of each data type in an event. 

 

Miscellaneous memory  

 The miscellaneous memory constitutes of bad channel memory, chip ranges, 

pulse area thresholds, clustering thresholds and the miscellaneous data register. 

1. Bad channel memory space having 64, 32 bit wide words is actually a Look 

Up Table (LUT). Addresses assigned to this memory space are from 0400 – 

047F (HEX). This memory has the status of each of the 128 channels of every 

SVX-II chip in the detector. A channel is set to be bad on the basis of the 

technical survey of the detector, conducted in between runs. This status is 

used to eliminate any false readings on the channels. 
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2. Chip range memory space is at address 0480 (HEX). This memory consists of 

24-bit word. Each data type as a 4 – bit upper range value and a 4–bit lower 

value for the SVX-II chips, thus forming the 24-bit wide word. 

3. Pulse area threshold memory space is at the address locations 0500 – 0503 

(HEX). This memory is 24-bit wide and holds the three threshold values 

Pulse_Threshold_1, Pulse_Threshold_2, and Pulse_Threshold_3 required to 

calculate the pulse area for the clusters found in the event. These values are 

unique for each data type. 

4. Clustering thresholds are downloaded in memory locations 0600-0603 (HEX). 

These are the Threshold_1 and the Threshold_ 2 values used in the clustering 

algorithm. The data value Threshold_1 is minimum data value that should be 

on a strip to be considered as valid data. The data value threshold_2 is the 

minimum peak data value of a cluster to get a valid cluster from the strips. 

5. Miscellaneous data register is a 32-bit register downloaded at address location 

0580(HEX). This register has the following parameters - 

i. Unique 8–bit SEQ ID for the channel. 

ii. Unique 3–bit HDI ID for the channel. 

iii.  Delay: This is an 8-bit signal to indicate the delay between the 

FRC_START signal and the main EVENT_START signal. 

iv. Disable bit: This bit indicates whether the channel is disabled. 

v. SMT ID: This is 3-bit number, unique for each SMT data stream.  
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Table 3.2 Miscellaneous register downloaded at 0580 (HEX). 
 

 

 

 

Gain offset memory 

This memory holds the corrected data for each SVX-II chip in the detector, 

according to the gain and offset values for the SVX-II chips. This data is accessed 

with the SVX-II chip number and the data value for the strip. 

Corrected data is calculated using following equation –  

Corrected data = gain * actual data value + offset.  

Test data LUT 

The test data memory space holds the test data in the same format as the 18 – bit 

data stream (refer Table 3.3). This data stream is used to check the functionality 

of the design. 

Road data LUT 

The road data memory is an external memory space, which gives a unique pair of 

the roads (upper and lower) 11-bits wide defining a group of roads. The upper and 

lower road values are unique for each 17- bit road data value obtained from the 

Level_1 i.e. FRC, which represents a fiber road track. 

31..28 27 26..24 23..16 15..8 7..0 
Empty Disable SMT 

ID 
Delay SEQ 

ID 
HDI 
ID 
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Strip Reader 

The Strip Reader module has two clocks; a SMT clock running at 53 MHz, to 

match the speed of the SMT data coming on the VME bus and the PCI System clock 

running at 32 MHz, this clock determines the flow of data through the design. The three 

sub modules in the Strip Reader are the SMT Data Filter, SMT Test Select and the Strip 

Reader Control. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The detailed block diagram of the Strip Reader module. 

 

SMT Data Filter module 

 
The SMT module gets input from the VME bus. The module has a state machine 

that filters out the excess data at the end of event. It also converts the 8-bit VTM data 

stream into 16-bit data word so that the system clock even though slower than the SMT 
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data clock can match the speed of the input data stream. The SMT Data Filter runs 

continuously when the channel is enabled. Any error in reading the input data stream is 

indicated by setting one of two error bits, one each for the higher and the lower byte of 

the output stream. These errors bits are also passed on to the next sub module along with 

the 16 bit data, thus forming an 18-bit word that is stored in the FIFO, as given in Table 

3.3. 

 
Table 3.3 Data stream from SMT Data Filter to the Strip Reader Control. 

 

 
 

Another task of this module is to determine the event number of the current data 

stream. This number is assigned after the FRC_START signal is received. This signal is 

used to synchronize the SMT data event and the road data event (from Level_1). The 

event number is tagged along with the end of event marker and written as the last word in 

the FIFO. 

 

SMT Test Select module 

 This module uses the TEST input from the main control module to select between the 

test data stream downloaded in Test FIFO and the SMT data stream in the SMT FIFO. 

The hand shaking signals from the Strip Reader Control module to both the FIFOs are 

routed through this module. 

