

1

Shree ganeshayan namaha

CHAPTER 1

INTRODUCTION

Integrated Circuit (IC) technology has dominated the electronic world since their

introduction in 1960s. Dr. Jack S. Kilby was awarded a Nobel Prize this year (2000) for

his part in the invention of IC.

 There were gradual advancements to the IC technology through Small Scale

Integration (SSI), Medium Scale Integration (MSI), Large Scale Integration (LSI), Very

Large Scale Integration (VLSI) technology that evolved in the 1970s and the most recent

is Ultra Large Scale Integration (ULSI) technology. ULSI has made it possible to

implement powerful and compact digital circuits at low cost, as now it is possible to build

chips with millions of transistors [15]. New Computer Aided Design (CAD) tools are

being used. Example, Simulation Program for Integrated Circuit Emphasis (SPICE) is

used at the circuit level, and there are Hardware Description Languages (HDLs) that are

used to describe and specify electronic systems at different levels of abstraction – ranging

from behavioral down to structural level.

Application Specific Integrated Circuits (ASICs) [11] are specialized type of ICs that

have evolved from the VLSI technology. ASIC evolved from a simple array of a few

hundred logic gates into a complete family of full custom and semi custom ICs using

more than 1 million logic gates. The main reasons for the popularity of ASICs are

2

reduced board space requirements, reduced development cost, increased reliability,

maximized performance, and security for new designs.

Full-custom ASICs are designed without using any precompiled or preprocessed

silicon. The designer works at transistor level to optimize each cell for area and

performance. They generally require a complete of standard steps for fabrication process.

Whereas, semi-custom ASICs are preprocessed chips to which the designer only needs to

add the final metal interconnection. The different types of semi-custom ASICs are

Standard cell and Gate arrays.

Standard cells are pre-designed circuit functions at the LSI /VLSI level of complexity

that can be joined by interconnecting cells. These are cheaper, when manufacturing more

than 10,000 chips, as the Non-Recurring Engineering (NRE) costs are high. The NRE

cost includes the cost of work done by the ASIC vendor and the cost of the masks. Gate

arrays are preprocessed wafers of logic elements. These require only between one to three

masking steps of metal interconnects to complete the fabrication process. These have

columns of transistor arrays surrounded by inputs and outputs. The drawback of this type

is the lack of flexibility to add complex functions; this is due to the difficulties in creating

the signal routing channels.

 Programmable devices are a type of semi-custom ASICs, which can have anyone

of the architecture discussed above. These are general-purpose chips that can be

configured for a wide variety of applications. The first of these kinds were the

Programmable Read Only Memories (PROMs)[3], which were one-time programmable

devices. The more recent versions are Programmable Logic Devices (PLDs), which have

high speed and high performance logic gates. Step ahead in complexity to PLDs are the

3

Field Programmable Gate Arrays (FPGAs) [15]. There is very little difference between

an FPGA and a PLD; an FPGA is usually larger and more complex than a PLD. A FPGA

typically consists of a two-dimensional array of logic blocks that can be connected by

general interconnection resources. There are a lot of FPGA companies in the market. The

major competitors are ALTERA and Xilinx. Table 1.1 shows the comparison between the

architecture, the technology and the main products of these companies.

Table 1.1 Comparison of the ALTERA and XILINX architecture and products. [8]

 ALTERA Xilinx

Architecture Deterministic Complex
PLDs

Non-deterministic coarse
grain FPGAs

Programming
elements

EEPROM Static RAM

High density family APEX 20KE series Virtex series
Low cost family ACEX series SPARTAN – II series
Memory elements Embedded Array Blocks

(EABs)
Block SelectRAM

Logic blocks Logic array blocks (product
– term – based programming
logic devices)

Configurable logic blocks
(Look- up Table
approach)

Maximum number of
gates available

1,520,640 1,000,000

Maximum RAM bits 442,368 131,072
System gates 2,392,000 1,124,022
Logic cells 51,840 27,648
Maximum I/O bits 808 512
Voltage Levels 1.8V, 2.5V, 3.3V 2.5V, 3.3V
Dual–port memory Two ports are used, one for

reading and one for writing,
so need two-memory blocks
(minimum).

Same port is used to read
and write.

Special features 1.Content Addressable
Memory (CAM).

2. Mega-functions to model
memory.

1. On chip Digital
Delay-Locked Loops
(DLLs).

2. Block RAM can
be supplemented for
external memory.

4

The number of devices handled is very large; the popularity of HDLs has thus

grown tremendously with the growing demands of ASICs in the electronic industry. Very

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)[5] has

been the result of this high demand.

 VHDL evolved in the US Department of Defense (DoD) in 1983. It was intended

for documenting and modeling digital systems ranging from small chip to large systems.

DoD made it public in 1985, and IEEE immediately adopted it. It was it as a standard in

1987, under 1076- 1987. It was further upgraded in 1993, the IEEE 1076-1993 standard

[2]. There are a lot of synthesis tools too that help the designer to check his design. The

designer creates a behavioral or structural model of his design, which can be synthesized

by the synthesis tool. Thus the design verification and testing process is made a lot easier

and faster. The important aspect of VHDL is that the behavior of the circuit is described

and not the gates to be used, this makes the VHDL code independent of the technology

[6]. Thus code written for one technology can be easily implemented into some other

technology, example- the synthesis tool SYNOPSIS supports both Altera and Xilinx

technology.

Some of the important applications of Field Programmable Logic Devices

(FPLDs) are –image enhancement filters, signal processing for digital modulation and

demodulation, direct digital signal synthesis, fuzzy logic embedded controllers and

reconfigurable computing [16]. Reconfigurable computing technology is one of the

upcoming applications. It is the ability to modify a computer system’s hardware

5

architecture in real time. Instead of having ASIC, reconfigurable computing is an effort to

build ICs that can be used for a set of applications after some minor reconfigurations

[14]. Thus, parts of the algorithms are hardwired into the device and they are

implemented on a function-by-function basis. Since these are implementations aimed at

few applications, they offer tremendous acceleration over traditional programming

solutions.

 With such a wide variety of applications, FPLDs are easily available in

market and this approach is found to be very economical too. The work presented in this

thesis is one such application of FPLDs. The electronics design for D-zero detector at the

Fermi National Acceleration Laboratory is to be used to trace the path of the particles

emitted from the collision of a proton and anti-proton. This experiment has a large

amount of data to be processed and the available processing time is just few

microseconds. It was been proven that hardware based algorithms outperform software

implementations, even though the processors executing the software are much faster than

the hardware [17]. Thus hardware implementation is chosen for this project. The

hardware design is developed using VHDL as the description language and implemented

in ALTERA’s FLEX 10KE FPLDs. The synthesis tool used is ALTERA’s MAXPLUS II.

This approach gives us the flexibility of software and speed of hardware.