17..16 15..8 7..0 
Error bits Higher byte Lower byte 
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Strip Reader Control module 

The Strip Reader using a Moore type FSM (Reference flow chart in appendix A); 

reads the 18-bit data stream from the intermediate FIFO (refer Table 3.3). Each channel is 

configured to read the data stream from a unique SEQ and HDI. Thus the first word read 

out of the FIFO is checked for the correct SEQ ID and the HDI ID; if there is a mismatch, 

the mismatch counter is incremented and mismatch bit (MM) is set. The SVX-II chip-id 

is identified next with a byte of zeros following it. These are important to isolate the 

strips with data values from the SVX-II chips. If the byte of zero is absent the zero error 

counter is incremented. The data type is determined by comparing the SVX-II chip-id 

with available SVX-II chip ranges for the three data types. Chip activity counters are 

present in this module to keep track of the number of strips per SVX-II chip. Once this is 

done, the design starts processing the strip numbers and the data values. The gain-offset 

memory is then accessed using address as the SVX-II chip id concatenated with the data 

value to get the corrected data. Before formatting the 23-bit data word (refer Table 2.1) 

the strip number is compared with the bad channel memory and the strips that are set to 

be bad are assigned a zero data value. The corrected data and the zeroed bad channel strip 

with the data type, SVX-II chip-id and channel number are formatted into the 23-bit wide 

data word and written in the output FIFO (refer Table 2.1).  An event covers many SVX-

II chips but the same SEQ ID and the HDI ID. When an end of event marker is 

encountered, the state machine extracts the event number, which is the lower byte of the 

18-bit word. The two error bits (refer Table 3.3) serve as an input to the SERR counter 

and are passed on as a single SERR bit. 
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Centroid Finder  

 
 The Centroid Finder module works at the frequency of system clock. This module has 

two sub-modules the Cluster Finder and the Centroid Calculator. This is the heart of the 

data processing in the main data path. This module finds the clusters from the strips and 

calculates the centroids. The detailed block diagram of this module is shown in Figure 

3.2. 

 

 

 

 

 

 

 

 

 

Figure 3.2-Detailed block of the Centroid Finder module. 

 

Cluster Finder module 

 
The Cluster Finder module has three tasks (i) interface with the output FIFO of 

the Strip Reader module, (ii) find the data clusters and (iii) pass on the strips of cluster to 

the Centroid Calculator module. It reads out the 23–bit word and splits it into its 

constituents (refer Table 2.1). The strips in a cluster should have  - a data value greater 
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than or equal to Threshold_1, same data type and sequential addresses. The SVX-II chip 

id is concatenated with the strip number to form 11-bit strip address. The clusters are of 

five strips. There are five data and address buffers to store the data values and addresses 

of strips constituting a cluster. There are also two secondary data buffers and address 

buffers to store the shadow values in anticipation of a peak value greater than the one 

already found for a cluster. The first data value read is always stored in data buffer D3, 

which contains the peak value. The following data values after conferring to the above 

conditions are compared with data value in D3. If the new data value is greater than or 

equal to D3 then the peak is replaced or the following data buffers are filled, (reference 

flow chart appendix A). The final peak cluster value should be greater than or equal to 

Threshold_2.  

 

 
 
 
 
 
 
 

 
            1   2    3   4   5    6    7    8    9  10  11  12   

 
 
 
 

Figure 3.3 An illustration example of a five-strip cluster. 
 

The example in Figure 3.3 is an illustration of a five-strip cluster. All the registers 

are initialized to zero before reading data for a new cluster. 

(i) Strip 2 loaded into D1, address in add 1 = (peak address – 2) 
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(ii) Strip 3 loaded into D2, address in add 2  = (peak address – 1) 

(iii) Strip 4 loaded into D3, peak data value and address in add3 = (peak address)  

(iv) Strip 5 loaded into D4, address in add 4 = (peak address + 1) 

(v) Strip 6 loaded into D5, address in add 5 = (peak address + 2) 

 

The strip number 7 and 8 are stored in the shadow buffers B1 and B2. When the data 

value of strip number 9 is compared with D3 and found to be greater than data value of 

D3 the data buffers D1 and D2 are over written with the shadow buffers B1 and B2. The 

corresponding address buffers are also replaced. The data value of strip number 9 is 

written in to data buffer D3 and the strip address is written into add3 (i.e. the peak 

address). 

So the new data buffers are –  

(i) Strip 7 loaded into D1, address in add 1 = (peak address – 2) 

(ii) Strip 8 loaded into D2, address in add 2  = (peak address – 1) 

(iii) Strip 9 loaded into D3, peak data value and address in add3 = (peak address)  

(iv) Strip 10 loaded into D4, address in add 4 = (peak address + 1) 

(v) Strip 11 loaded into D5, address in add5 = (peak address + 2) 

 

The end of cluster is found at Strip 11, as data value of the Strip 12 is below 

Threshold_1. The number of strips used for the cluster is 5 and the number of strips 

checked is 11. The data values (8- bits each) and the address add2 (11- bits) are passed on 

to the Centroid Calculator.  
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D1 D3 D4 D5 D2 

x1 0 x3 x4 x5 

Centroid Calculator module 
 

 This module takes the data values of the strips in a cluster from the Cluster Finder and 

performs the arithmetic calculation of finding the centroid using the centroid mass 

principle. The calculation for the three or five strip cluster is decided according to the 

cluster type bit. 

In Figure 3.4 below, if D2 is viewed as the origin and D1, D3, D4 and D5 as point 

masses, the centroid of the system is [13]–  

 

 

 

 

 

 

 

Figure 3.4 Realization of centroid calculation for a five-strip cluster [13]. 

 

The moment of the system is the mass times the distance from the origin: 

 - D2  + D4, -- for a three-strip cluster 

 - D1+D3+2D4+3D5,  -- for a five-strip cluster 

 Thus, the centroid of the system is given by following equations 
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D5D4D3D2D1

D53D42D3D1

++++

+++−  Centroid Calculation for five-strip cluster - (3.2) 

 

The centroid value obtained from these calculations is added to the Address add2 passed 

on from the Cluster Finder to get the exact address of the centroid for the cluster. The 

final centroid value is 13-bit wide, because of the addition of two precision bits from the 

calculation. 

 This module also finds the quantized pulse area of the cluster. The pulse area is 

calculated by summing the data values for all the strips constituting the cluster and 

comparing the sum to three threshold values stored in the channel memory [19]. Two bits 

are set to indicate the cluster pulse area according to the thresholds given in Table 3.4. 

 

Table 3.4 The scheme for determining the pulse area of the cluster [19]. 

Bits Pulse area 
00 <  Pulse_Threshold_1 
01 ≥Pulse_Threshold_1, Pulse_Threshold_2 ≤ 
10 ≥ Pulse_Threshold_2, Pulse_Threshold_3 ≤ 
11 ≥ Pulse_Threshold_3 

 

The centroid value its data type and pulse area are written into the output FIFO of the 

Centroid Finder (refer Table 2.2). 

 

Hit Filter 

 
 The Hit Filter module handles the axial and the z-axis centroids. It stores the z-

axis centroid in the z-centroid FIFO and compares the axial centroids with road data 

values to find the hits (refer Chapter 2 – Section Hit Filter). 
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 The Hit Filter module has six sub modules. They are Hit Filter Control module, 

Comparator module, Hit Register module, Hit Format module, Hit Readout module, and 

Z- centroid module. The module handles only the axial and z- axis type of centroids.  The 

z- axis centroids are stored in a buffer, which can be accessed by the hit interface module 

and the axial type of centroids are compared with the roads from level –1 to find hits. The 

hits are written in the output FIFO from where they can be pulled out by the hit interface 

module to be passed on to the TFC.  

 

 

 

 

 

 

 

 

 

Figure 3.5 Detailed block diagram of the Hit Filter module. 

 

Hit Filter Control module 

 
 This module controls the processing in the Hit Filter. It is activated with an 

EVENT_START signal. The roads from the road data memory are loaded into the 

comparators sequentially on every road write signal. Since the roads are loaded 
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sequentially, each comparator corresponds to the track of Level_1. A masking register is 

created once all the roads are loaded into the comparators. This register masks all the 

comparator outputs that are not loaded. The module then reads one centroid at a time. 

The axial centroids are loaded into the comparators, while the z- axis centroids are passed 

on to the Z- centroid module. The output of the comparators is masked, and the valid hit 

register is passed on to the Hit Format module to find the hits and format them. The 

control module issues all the control signals for the processes comparing, masking and 

formatting. The control signals are LOAD_ROAD, READ_COMPARATOR and 

HITREG_VALID. 

 

Z- centroids module 

 
 This module formats the z-centroids in a 32-bit format and stores them in a FIFO. 

The hit interface module reads out the centroids from the FIFO. The 32-bit word formed 

is given in Table 3.5. 

Table 3.5 The 32-bit word format of the Z-centroids. 

31 30..28 27..26 25..24 23..16 15..13 12..0 
0 SMT 

ID 
Data 
type 

Pulse 
area 

SEQ 
ID 

HDI 
ID 

Centroid 

 

  

Comparator module 

 The Comparator module has 46 parallel comparators. It has a capability to 

compare 46 pairs of roads with each incoming axial centroid. The road pair of upper and 
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lower roads of 11-bit each is compared with 11-bit centroid value (the two precision bits 

are not used in the comparison, as the roads are defined as whole values). 

  

Hit Register module 

 This module ANDs the output of the Comparators with the mask register to get a 

valid Hit Register for the each centroid when it receives a READ_COMPARATOR 

signal from the hit control module. This helps to filter out the false outputs from 

Comparators that are not loaded with roads. 