 In the thesis, Chapter 2 has a brief description about Fermi National

Acceleration Laboratory, their activities and details about the D-zero (D0) project. There

is also a summary of the implementation of the main data path. Chapter 3 describes the

design and implementation of the main data path in detail. The Chapter 4 includes the

simulation results of the VHDL model and the comparison of the results with a

6

MATLAB model of the design. Chapter 5 describes the different design approaches

studied for some of the modules of the main data path. The concluding remarks about the

work are in Chapter 6.

7

Shree ganeshayan namaha

CHAPTER 2

THE D0 DETECTOR AT FERMI NATIONAL ACCELERATION

LABORATORY

Fermi National Accelerator Laboratory (Fermilab) was founded in 1967 [10] and

has been in the forefront in the exploration of fundamental nature of matter. The

scientists at Fermilab utilize the latest technology to conduct research at the frontiers of

high-energy physics and related disciplines. They are working towards finding the

smallest elementary particles, which are the particles that cannot be divided into anything

smaller.

 Ordinary matter is made of atoms, which in turn contains electrons that orbit the

nucleus, which is constituted of protons and neutrons. Electrons have been assumed as

elementary particles, but protons and neutrons are made up of even smaller particles

called quarks. The quarks are bound by a strong nuclear force, the binding energy that

acts over a small distance and at a very large energy. The binding energy of the quarks is

million times the binding energy of the atom. To be able to explore the internal structure

of the quarks, there is a need to break their binding energy. This is achieved by using

high-energy accelerators [10], for example the TeVatron accelerator at Fermilab. These

are high-energy accelerators, but the number of particles accelerated at a time is very

8

small, thus the total energy is also small. The accelerated particles i.e. the proton and

anti-proton are made to collide. This collision results in emission of the smaller particles

that constitute the proton and anti-proton. To detect these emitted particles, Fermilab has

two detectors on the TeVatron accelerator; they are the D0 detector and the CDF

detector. These experiments have helped scientists to define the proton, a particle inside

the atom’s nucleus and identify its constituents i.e. the quarks. The first of the heavy

quarks was bottom quark that was discovered in 1977 and more recent is the top quark

that was discovered in 1995 [9]. The scientists predict that further study of the top quark

may give clues about the mystery of why matter has mass. The top quarks are produced

very rarely in the proton- anti-proton collision, thus to obtain a few positive events of top

quark a few million events of the collision have to be scanned.

The D0 detector

The Silicon Track Card (STC) in the D0 detector electronics has been developed

with the goal of finding events with top quarks. This goal will be achieved by finding the

vertices of the particles in 3-dimensions with proper time resolution and fully

reconstructing the decay chains [3]. The vertices are the points in space at which events

occur. The primary vertex is the primary interaction point at which proton and anti-proton

collide and produces new particles. The newly formed particles travel in space and then

decay, such a point is called decay vertex or secondary vertex.

 The detector has three levels of data acquisition and processing [7]. It uses

different measurement techniques to help trace the decaying particles. These are

calorimeter, fiber tracker, muon detector, pre-shower selectors and silicon detector chips.

9

Figure 2.1 The flow of data in the D0 detector [D0 internal presentation].

The detector chips are silicon wafers made out as reverse biased p-n junctions and have

aluminum strips for read out. They are located in the central region of the D0 trigger and

are oriented in three different positions axial, stereo and z-axis. The axial position means

parallel to the axis of cylinder of the detector, the stereo position means inclined by about

L1 L1

Global L2 Stage

L2 Preprocessors

Buffers

L0 Silicon Fibers Pre-shower Muon Calorimeter

p-bar p

L3
Processors

10 kHz

1kHz

10-20Hz

Tape

250kb/event

L0

Trigger
Frame

k

10

2 degrees with respect to the axial direction and the z-axis position means the chips are

perpendicular to the axial direction.

Level_1

This level obtains measurement values from the calorimeter, fiber tracker, muon

detector and the pre-shower [3]. It takes 128 different combinations of these measured

values and feeds them to a series of FPGAs. The FPGAs examine this data to determine

if a specific L1 bit has been satisfied, to issue an accept signal, which acts as a trigger for

Level_2. This level helps to filter out the data, by giving a rough estimate of the group of

tracks of the fiber-roads, through which the particle has passed, thus reducing the data to

be processed by the next level by about 1000 times. This level runs at a frequency of 7.5

MHz.

Level_2

The trigger from Level 1 acts as a start signal for Level_2. The level runs are

frequency of 5-10 kHz. The data from the silicon detector chips are digitized and passed

on to Level_2. The digitization takes place in a full custom, mixed signal integrated

circuit (SVX-II). These are hardwired directly to the detector. The charge, which is stored

in terms of voltage across a capacitor, is digitized by the SVX-II to an 8 – bit word. Ten

SVX-II chips are connected to High Density Interconnect (HDI) that is copper flexible

printed circuit. Four HDIs are further connected to a one section of the Port Card and

each Silicon Acquisition and Readout module (SAR) has two Port Cards. Finally a

11

L 1 C T T S M T

L 2 C T T

p r e p r o c e s s S M T d a t a
f i n d c lu s t e r s

a s s o c i a t e c lu s t e r s
w i t h L 1 C T T t r a c k s

f i t t r a je c t o r i e s

L 3

maximum of 16 SARs can be mounted on a VERSAmodule Eurocard (VME) crate.

Level_2 has eight VME crates around the detector. Thus Level_2 electronics has eight

channels. Level_2 helps to locate a particular strip on the SVX-II chip through which the

particle may have passed. The strip value from Level_2 and the fiber tracks from the

Level_1 are compared in this level to eliminate data due to any stray particles. Finally,

sophisticated Digital Signal Processing (DSP) microprocessors in the Track Fit Card

(TFC) are used to run curve-fitting algorithms to find the decay chains of the emitted

particles, top quarks in particular. Thus the data is further reduced by an order of 1000

times.

Figure 2.2 Block diagram of the Level_2.

Level_3

 This is the final level in the D0 electronics. This is a data acquisition level that

acquires data from each module of the both Level_1 and Level_2. This data is transferred

to VME Receiver Card (VRC) on fiber using low-level fiber channel hardware [3]. The

data transfer takes place only after the Level_2 accept signal is issued. This level runs at

1000 Hz.

12

The electronics for main data path [18]

 The main data path is a part of Level_2. It performs the functions of preprocessing the

SMT data, finding clusters and to associate the centroids with the Fiber Road Card (FRC)

tracks. It has three modules Strip Reader, Centroid Finder, and the Hit Filter. This level

also has a storage module L3 buffers.