 

Hit Format module 

 This module takes the valid 46-bit Hit Register when the hit control module issues 

the HITREG_VALID signal. The module checks for the hits serially. To make the 

scanning process faster, the register is split into five groups. The OR-ed output of each 

group indicates whether there is a hit in that group. The scanning of the register starts 

from the first group that has a hit, and then the logic goes through the rest of the register 

sequentially. The upper limit for this process is the number of Comparators loaded with 

roads. Whenever the bit is set, it is an indication of a hit for that particular track. The final 

output in the form of a 32-bit word (refer Table 3.6) is stored in the output FIFO of the 

Hit Filter module. At the end of hits for one centroid, the module waits for a next 

HITREG_VALID signal.  

 

Table 3.6 The data format of the hits in the output FIFO. 
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At the end of event signal, a trailer (refer Table 3.7) is written into the FIFO. The module 

issues an independent end of event signal for the hit interface module. 

 

Table 3.7 The data format of the trailer for the hits. 

 

 

Hit Readout module 

This module includes the FIFO in which hits are written in a unique 32 – bit word 

format (refer Table 3.6). When the hit interface module issues a READ HITS signal, the 

read request signal of the FIFO is activated and the hits are given out on each clock cycle. 

 

The design of the data path was amended in different ways to optimize the speed, 

memory required and the logic cells utilized. The various approaches used for different 

modules are discussed in the following chapter.  

Shree ganeshayan namaha 
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CHAPTER 4 

SIMULATION RESULTS OF THE VHDL MODEL AND COMPARISON WITH 

A MATLAB MODEL 

 

 

The VHDL simulation model is described with the help of a test vector derived 

from results of the previous experiments in D0. These results are then compared to a 

MATLAB model of the same design. Each step in the flow of data through the main data 

path is given with a detailed description of the inputs and outputs of each module.  

 

The VHDL Model 

 
The test vector is given as data entering the SMT Data Filter from the VME bus. 

The test vector is given in Table 4.1. 
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Table 4.1 Test vector for an example simulation of the data path  

in hexadecimal. 

      Direction of the data stream 

AA 77 81 00 40 03 41 0D 42 06 50 06 51 10 

52 07 6B 03 6C 04 6D 05 6E 04 6F 03 77 07 

78 06 79 07 7C 09 7D 10 7E 09 C0 C0 C0 C0 

 

The data values are in HEX. This is a data stream of 8-bits each.  

• The first byte is the SEQ ID – “AA” 

• The second is the HDI ID – “77” 

• The third is the SVX-II chip id – “81”. The SVX-II chip id should be 

followed by a byte of zeros – “00”. 

 

The data stream after the byte of zeros is a strip number and the corresponding 

data value alternatively. The flow of the data through each module is described with 

reference to the detailed description of each module in Chapter 3. 

 

SMT Data Filter 

 This module converts the 8-bit test data stream into 16-bit word and adds two 

error bits to it thus an 18-bit data stream comes out the filter. The data stream coming out 

is as shown in Table 4.2. 

 

 

 



 

35 

Table 4.2 Output stream from the SMT Data Filter. 

Error bits (2) 
(Binary) 

Higher Byte (8) 
(HEX) 

Lower byte (8) 
(HEX) 

00 AA 77 
00 81 00 
00 40 03 
00 41 0D 
00 42 06 
00 50 06 
00 51 10 
00 52 07 
00 6B 03 
00 6C 04 
00 6D 05 
00 6E 04 
00 6F 03 
00 77 07 
00 78 06 
00 79 07 
00 7C 09 
00 7D 10 
00 7E 09 
00 C0 91 

 

 The last word in this data output is the end of event marker “C0” (in HEX) and 

the event number “91” (in HEX) obtained from the FRC (refer Chapter 3 - Section SMT 

Data Filter). 

 

Strip Reader Control  

This module starts on the EVENT_START signal. It pulls out the 18-bit word out 

of the intermediate FIFO. It converts the stream into higher byte and lower byte. The 

module first checks for the channel specific SEQ ID in higher byte and HDI ID in the 

lower byte. It waits for a valid SVX-II chip id in higher byte and the byte of zeros in the 

lower byte in the second word of the data stream. The most significant bit (MSB) of the 
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higher byte; in this case bit 8 of the higher byte should be high. The SVX-II chip id 

decides the data type of the following strips. The pair of strip number in higher byte and 

data value in lower byte follows.  The corrected data is obtained by addressing the gain-

offset memory with SVX-II chip id (“0001” – binary) and the data value. The bad 

channel information from the bad channel memory is matched with the strip number for 

each strip of the SVX-II chip. The resultant 23-bit word formed is as shown in Table 4.3.  

 

Table 4.3 Output stream from the Strip Reader Control module. 

Data type 
(Binary) 
 (2-bits) 

New 
data bit 
(1-bit) 

End of 
event bit 
(1-bit) 

Data 
(HEX) 
(8-bits) 

Chip Id 
(HEX) 
(4-bits) 

Channel 
ID (HEX) 
(7-bits) 

10 1 0 03 1 40 
10 0 0 0D 1 41 
10 0 0 06 1 42 
10 0 0 06 1 50 
10 0 0 10 1 51 
10 0 0 07 1 52 
10 0 0 03 1 6B 
10 0 0 04 1 6C 
10 0 0 05 1 6D 
10 0 0 04 1 6E 
10 0 0 03 1 6F 
10 0 0 07 1 77 
10 0 0 06 1 78 
10 0 0 09 1 79 
10 0 0 07 1 7C 
10 0 0 10 1 7D 
10 0 1 09 1 7E 

 

This chip is found to be of the axial data type, hence the data type is assigned as 

“10.” 
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Cluster Finder 

The Cluster Finder module gets each data value with its specific parameters 

packed as a 23-bit word. The module finds clusters according to the clustering algorithm 

as described in the flow chart attached in Appendix A.  

  The chart in Figure 4.1 shows the data values in the test data stream with the 

corresponding strip addresses, thus we can see from the chart clearly there will be five 

clusters in this data stream as is shown in the simulation results in Table 4.4. 

 

0
2
4
6
8

10
12
14
16
18

40 41 42 50 51 52 6B 6C 6D 6E 6F 77 78 79 7C 7D 7E

Strip addresses

D
at

a 
va

lu
es

Data values

 

Figure 4.1 The data values in the test data stream with the corresponding strip 

addresses 
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Table 4.4: The clusters found by the Cluster Finder module 

Address 
of D2  
(11 bits) 
 

D1  
(8 bits) 

D2 
 (8 bits) 

D3 
 (8 bits) 

D4  
(8 bits) 

D5  
(8 bits) 

0C0 00 03  0D  06  00  
0D0 00 06  10  07  00  
0EC 03 04  05  04  03  
0F8 07 06  07  00 00  
0FC 00 09  10  09  00  

 

 

Centroid Calculator  

The Centroid Calculator module finds the centroid according to the formula 

presented in the Chapter 3 section Centroid Calculator. The cluster type bit decides the 

cluster type. In this example the bit is set to “1”, hence we calculate a five-strip cluster. 

The centroids for each of the above clusters as found by the module are given in Table 

4.5.  

 

Table 4.5: The centroids found by the Centroid Calculator module. 

Data type 
(Binary) 

Pulse area 
(Binary) 

Centroid 
(11 bits HEX. 

2 bits precision Binary) 
10 11 0C1.00 
10 11 0D1.00 
10 11 0ED.01 
10 11 0F8.10 
10 11 0FD.01 
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Hit Filter 

The Hit Filter, after getting the EVENT_START signal, waits for the road data. It 

gets the road data from FRC. The example of the road data values is given in the Table 

4.6. These are the values used to compare the centroid values obtained from the Centroid 

Calculator.  

 

Table 4.6: The road data values extracted from the road-data, with respect to the 17 – bit 

road-data value from FRC. 

Lower road data 
(HEX) 

Upper road data 
(HEX) 

020 200 
0B0 100 
010 150 
050 300 

 

These road pairs are sequentially loaded into the Comparators. Each Comparator 

is assumed to have the same track number as the FRC track, as the roads come in 

sequentially. The Hit Filter now waits for the centroids to be processed. The processed 

centroids are read out one at a time. The z-axis type centroids are stored in a z-centroid 

FIFO, while the axial-type of centroid is loaded into the Comparators to find the hits. The 

hit format module reads out the Hit Register when they receive a hitreg_valid signal. The 

hits for each centroid are written out in the output FIFO in a 32- bit format. The hits in 

this example are given in Table 4.7 below.  
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Table 4.7 the hits obtained written in the output FIFO. 

Track 
[31..26] 
(Binary) 

Pulse 
Area 

[25..24] 
(Binary) 

Seq Id 
[23..16

] 
(HEX) 

HDI ID 
[15..13] 
(Binary) 

Centroid 
[12..2] 
(HEX) 

Precision 
[1..0] 

(Binary) 

000000 11 AA 111 0C1 00 
000001 11 AA 111 0C1 00 
000010 11 AA 111 0C1 00 
000011 11 AA 111 0C1 00 
000000 11 AA 111 0D1 00 
000001 11 AA 111 0D1 00 
000010 11 AA 111 0D1 00 
000011 11 AA 111 0D1 00 
000000 11 AA 111 0ED 01 
000001 11 AA 111 0ED 01 
000010 11 AA 111 0ED 01 
000011 11 AA 111 0ED 01 
000000 11 AA 111 0F8 10 
000001 11 AA 111 0F8 10 
000010 11 AA 111 0F8 10 
000011 11 AA 111 0F8 10 
000000 11 AA 111 0FD 01 
000001 11 AA 111 0FD 01 
000010 11 AA 111 0FD 01 
000011 11 AA 111 0FD 01 

 

The whole data processing terminates at the Hit Filter. After the hits have been 

written in the hit output FIFO the channel waits for the hits to be read out by the hit 

interface module. Once the hits are read out the channel waits for next EVENT_START 

signal to start the data processing of new data stream on the VME bus. 