Strip Reader

 This is the front end of the data path. It has two sub-modules, SMT Data Filter and the

Strip Reader Control. It accepts the 8- bit SMT data from the VME bus at the rate of

53MHz. This data is filtered of excess “C0” – end of event markers. The filtered data is

corrected after checking for bad strips and a second check for the gain and offset values

for the individual strips. At the output the Strip Reader formats the data obtained in a 23-

bit word to be read by the Centroid Finder. The data is written into a 23-bit wide First In

First Out (FIFO) bank of registers at the rate of 32Mhz. The format of the 23-bit register

is given in Table 2.1 below.

Table 2.1 The 23-bit data at the output of the Strip Reader.

22..21 20 19 18..11 10..7 6..0

Data-type New data
Bit

End of event
bit Data SVX-II

Chip ID
Strip

number

13

Centroid Finder

 This module also runs at 32 MHz. It has two tasks (i) to determine a cluster and (ii) to

find the centroid for the cluster. The two sub-modules in this module are Cluster Finder

and the Centroid Calculator. The module has the ability to find three– or five–strips

clusters, based on the requirements of a particular experiment. The Centroid Calculator

algorithm finds the centroid depending on the centroid mass principle. These centroids

are the strip addresses (SVX-II chip id (4) and strip number (7)), through which a particle

is supposed to have passed. The data type of the centroid is also important for the study

of the top quark as it indicates which direction (axial, stereo or z-axis) is represented by

the data. Hence this is tagged along with centroid, when it is passed on to the Hit Filter.

The centroids tagged with the end of event bit, data type, and the pulse area are stored in

the FIFO at the end of the module in the format given in Table 2.2.

Table 2.2 The 17-bit data word from Centroid Finder to the Hit Filter.

17 16..15 14..13 12..0
End of

event bit
Data type

Pulse area Centroid

Hit Filter

 The Hit Filter has 46 parallel Comparators that can hold a maximum of 46 pairs of the

road groups from Level_1. The two road values represent the upper limit and the lower

limit of the road groups. The centroid values are pulled out of the FIFO. Only the

centroids with axial data-type are compared with the roads. The z-axis centroids are

stored in this module to be readout by the hit interface module. The hits are the centroids

14

that match the road groups. These are also stored in a FIFO. The hit interface module

reads them out.

Figure 2.3 The data flow in the main data path with reference to the modul

electronics.

L3 buffer

 The L3 buffer is a group of five buffers that store the data processed at eac

main data path. This data can be accessed for further analysis after the resu

Level_3 are obtained.

The five buffers are –

1. Raw data: This buffer holds the filtered data coming out of the

Filter.

Strip
Reader

Centroid
Finder

Hit
Filter

8-bits

VTM Centroid

17-bits

Strip
Reader
output

23-bits 3

Raw
Data

Corrected
Data

Cluster Centroid Hit

To L3 buffers

es

h s

lts

 S

H

2-
 in the

tep in the

 from the

MT Data

it

bits

15

2. Corrected data: The corrected data is the raw data checked for bad strips

and also the data from the strips is processed for gain correction and offset

correction.

3. Strip clusters: This buffer holds the data values and addresses of the strips that

form the cluster, the threshold values used and the cluster type.

4. Centroids: The centroids calculated in the Centroid Calculator, with their data

type are stored in this buffer.

5. Hits: This buffer holds the hits out of the Hit Filter.

Main control module

 The main control module is the control unit that monitors the flow of data to and

from the eight STC channels. This module is the gateway between the eight channels and

the other electronics of the Level_2. The reading of hits and z- axis centroids from the Hit

Filter, downloading the parameters in the channel memory and reading out the L3 buffers

are some of the functions of this module. The hit interface module of each channel talks

to this main control module.

 With this background of the D0 detector and the part of the main data path in Level_2,

the further chapters discuss the design methodologies and the implementation of the main

data path.

16

Shree ganeshayan namaha

CHAPTER 3

DETAILED DESCRIPTION OF THE MAIN DATA PATH

The main data path consists of three modules the Strip Reader, Centroid Finder

and the Hit Filter. The data flow through each of the module and the data processing in

the module is described in detail in this chapter.

Design features

The design is implemented in a FPLD and VHDL is used to describe the design

behaviour. The design defines the logic for one channel of the Silicon Track Card (STC).

Each STC has eight such identical channels operating in parallel. Each channel can be

enabled or disabled according to incoming data from the experiment. The whole design

(except for the Silicon Micro-strip Tracker (SMT) data filter) is designed to operate with

system clock of frequency 32 MHz. The logic has a synchronous reset signal at startup

that is used to initialize the design. All the modules are in their initial states and do not

start the data processing till an EVENT_START signal is issued. The SMT Data Filter in

the Strip Reader runs synchronously when the channel is enabled, and the Centroid

Calculator in the Centroid Finder and the Comparator module in the Hit Filter run

asynchronously when the channel is enabled.

17

All the control modules are designed with the Moore type Finite State Machine

(FSM) approach. A FSM is a state machine with finite number of states. The machine

always resets into an initial state and updates states on each clock cycle. FIFO buffers are

provided at the end of each module in the data path to maintain a synchronous data flow.

The logic can process data for only one event, but the design can hold more than one

event at the input in the SMT data, and output in the Hit Filter.

Design parameters

The parameters required for the data processing are unique for each channel.

These parameters are downloaded in the channel memory on start up. The memory

spaces are allocated to facilitate the main control logic to write into the memory and read

out of the memory through a bi-directional bus. The control logic uses 15 address lines to

access this memory space. The memory allocated area are as given in the Table 3.1.

Table 3.1 Memory mapping for the single channel.

Memory area Memory space Memory address
Monitor space 1K X 32 0000 – 03FF
Miscellaneous 1K X 32 0400 – 07FF

Gain Offset LUT 4K X 8 0800 – 17FF
Test data LUT 256 X 18

(1K min.)
1800 – 1BFF

Empty Space (for future use) – 1C00 – 3FFF
Road data LUT 16 K X 22 4000 – 7FFF

Monitor space

This space holds the monitoring counters from the Strip Reader and the Centroid

Finder. These counters are defined as –

18

1. SMT counters

i. Mismatch Counter: This counter counts the number of times there

was a mismatch in SEQ ID and HDI ID.

ii. SMT error (SERR) Counter: This counter keeps track of the error in

reading the data VTM data.

iii. Zero Error Counter: This counter increments every time a byte of

zeros is not present in the data stream after the SVX-II chip-id.

2. Chip activity counters: There are nine SVX-II chip activity counters, one

for each SVX-II chip. The counter for the SVX-II chip is incremented

when a strip from that SVX-II chip has data on it. Thus it is an indication

of the activity on that SVX-II chip for an event.

3. Cluster counters: There are three cluster counters, one for each data type.

These counters count the number of clusters of each data type in an event.

Miscellaneous memory

 The miscellaneous memory constitutes of bad channel memory, chip ranges,

pulse area thresholds, clustering thresholds and the miscellaneous data register.