 

The MATLAB model 

 
The MATLAB model is functionally similar to the VHDL model, but it does not 

run synchronously. The model takes data from a file and stores the processed data in 

another file. This model was developed to generate test vectors for the different modules 
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in the VHDL model. The downloaded parameters are given in the form of input when the 

program is run. The data generated by this module is in binary i.e. 0’s and 1’s. The data 

streams generated by this model were compared to the data streams obtained from the 

VHDL model. The MATLAB code written to realize this model is in the attached 

Appendix D. The MATLAB consists of SMT filter, Strip Reader, Cluster Finder, 

Centroid Calculator and the Hit Filter. The flow of data through each of these modules is 

explained in detail below. 

 

Main design  

This is the main design file used to run all module files sequentially. The modules 

access the downloaded parameters file and the other data files and the data streams are 

written into the respective data files. 

 

Read downloaded parameter  

 
 This file is used to extract the downloaded parameters from the data file downloaded 

parameters.m and store them in the file down_data.m from where it accessed by the data 

processing modules. 
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SMT filter module  

This module reads the HEX data stream from the file “vtm_data.m”. The module 

converts the 8-bit data stream to 16-bit data word. The error bits are also provided along 

with the VTM data stream. The 18-bit data word formed (refer Table 4.2) is written in 

binary format in file “smt_file.m”.  

 

Strip Reader 

The Strip Reader module reads the data sequentially from either the smt_data.m 

file or the test_data.m file, depending on the test input, which is a user input. The SEQ 

ID, HDI ID, data type, gain and offset are accessed from the data file down_data.m. The 

data is processed to get the 23-bit word (refer Table 4.3) in binary format. This data is 

written into the file “strip_data.m”.  

 

Cluster Finder  

The Cluster Finder module takes the 23-bit word from file “strip_data.m” and 

finds the clusters according to the clustering algorithm in APPENDIX A. The 

threshold_1 and threshold_2 values are accessed from data file down_data.m. The data 

values of the five clusters with address of the data value in buffer 2 (i.e. peak address – 1) 

are stored in the file “cluster_data.m”.  
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Centroid Calculator 

The cluster type and the pulse area threshold values are accessed from data file 

down_data.m. The calculation of the centroid is carried out in decimal and then the result 

is converted into binary format. The result as in Table 4.6 is stored in the file 

“centroids_data.m” in binary format.  

 

Hit Filter 

The Hit Filter reads the road pairs from the file “roads_data.m” and the centroids 

tagged with their data type and the pulse area from the file “centroids_data.m”. Each 

centroid is compared sequentially with each road pair and the output is written out in the 

file “hits.m”. The output consists of the track number, pulse area and the centroid. 

 

The VHDL module and the MATLAB module agree on the centroids and the hits. 

Thus the design is functionally correct. The MATLAB module thus helps to check 

functionality of each module individually as we can check the test streams at the end of 

each module. Thus the algorithmic approach helps to check the state approach taken in 

the VHDL model. 
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CHAPTER 5 

DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN DATA PATH 

 
 

The design for the main data path was developed using VHDL. Different design 

approaches were studied with the aim of developing a compact, functionally correct and 

fast design. The design approaches studied for the Hit Filter is presented, and the 

different design implementations approaches taken to fit the whole design (i.e. main data 

path with the L3 buffers) are also discussed in this chapter. 

 

The Hit Filter design approaches 

 
 The Hit Filter was required to have the capability to compare 46 road data values with 

a centroid value at a time. Different combinations of parallel and serial implementations 

were studied. The results are consolidated in Table 5.1. 
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Table 5.1: The result of comparison for putting filters in parallel 

 No of filters 
in parallel 

No of 
inputs 

No of 
outputs 

No. Of 
LCs 

required 
1. 2 37 2 101 
2. 4 39 4 199 
3. 6 41 6 297 
4. 8 43 8 395 
5. 10 45 10 493 
6. 12 47 12 591 
7. 14 49 14 689 
8. 16 51 16 787 
9. 18 53 18 885 
10. 20 55 20 983 
11. 22 55 22 1081 
12. 24 59 24 1179 
13. 26 61 26 1277 
14. 28 63 28 1375 
15. 30 65 30 1473 
16. 32 67 32 1571 
17. 34 69 34 1669 
18. 36 71 36 1767 
19. 38 73 38 1865 
20. 40 75 40 1963 
21. 42 77 42 2061 
22. 44 79 44 2159 
23. 46 81 46 2257 

 

 As can be observed from Table 5.1 the number of logic cells required 

increases linearly with the number of comparators put in parallel. If we have a 

serial and parallel combination of the comparators there is a time delay in the 

switching of the bus possession. Also this approach does not reduce the logic cells 

utilization. Thus, the final scheme of all 46 comparators in parallel was chosen for 

high-speed comparison. The outputs of the comparators are read out serially so 

that they can be put out in the required 32-word format.  
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The different implementation schemes of the overall design 

 
The hardware implementation of the overall design, i.e., the main data path with 

the L3 buffers was tried in FLEX 10KE FPLDs. There also exists an external memory of 

16 K for the road data. 

 During this implementation four design approaches were studied. These 

approaches are discussed in detail in this section.  

 

Approach 1  

The synthesis tool was allowed to fit the design in the minimum possible number 

of FPLDs. The tool required a minimum of five FPLDs as shown in Table 5.2. 

 

Table 5.2: Results of the compilation: Approach 1 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Strip_reader_ 
hitfilter_l3 
_schematic 

EPF10K200 
EGC599-1 

241 187 24772 
(25%) 

2003 
(20%) 

22 
(91%) 

Strip_reader_ 
hitfilter_l3 
_schematic-1 

EPF10K200 
EGC599-1 

122 316 58752 
(59%) 

4211 
(42%) 

22 
(91%) 

Strip_reader_ 
hitfilter_l3 
_schematic-2 

EPF10K30 
ETC144-1 

42 37 4608 
(18%) 

368 
(21%) 

2 
(33%) 

Strip_reader_ 
hitfilter_l3 
_schematic-3 

EPF10K30 
EQC208-1 

59 63 8192 
(33%) 

334 
(19%) 

2 
(33%) 

Strip_reader 
_hitfilter_l3 
_schematic-5 

EPF10K50 
EQC208-1 

86 29 4324 
(10%) 

2225 
(77%) 

10 
(100%) 

Total     100648 9141 58 
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The tool tried to fit in the memory blocks first and then the logic into the FPLDs thus 

chose the FPLDs according to the memory capacity first and then fitted the logic cells 

into these FPLDs. In this approach the sizes of the FPLDs is varying, which is not 

preferable for the design. 

 

Approach 2 

 To study the behaviour of the synthesis tool, the Hit Filter forced to fit in one FPLD – 

Hitfilter_schematic, and the L3 buffers is also forced to fit in one FPLD – L3_schematic. 

The tool was allowed to fit the Strip Reader chip (i.e. the Strip Reader and the Cluster 

Finder modules) in as few FPLDs as possible. The results are as shown the Table 5.3. 

 

Table 5.3: Results of the compilation: Approach 2 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Hitfilter 
_schematic 

EPF10K100 
EBC356-1 

87 170 10532 
(21%) 

4340 
(86%) 

12 
(100%) 

L3 
_schematic 

EPF10K200 
EGC599-1 

175 291 79424 
(80%) 

2941 
(29%) 

24 
(100%) 

Strip_reader 
_hitfilter_l3 
_schematic_1 

EPF10K200 
SFC484-1 

169 123 10692 
(10%) 

1860 
(18%) 

19 
(79%) 

Total    100648 9141 55 
 

 

After fitting the assigned modules to their FPLDs the synthesis tool fitted the memories 

in the L3_schematic FPLD and the excess logic into the Hitfilter_schematic FPLD, thus 

fitting the whole design in three FPLDs. This approach is not acceptable as the logic for 
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the Strip Reader is spread into three FPLDs and thus there will be additional propagation 

delay on critical signals. 

  

Approach 3   

 In this approach, the synthesis tool was given some guidance by forcing the Hit Filter 

to fit in one FPLD – Hitfilter_schematic, the L3 buffers in one FPLD – L3_schematic. 

The Strip Reader with some memory modules is forced to fit in one FPLD – 

Strip_reader_chip-1 and the Cluster Finder with remaining memory modules is forced to 

fit in one FPLD – Strip_reader_chip-2. The results are given below in Table 5.4. 

 

Table 5.4: Results of the compilation: Approach 3 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Hitfilter 
_schematic 

EPF10K100 
EBC356-1 

77 144 10532 
(21%) 

4012 
(80%) 

12 
(100%) 

L3 
_schematic 

EPF10K130 
EFC484-1 

183 175 40960 
(62%) 

1576 
(23%) 

13 
(81%) 

Strip_reader 
_chip-1 

EPF10K200 
EGC599-1   

179 216 45120 
(45%) 

3244 
(32%) 

18 
(75%) 

Strip_reader 
_chip-2 

EPF10K130 
EFC484-1 

124 183 4036 
(6%) 

309 
(4%) 

14 
(87%) 

Total    100648 9141 57 
 

The Strip Reader requires two FPLDs as each memory space when assigned to an 

Embedded Array Block (EAB) utilizes minimum of two EABs. Thus even the small 

memory spaces were using 2 EABs even though the actual space utilized was 2-3 words 

maximum 32 bit wide. Thus the whole design fitted successfully in four FPLDs. Thus, 

the Approach 4 was taken to reduce the number of FPLDs.  
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Approach 4  

  From the conclusion of Approach 3 the EAB assignment of the small memory 

modules was removed and they were implemented using logic cells. The results for the 

design with the changes are given in Table 5.5. 