1. Bad channel memory space having 64, 32 bit wide words is actually a Look

Up Table (LUT). Addresses assigned to this memory space are from 0400 –

047F (HEX). This memory has the status of each of the 128 channels of every

SVX-II chip in the detector. A channel is set to be bad on the basis of the

technical survey of the detector, conducted in between runs. This status is

used to eliminate any false readings on the channels.

19

2. Chip range memory space is at address 0480 (HEX). This memory consists of

24-bit word. Each data type as a 4 – bit upper range value and a 4–bit lower

value for the SVX-II chips, thus forming the 24-bit wide word.

3. Pulse area threshold memory space is at the address locations 0500 – 0503

(HEX). This memory is 24-bit wide and holds the three threshold values

Pulse_Threshold_1, Pulse_Threshold_2, and Pulse_Threshold_3 required to

calculate the pulse area for the clusters found in the event. These values are

unique for each data type.

4. Clustering thresholds are downloaded in memory locations 0600-0603 (HEX).

These are the Threshold_1 and the Threshold_ 2 values used in the clustering

algorithm. The data value Threshold_1 is minimum data value that should be

on a strip to be considered as valid data. The data value threshold_2 is the

minimum peak data value of a cluster to get a valid cluster from the strips.

5. Miscellaneous data register is a 32-bit register downloaded at address location

0580(HEX). This register has the following parameters -

i. Unique 8–bit SEQ ID for the channel.

ii. Unique 3–bit HDI ID for the channel.

iii. Delay: This is an 8-bit signal to indicate the delay between the

FRC_START signal and the main EVENT_START signal.

iv. Disable bit: This bit indicates whether the channel is disabled.

v. SMT ID: This is 3-bit number, unique for each SMT data stream.

20

Table 3.2 Miscellaneous register downloaded at 0580 (HEX).

Gain offset memory

This memory holds the corrected data for each SVX-II chip in the detector,

according to the gain and offset values for the SVX-II chips. This data is accessed

with the SVX-II chip number and the data value for the strip.

Corrected data is calculated using following equation –

Corrected data = gain * actual data value + offset.

Test data LUT

The test data memory space holds the test data in the same format as the 18 – bit

data stream (refer Table 3.3). This data stream is used to check the functionality

of the design.

Road data LUT

The road data memory is an external memory space, which gives a unique pair of

the roads (upper and lower) 11-bits wide defining a group of roads. The upper and

lower road values are unique for each 17- bit road data value obtained from the

Level_1 i.e. FRC, which represents a fiber road track.

31..28 27 26..24 23..16 15..8 7..0
Empty Disable SMT

ID
Delay SEQ

ID
HDI
ID

21

Strip Reader

The Strip Reader module has two clocks; a SMT clock running at 53 MHz, to

match the speed of the SMT data coming on the VME bus and the PCI System clock

running at 32 MHz, this clock determines the flow of data through the design. The three

sub modules in the Strip Reader are the SMT Data Filter, SMT Test Select and the Strip

Reader Control.

Figure 3.1 The detailed block diagram of the Strip Reader module.

SMT Data Filter module

The SMT module gets input from the VME bus. The module has a state machine

that filters out the excess data at the end of event. It also converts the 8-bit VTM data

stream into 16-bit data word so that the system clock even though slower than the SMT

Hand shaking signals
Data stream

SMT
Data
filter

VTM Data
F
I
F
O

Test Data
From

Memory

SMT
test select

To L3 Buffers

Strip Reader
Control

F
I
F

To
Centroid
Finder

Data
From

Memory

22

data clock can match the speed of the input data stream. The SMT Data Filter runs

continuously when the channel is enabled. Any error in reading the input data stream is

indicated by setting one of two error bits, one each for the higher and the lower byte of

the output stream. These errors bits are also passed on to the next sub module along with

the 16 bit data, thus forming an 18-bit word that is stored in the FIFO, as given in Table

3.3.

Table 3.3 Data stream from SMT Data Filter to the Strip Reader Control.

Another task of this module is to determine the event number of the current data

stream. This number is assigned after the FRC_START signal is received. This signal is

used to synchronize the SMT data event and the road data event (from Level_1). The

event number is tagged along with the end of event marker and written as the last word in

the FIFO.

SMT Test Select module

 This module uses the TEST input from the main control module to select between the

test data stream downloaded in Test FIFO and the SMT data stream in the SMT FIFO.

The hand shaking signals from the Strip Reader Control module to both the FIFOs are

routed through this module.

17..16 15..8 7..0
Error bits Higher byte Lower byte

23

Strip Reader Control module

The Strip Reader using a Moore type FSM (Reference flow chart in appendix A);

reads the 18-bit data stream from the intermediate FIFO (refer Table 3.3). Each channel is

configured to read the data stream from a unique SEQ and HDI. Thus the first word read

out of the FIFO is checked for the correct SEQ ID and the HDI ID; if there is a mismatch,

the mismatch counter is incremented and mismatch bit (MM) is set. The SVX-II chip-id

is identified next with a byte of zeros following it. These are important to isolate the

strips with data values from the SVX-II chips. If the byte of zero is absent the zero error

counter is incremented. The data type is determined by comparing the SVX-II chip-id

with available SVX-II chip ranges for the three data types. Chip activity counters are

present in this module to keep track of the number of strips per SVX-II chip. Once this is

done, the design starts processing the strip numbers and the data values. The gain-offset

memory is then accessed using address as the SVX-II chip id concatenated with the data

value to get the corrected data. Before formatting the 23-bit data word (refer Table 2.1)

the strip number is compared with the bad channel memory and the strips that are set to

be bad are assigned a zero data value. The corrected data and the zeroed bad channel strip

with the data type, SVX-II chip-id and channel number are formatted into the 23-bit wide

data word and written in the output FIFO (refer Table 2.1). An event covers many SVX-

II chips but the same SEQ ID and the HDI ID. When an end of event marker is

encountered, the state machine extracts the event number, which is the lower byte of the

18-bit word. The two error bits (refer Table 3.3) serve as an input to the SERR counter

and are passed on as a single SERR bit.

24

Centroid Finder

 The Centroid Finder module works at the frequency of system clock. This module has

two sub-modules the Cluster Finder and the Centroid Calculator. This is the heart of the

data processing in the main data path. This module finds the clusters from the strips and

calculates the centroids. The detailed block diagram of this module is shown in Figure

3.2.

Figure 3.2-Detailed block of the Centroid Finder module.