 

Table 5.5: Results of the compilation: Approach 4 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Hitfilter 
_Schematic 

EPF10K100 
EBC356-1 

77 144 10532 
(21%) 

4012 
(80%) 

12 
(100%) 

L3 
_Schematic 

EPF10K130 
EFC484-1 

183 175 40960 
(62%) 

1576 
(23%) 

13 
(81%) 

Strip_reader_ 
chip_schematic 

EPF10K200 
SBC356-1   

76 174 45120 
(45%) 

4773 
(47%) 

17 
(70%) 

Total    96612 10361 42 
 

The design is now found to fit successfully in three FPLDs which are very close 

to each other in size, thus for the final layout the largest FPLD of the FLEX10KE family 

can be chosen to permit further changes in the design. Since the logic cells replaced some 

of the EABs, a comparison of the change in the number of memory bits used and the 

logic cells utilized to substitute the EABs is given in Figure 5.1, Figure 5.2 and Figure 

5.3, where 1 denotes approaches 1, 2, 3 and 2 denotes approach 4. 
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Figure 5.1 Comparison of the memory bits utilized 
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Figure 5.2 Comparison of the logic cells utilized 
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Figure 5.3 Comparison of the EABs utilized 

 

Implementation of the design using Quartus software 

 
 The design presented in this thesis is for one STC channel of the Level_2 of the 

D0 detector. There will be eight such identical channels running in parallel (refer Chapter 
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2 – Section “Level_2”). All the channels are proposed to fit on to one Printed Circuit 

Board (PCB).  

 The design is successfully fitted in three FPLDs, but this amounts to 24 FPLDs 

for the eight STC channels and additional FPLD for the Main Control module (refer 

Chapter 2- Section “Main Control module”). Therefore 25 FPLDs should be fitted on to 

one PCB. This is not a difficult task, but the size of the PCB required will be really large 

and this is not suitable for the design. Thus a new approach has been examined to fit the 

whole design in a single APEX20KE FPLDs.  

The APEX20KE is one of the latest FPLDs offered by ALTERA. The synthesis 

tool used for implementing the design in the APEX20KE is QUARTUS. The strip reader 

module with bad channel memory, gain offset memory, test data memory and the monitor 

space was successfully implemented in an APEX20KE. The results of this 

implementation are shown in Table 5.6. 

 

Table 5.6 Implementation of the Strip Reader module in APEX 20KE. 

Device name EP20K300EBC652-1 
Logic elements 2643/11520 (22%) 
Pins 395/408 (96%) 
Memory bits 49024 /147456 (33%) 
ESBs 28/72 (38%) 

 

 

The APEX20KE family has chips of high memory capacity and large number of logic 

elements. The specifications of the largest FPLD available in this family are given in 

Table 5.7. 
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Table 5.7 Specifications of EP20K1500E 

(Largest FPLD in APEX20KE family) [1]. 

Voltages 2.5 V and 1.8 V 
Maximum system gates 2,392,000 

Typical gates 1,500,000 
Logic Elements 51,840 

ESBs 216 
Maximum RAM bits 442,368 

Maximum macro-cells 3,456 
Maximum user I/O pins 808 
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Shree ganeshayan namaha 

 

 

CHAPTER 6 

CONCLUSIONS 

 
 
 Recent technological advances have resulted in an increased number of gates in a 

single FPLD. Thus, VHDL is playing a key role in FPLD design. Since VHDL is a 

technology- and process-independent programming language, designers can work 

without the constraints of working with a single vendor. VHDL is a standard hardware 

description language accepted by IEEE, thus a design for a FPLD using one vendor’s 

synthesis tool can easily be implemented in another vendor’s FPLD.  It has helped the 

designers to work on a high level of abstraction, enhancing the level of design 

complexity. The synthesis tools help to minimize the design-size, and thus it is possible 

to have complex and compact designs.  

  This thesis describes the implementation of the main data path that 

constitutes one channel of the STC card in the Level_2 of the D0 detector at Fermi 

National Acceleration Laboratory. VHDL is used to describe the behavioral model of the 

design and the design is implemented in FLEX10K FPLDs. First, the functional 

correctness of the design was verified, and then timing studies were conducted on the 

design. When implemented in the low-memory FLEX10K FPLD, the design requires 

three FPLDs per channel of STC, and the timing requirements are not met.  



 

54 

The Strip Reader module was alone implemented in the APEX20K family by 

ALTERA Corporation. This family has high density and large memory capacity. The 

results obtained from the implementation were used to predict the resources required for 

one channel of STC. The results show that three channels of STC can be implemented in 

one EP20K1500E, which the largest device available in the APEX20K family.  The new 

design implementation will be able to meet the design requirements, as the propagation 

delays on the signals will decrease, as there wont be many inter FPLD connections. In 

addition the APEX20K FPLD family, the Virtex family by XILINX is also a good option 

for use as the larger FPLD (refer Table 1.1). 
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