Cluster Finder module

The Cluster Finder module has three tasks (i) interface with the output FIFO of

the Strip Reader module, (ii) find the data clusters and (iii) pass on the strips of cluster to

the Centroid Calculator module. It reads out the 23–bit word and splits it into its

constituents (refer Table 2.1). The strips in a cluster should have - a data value greater

From
Strip Reader

Data stream
Control signal
Handshaking signals

Cluster
Finder

Centroid
Calculator

Data from
Memory

F
I
F
O

To
Hit Filter

To
L3 Buffer

To
Hit Filter To

L3 Buffer

25

than or equal to Threshold_1, same data type and sequential addresses. The SVX-II chip

id is concatenated with the strip number to form 11-bit strip address. The clusters are of

five strips. There are five data and address buffers to store the data values and addresses

of strips constituting a cluster. There are also two secondary data buffers and address

buffers to store the shadow values in anticipation of a peak value greater than the one

already found for a cluster. The first data value read is always stored in data buffer D3,

which contains the peak value. The following data values after conferring to the above

conditions are compared with data value in D3. If the new data value is greater than or

equal to D3 then the peak is replaced or the following data buffers are filled, (reference

flow chart appendix A). The final peak cluster value should be greater than or equal to

Threshold_2.

 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.3 An illustration example of a five-strip cluster.

The example in Figure 3.3 is an illustration of a five-strip cluster. All the registers

are initialized to zero before reading data for a new cluster.

(i) Strip 2 loaded into D1, address in add 1 = (peak address – 2)

Centroid

Strip
Clusters

Pu
ls

e
he

ig
ht

Threshold_1

Threshold_2

26

(ii) Strip 3 loaded into D2, address in add 2 = (peak address – 1)

(iii) Strip 4 loaded into D3, peak data value and address in add3 = (peak address)

(iv) Strip 5 loaded into D4, address in add 4 = (peak address + 1)

(v) Strip 6 loaded into D5, address in add 5 = (peak address + 2)

The strip number 7 and 8 are stored in the shadow buffers B1 and B2. When the data

value of strip number 9 is compared with D3 and found to be greater than data value of

D3 the data buffers D1 and D2 are over written with the shadow buffers B1 and B2. The

corresponding address buffers are also replaced. The data value of strip number 9 is

written in to data buffer D3 and the strip address is written into add3 (i.e. the peak

address).

So the new data buffers are –

(i) Strip 7 loaded into D1, address in add 1 = (peak address – 2)

(ii) Strip 8 loaded into D2, address in add 2 = (peak address – 1)

(iii) Strip 9 loaded into D3, peak data value and address in add3 = (peak address)

(iv) Strip 10 loaded into D4, address in add 4 = (peak address + 1)

(v) Strip 11 loaded into D5, address in add5 = (peak address + 2)

The end of cluster is found at Strip 11, as data value of the Strip 12 is below

Threshold_1. The number of strips used for the cluster is 5 and the number of strips

checked is 11. The data values (8- bits each) and the address add2 (11- bits) are passed on

to the Centroid Calculator.

27

D1 D3 D4 D5 D2

x1 0 x3 x4 x5

Centroid Calculator module

 This module takes the data values of the strips in a cluster from the Cluster Finder and

performs the arithmetic calculation of finding the centroid using the centroid mass

principle. The calculation for the three or five strip cluster is decided according to the

cluster type bit.

In Figure 3.4 below, if D2 is viewed as the origin and D1, D3, D4 and D5 as point

masses, the centroid of the system is [13]–

Figure 3.4 Realization of centroid calculation for a five-strip cluster [13].

The moment of the system is the mass times the distance from the origin:

 - D2 + D4, -- for a three-strip cluster

 - D1+D3+2D4+3D5, -- for a five-strip cluster

 Thus, the centroid of the system is given by following equations

D4D3D2

D4D2

++

+− Centroid Calculation for three-strip cluster - (3.1)

system of mass total
originabout system ofmoment

n

1i
i

n

1i
ii

==
∑

∑

=

=

m

xm
x

28

D5D4D3D2D1

D53D42D3D1

++++

+++− Centroid Calculation for five-strip cluster - (3.2)

The centroid value obtained from these calculations is added to the Address add2 passed

on from the Cluster Finder to get the exact address of the centroid for the cluster. The

final centroid value is 13-bit wide, because of the addition of two precision bits from the

calculation.

 This module also finds the quantized pulse area of the cluster. The pulse area is

calculated by summing the data values for all the strips constituting the cluster and

comparing the sum to three threshold values stored in the channel memory [19]. Two bits

are set to indicate the cluster pulse area according to the thresholds given in Table 3.4.

Table 3.4 The scheme for determining the pulse area of the cluster [19].

Bits Pulse area
00 < Pulse_Threshold_1
01 ≥Pulse_Threshold_1, Pulse_Threshold_2 ≤
10 ≥ Pulse_Threshold_2, Pulse_Threshold_3 ≤
11 ≥ Pulse_Threshold_3

The centroid value its data type and pulse area are written into the output FIFO of the

Centroid Finder (refer Table 2.2).

Hit Filter

 The Hit Filter module handles the axial and the z-axis centroids. It stores the z-

axis centroid in the z-centroid FIFO and compares the axial centroids with road data

values to find the hits (refer Chapter 2 – Section Hit Filter).

29

 The Hit Filter module has six sub modules. They are Hit Filter Control module,

Comparator module, Hit Register module, Hit Format module, Hit Readout module, and

Z- centroid module. The module handles only the axial and z- axis type of centroids. The

z- axis centroids are stored in a buffer, which can be accessed by the hit interface module

and the axial type of centroids are compared with the roads from level –1 to find hits. The

hits are written in the output FIFO from where they can be pulled out by the hit interface

module to be passed on to the TFC.

Figure 3.5 Detailed block diagram of the Hit Filter module.

Hit Filter Control module

 This module controls the processing in the Hit Filter. It is activated with an

EVENT_START signal. The roads from the road data memory are loaded into the

comparators sequentially on every road write signal. Since the roads are loaded

Comparator
module

Hits

Hit Filter
Control
module

Centroids from FIFO

 Hit
Register

Hit Format
module

To L3
buffer

Data stream
Control signal

Hit
interface
module

Hit
Readout
module

 Upper and
Lower road
data values

30

sequentially, each comparator corresponds to the track of Level_1. A masking register is

created once all the roads are loaded into the comparators. This register masks all the

comparator outputs that are not loaded. The module then reads one centroid at a time.

The axial centroids are loaded into the comparators, while the z- axis centroids are passed

on to the Z- centroid module. The output of the comparators is masked, and the valid hit

register is passed on to the Hit Format module to find the hits and format them. The

control module issues all the control signals for the processes comparing, masking and

formatting. The control signals are LOAD_ROAD, READ_COMPARATOR and

HITREG_VALID.

Z- centroids module

 This module formats the z-centroids in a 32-bit format and stores them in a FIFO.

The hit interface module reads out the centroids from the FIFO. The 32-bit word formed

is given in Table 3.5.

Table 3.5 The 32-bit word format of the Z-centroids.

31 30..28 27..26 25..24 23..16 15..13 12..0
0 SMT

ID
Data
type

Pulse
area

SEQ
ID

HDI
ID

Centroid

Comparator module

 The Comparator module has 46 parallel comparators. It has a capability to

compare 46 pairs of roads with each incoming axial centroid. The road pair of upper and

31

lower roads of 11-bit each is compared with 11-bit centroid value (the two precision bits

are not used in the comparison, as the roads are defined as whole values).

Hit Register module

 This module ANDs the output of the Comparators with the mask register to get a

valid Hit Register for the each centroid when it receives a READ_COMPARATOR

signal from the hit control module. This helps to filter out the false outputs from

Comparators that are not loaded with roads.

Hit Format module

 This module takes the valid 46-bit Hit Register when the hit control module issues

the HITREG_VALID signal. The module checks for the hits serially. To make the

scanning process faster, the register is split into five groups. The OR-ed output of each

group indicates whether there is a hit in that group. The scanning of the register starts

from the first group that has a hit, and then the logic goes through the rest of the register

sequentially. The upper limit for this process is the number of Comparators loaded with

roads. Whenever the bit is set, it is an indication of a hit for that particular track. The final

output in the form of a 32-bit word (refer Table 3.6) is stored in the output FIFO of the

Hit Filter module. At the end of hits for one centroid, the module waits for a next

HITREG_VALID signal.

Table 3.6 The data format of the hits in the output FIFO.

32

At the end of event signal, a trailer (refer Table 3.7) is written into the FIFO. The module

issues an independent end of event signal for the hit interface module.

Table 3.7 The data format of the trailer for the hits.

Hit Readout module

This module includes the FIFO in which hits are written in a unique 32 – bit word

format (refer Table 3.6). When the hit interface module issues a READ HITS signal, the

read request signal of the FIFO is activated and the hits are given out on each clock cycle.

The design of the data path was amended in different ways to optimize the speed,

memory required and the logic cells utilized. The various approaches used for different

modules are discussed in the following chapter.

Shree ganeshayan namaha

31..26 25..24 23..16 15..13 12..0
Track number Pulse area SEQ ID HDI ID Centroid

31..27 26 25 24..23 21..19 18..1
1

10..8 7..0

11110 SERR MM - SMT
ID

SEQ
ID

HDI ID Event
no.

33

CHAPTER 4

SIMULATION RESULTS OF THE VHDL MODEL AND COMPARISON WITH

A MATLAB MODEL

The VHDL simulation model is described with the help of a test vector derived

from results of the previous experiments in D0. These results are then compared to a

MATLAB model of the same design. Each step in the flow of data through the main data

path is given with a detailed description of the inputs and outputs of each module.

The VHDL Model

The test vector is given as data entering the SMT Data Filter from the VME bus.

The test vector is given in Table 4.1.

34

Table 4.1 Test vector for an example simulation of the data path

in hexadecimal.

 Direction of the data stream

AA 77 81 00 40 03 41 0D 42 06 50 06 51 10

52 07 6B 03 6C 04 6D 05 6E 04 6F 03 77 07

78 06 79 07 7C 09 7D 10 7E 09 C0 C0 C0 C0

The data values are in HEX. This is a data stream of 8-bits each.

• The first byte is the SEQ ID – “AA”

• The second is the HDI ID – “77”

• The third is the SVX-II chip id – “81”. The SVX-II chip id should be

followed by a byte of zeros – “00”.

The data stream after the byte of zeros is a strip number and the corresponding

data value alternatively. The flow of the data through each module is described with

reference to the detailed description of each module in Chapter 3.

SMT Data Filter

 This module converts the 8-bit test data stream into 16-bit word and adds two

error bits to it thus an 18-bit data stream comes out the filter. The data stream coming out

is as shown in Table 4.2.

35

Table 4.2 Output stream from the SMT Data Filter.

Error bits (2)
(Binary)

Higher Byte (8)
(HEX)

Lower byte (8)
(HEX)

00 AA 77
00 81 00
00 40 03
00 41 0D
00 42 06
00 50 06
00 51 10
00 52 07
00 6B 03
00 6C 04
00 6D 05
00 6E 04
00 6F 03
00 77 07
00 78 06
00 79 07
00 7C 09
00 7D 10
00 7E 09
00 C0 91

 The last word in this data output is the end of event marker “C0” (in HEX) and

the event number “91” (in HEX) obtained from the FRC (refer Chapter 3 - Section SMT

Data Filter).

Strip Reader Control

This module starts on the EVENT_START signal. It pulls out the 18-bit word out

of the intermediate FIFO. It converts the stream into higher byte and lower byte. The

module first checks for the channel specific SEQ ID in higher byte and HDI ID in the

lower byte. It waits for a valid SVX-II chip id in higher byte and the byte of zeros in the

lower byte in the second word of the data stream. The most significant bit (MSB) of the

36

higher byte; in this case bit 8 of the higher byte should be high. The SVX-II chip id

decides the data type of the following strips. The pair of strip number in higher byte and

data value in lower byte follows. The corrected data is obtained by addressing the gain-

offset memory with SVX-II chip id (“0001” – binary) and the data value. The bad

channel information from the bad channel memory is matched with the strip number for

each strip of the SVX-II chip. The resultant 23-bit word formed is as shown in Table 4.3.

Table 4.3 Output stream from the Strip Reader Control module.

Data type
(Binary)
 (2-bits)

New
data bit
(1-bit)

End of
event bit
(1-bit)

Data
(HEX)
(8-bits)

Chip Id
(HEX)
(4-bits)

Channel
ID (HEX)
(7-bits)

10 1 0 03 1 40
10 0 0 0D 1 41
10 0 0 06 1 42
10 0 0 06 1 50
10 0 0 10 1 51
10 0 0 07 1 52
10 0 0 03 1 6B
10 0 0 04 1 6C
10 0 0 05 1 6D
10 0 0 04 1 6E
10 0 0 03 1 6F
10 0 0 07 1 77
10 0 0 06 1 78
10 0 0 09 1 79
10 0 0 07 1 7C
10 0 0 10 1 7D
10 0 1 09 1 7E

This chip is found to be of the axial data type, hence the data type is assigned as

“10.”

37

Cluster Finder

The Cluster Finder module gets each data value with its specific parameters

packed as a 23-bit word. The module finds clusters according to the clustering algorithm

as described in the flow chart attached in Appendix A.

 The chart in Figure 4.1 shows the data values in the test data stream with the

corresponding strip addresses, thus we can see from the chart clearly there will be five

clusters in this data stream as is shown in the simulation results in Table 4.4.

0
2
4
6
8

10
12
14
16
18

40 41 42 50 51 52 6B 6C 6D 6E 6F 77 78 79 7C 7D 7E

Strip addresses

D
at

a
va

lu
es

Data values

Figure 4.1 The data values in the test data stream with the corresponding strip

addresses

38

Table 4.4: The clusters found by the Cluster Finder module

Address
of D2
(11 bits)

D1
(8 bits)

D2
 (8 bits)

D3
 (8 bits)

D4
(8 bits)

D5
(8 bits)

0C0 00 03 0D 06 00
0D0 00 06 10 07 00
0EC 03 04 05 04 03
0F8 07 06 07 00 00
0FC 00 09 10 09 00

Centroid Calculator

The Centroid Calculator module finds the centroid according to the formula

presented in the Chapter 3 section Centroid Calculator. The cluster type bit decides the

cluster type. In this example the bit is set to “1”, hence we calculate a five-strip cluster.

The centroids for each of the above clusters as found by the module are given in Table

4.5.

Table 4.5: The centroids found by the Centroid Calculator module.

Data type
(Binary)

Pulse area
(Binary)

Centroid
(11 bits HEX.

2 bits precision Binary)
10 11 0C1.00
10 11 0D1.00
10 11 0ED.01
10 11 0F8.10
10 11 0FD.01

39

Hit Filter

The Hit Filter, after getting the EVENT_START signal, waits for the road data. It

gets the road data from FRC. The example of the road data values is given in the Table

4.6. These are the values used to compare the centroid values obtained from the Centroid

Calculator.

Table 4.6: The road data values extracted from the road-data, with respect to the 17 – bit

road-data value from FRC.

Lower road data
(HEX)

Upper road data
(HEX)

020 200
0B0 100
010 150
050 300

These road pairs are sequentially loaded into the Comparators. Each Comparator

is assumed to have the same track number as the FRC track, as the roads come in

sequentially. The Hit Filter now waits for the centroids to be processed. The processed

centroids are read out one at a time. The z-axis type centroids are stored in a z-centroid

FIFO, while the axial-type of centroid is loaded into the Comparators to find the hits. The

hit format module reads out the Hit Register when they receive a hitreg_valid signal. The

hits for each centroid are written out in the output FIFO in a 32- bit format. The hits in

this example are given in Table 4.7 below.

40

Table 4.7 the hits obtained written in the output FIFO.

Track
[31..26]
(Binary)

Pulse
Area

[25..24]
(Binary)

Seq Id
[23..16

]
(HEX)

HDI ID
[15..13]
(Binary)

Centroid
[12..2]
(HEX)

Precision
[1..0]

(Binary)

000000 11 AA 111 0C1 00
000001 11 AA 111 0C1 00
000010 11 AA 111 0C1 00
000011 11 AA 111 0C1 00
000000 11 AA 111 0D1 00
000001 11 AA 111 0D1 00
000010 11 AA 111 0D1 00
000011 11 AA 111 0D1 00
000000 11 AA 111 0ED 01
000001 11 AA 111 0ED 01
000010 11 AA 111 0ED 01
000011 11 AA 111 0ED 01
000000 11 AA 111 0F8 10
000001 11 AA 111 0F8 10
000010 11 AA 111 0F8 10
000011 11 AA 111 0F8 10
000000 11 AA 111 0FD 01
000001 11 AA 111 0FD 01
000010 11 AA 111 0FD 01
000011 11 AA 111 0FD 01

The whole data processing terminates at the Hit Filter. After the hits have been

written in the hit output FIFO the channel waits for the hits to be read out by the hit

interface module. Once the hits are read out the channel waits for next EVENT_START

signal to start the data processing of new data stream on the VME bus.

The MATLAB model

The MATLAB model is functionally similar to the VHDL model, but it does not

run synchronously. The model takes data from a file and stores the processed data in

another file. This model was developed to generate test vectors for the different modules

41

in the VHDL model. The downloaded parameters are given in the form of input when the

program is run. The data generated by this module is in binary i.e. 0’s and 1’s. The data

streams generated by this model were compared to the data streams obtained from the

VHDL model. The MATLAB code written to realize this model is in the attached

Appendix D. The MATLAB consists of SMT filter, Strip Reader, Cluster Finder,

Centroid Calculator and the Hit Filter. The flow of data through each of these modules is

explained in detail below.

Main design

This is the main design file used to run all module files sequentially. The modules

access the downloaded parameters file and the other data files and the data streams are

written into the respective data files.

Read downloaded parameter

 This file is used to extract the downloaded parameters from the data file downloaded

parameters.m and store them in the file down_data.m from where it accessed by the data

processing modules.

42

SMT filter module

This module reads the HEX data stream from the file “vtm_data.m”. The module

converts the 8-bit data stream to 16-bit data word. The error bits are also provided along

with the VTM data stream. The 18-bit data word formed (refer Table 4.2) is written in

binary format in file “smt_file.m”.

Strip Reader

The Strip Reader module reads the data sequentially from either the smt_data.m

file or the test_data.m file, depending on the test input, which is a user input. The SEQ

ID, HDI ID, data type, gain and offset are accessed from the data file down_data.m. The

data is processed to get the 23-bit word (refer Table 4.3) in binary format. This data is

written into the file “strip_data.m”.

Cluster Finder

The Cluster Finder module takes the 23-bit word from file “strip_data.m” and

finds the clusters according to the clustering algorithm in APPENDIX A. The

threshold_1 and threshold_2 values are accessed from data file down_data.m. The data

values of the five clusters with address of the data value in buffer 2 (i.e. peak address – 1)

are stored in the file “cluster_data.m”.

43

Centroid Calculator

The cluster type and the pulse area threshold values are accessed from data file

down_data.m. The calculation of the centroid is carried out in decimal and then the result

is converted into binary format. The result as in Table 4.6 is stored in the file

“centroids_data.m” in binary format.

Hit Filter

The Hit Filter reads the road pairs from the file “roads_data.m” and the centroids

tagged with their data type and the pulse area from the file “centroids_data.m”. Each

centroid is compared sequentially with each road pair and the output is written out in the

file “hits.m”. The output consists of the track number, pulse area and the centroid.

The VHDL module and the MATLAB module agree on the centroids and the hits.

Thus the design is functionally correct. The MATLAB module thus helps to check

functionality of each module individually as we can check the test streams at the end of

each module. Thus the algorithmic approach helps to check the state approach taken in

the VHDL model.

44

Shree ganeshayan namaha

CHAPTER 5

DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN DATA PATH

The design for the main data path was developed using VHDL. Different design

approaches were studied with the aim of developing a compact, functionally correct and

fast design. The design approaches studied for the Hit Filter is presented, and the

different design implementations approaches taken to fit the whole design (i.e. main data

path with the L3 buffers) are also discussed in this chapter.

The Hit Filter design approaches

 The Hit Filter was required to have the capability to compare 46 road data values with

a centroid value at a time. Different combinations of parallel and serial implementations

were studied. The results are consolidated in Table 5.1.

45

Table 5.1: The result of comparison for putting filters in parallel

 No of filters
in parallel

No of
inputs

No of
outputs

No. Of
LCs

required
1. 2 37 2 101
2. 4 39 4 199
3. 6 41 6 297
4. 8 43 8 395
5. 10 45 10 493
6. 12 47 12 591
7. 14 49 14 689
8. 16 51 16 787
9. 18 53 18 885
10. 20 55 20 983
11. 22 55 22 1081
12. 24 59 24 1179
13. 26 61 26 1277
14. 28 63 28 1375
15. 30 65 30 1473
16. 32 67 32 1571
17. 34 69 34 1669
18. 36 71 36 1767
19. 38 73 38 1865
20. 40 75 40 1963
21. 42 77 42 2061
22. 44 79 44 2159
23. 46 81 46 2257

 As can be observed from Table 5.1 the number of logic cells required

increases linearly with the number of comparators put in parallel. If we have a

serial and parallel combination of the comparators there is a time delay in the

switching of the bus possession. Also this approach does not reduce the logic cells

utilization. Thus, the final scheme of all 46 comparators in parallel was chosen for

high-speed comparison. The outputs of the comparators are read out serially so

that they can be put out in the required 32-word format.

46

The different implementation schemes of the overall design

The hardware implementation of the overall design, i.e., the main data path with

the L3 buffers was tried in FLEX 10KE FPLDs. There also exists an external memory of

16 K for the road data.

 During this implementation four design approaches were studied. These

approaches are discussed in detail in this section.

Approach 1

The synthesis tool was allowed to fit the design in the minimum possible number

of FPLDs. The tool required a minimum of five FPLDs as shown in Table 5.2.

Table 5.2: Results of the compilation: Approach 1

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Strip_reader_
hitfilter_l3
_schematic

EPF10K200
EGC599-1

241 187 24772
(25%)

2003
(20%)

22
(91%)

Strip_reader_
hitfilter_l3
_schematic-1

EPF10K200
EGC599-1

122 316 58752
(59%)

4211
(42%)

22
(91%)

Strip_reader_
hitfilter_l3
_schematic-2

EPF10K30
ETC144-1

42 37 4608
(18%)

368
(21%)

2
(33%)

Strip_reader_
hitfilter_l3
_schematic-3

EPF10K30
EQC208-1

59 63 8192
(33%)

334
(19%)

2
(33%)

Strip_reader
_hitfilter_l3
_schematic-5

EPF10K50
EQC208-1

86 29 4324
(10%)

2225
(77%)

10
(100%)

Total 100648 9141 58

47

The tool tried to fit in the memory blocks first and then the logic into the FPLDs thus

chose the FPLDs according to the memory capacity first and then fitted the logic cells

into these FPLDs. In this approach the sizes of the FPLDs is varying, which is not

preferable for the design.

Approach 2

 To study the behaviour of the synthesis tool, the Hit Filter forced to fit in one FPLD –

Hitfilter_schematic, and the L3 buffers is also forced to fit in one FPLD – L3_schematic.

The tool was allowed to fit the Strip Reader chip (i.e. the Strip Reader and the Cluster

Finder modules) in as few FPLDs as possible. The results are as shown the Table 5.3.

Table 5.3: Results of the compilation: Approach 2

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Hitfilter
_schematic

EPF10K100
EBC356-1

87 170 10532
(21%)

4340
(86%)

12
(100%)

L3
_schematic

EPF10K200
EGC599-1

175 291 79424
(80%)

2941
(29%)

24
(100%)

Strip_reader
_hitfilter_l3
_schematic_1

EPF10K200
SFC484-1

169 123 10692
(10%)

1860
(18%)

19
(79%)

Total 100648 9141 55

After fitting the assigned modules to their FPLDs the synthesis tool fitted the memories

in the L3_schematic FPLD and the excess logic into the Hitfilter_schematic FPLD, thus

fitting the whole design in three FPLDs. This approach is not acceptable as the logic for

48

the Strip Reader is spread into three FPLDs and thus there will be additional propagation

delay on critical signals.

Approach 3

 In this approach, the synthesis tool was given some guidance by forcing the Hit Filter

to fit in one FPLD – Hitfilter_schematic, the L3 buffers in one FPLD – L3_schematic.

The Strip Reader with some memory modules is forced to fit in one FPLD –

Strip_reader_chip-1 and the Cluster Finder with remaining memory modules is forced to

fit in one FPLD – Strip_reader_chip-2. The results are given below in Table 5.4.

Table 5.4: Results of the compilation: Approach 3

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Hitfilter
_schematic

EPF10K100
EBC356-1

77 144 10532
(21%)

4012
(80%)

12
(100%)

L3
_schematic

EPF10K130
EFC484-1

183 175 40960
(62%)

1576
(23%)

13
(81%)

Strip_reader
_chip-1

EPF10K200
EGC599-1

179 216 45120
(45%)

3244
(32%)

18
(75%)

Strip_reader
_chip-2

EPF10K130
EFC484-1

124 183 4036
(6%)

309
(4%)

14
(87%)

Total 100648 9141 57

The Strip Reader requires two FPLDs as each memory space when assigned to an

Embedded Array Block (EAB) utilizes minimum of two EABs. Thus even the small

memory spaces were using 2 EABs even though the actual space utilized was 2-3 words

maximum 32 bit wide. Thus the whole design fitted successfully in four FPLDs. Thus,

the Approach 4 was taken to reduce the number of FPLDs.

49

Approach 4

 From the conclusion of Approach 3 the EAB assignment of the small memory

modules was removed and they were implemented using logic cells. The results for the

design with the changes are given in Table 5.5.

Table 5.5: Results of the compilation: Approach 4

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Hitfilter
_Schematic

EPF10K100
EBC356-1

77 144 10532
(21%)

4012
(80%)

12
(100%)

L3
_Schematic

EPF10K130
EFC484-1

183 175 40960
(62%)

1576
(23%)

13
(81%)

Strip_reader_
chip_schematic

EPF10K200
SBC356-1

76 174 45120
(45%)

4773
(47%)

17
(70%)

Total 96612 10361 42

The design is now found to fit successfully in three FPLDs which are very close

to each other in size, thus for the final layout the largest FPLD of the FLEX10KE family

can be chosen to permit further changes in the design. Since the logic cells replaced some

of the EABs, a comparison of the change in the number of memory bits used and the

logic cells utilized to substitute the EABs is given in Figure 5.1, Figure 5.2 and Figure

5.3, where 1 denotes approaches 1, 2, 3 and 2 denotes approach 4.

50

100648

96612

94000

96000

98000

100000

102000

1 2M
em

or
y

bi
ts

 u
til

iz
ed

Figure 5.1 Comparison of the memory bits utilized

Logic cells

9141

10361

8500

9000

9500

10000

10500

1 2

Figure 5.2 Comparison of the logic cells utilized

EABs

57

42

0

10

20

30

40

50

60

1 2

Figure 5.3 Comparison of the EABs utilized

Implementation of the design using Quartus software

 The design presented in this thesis is for one STC channel of the Level_2 of the

D0 detector. There will be eight such identical channels running in parallel (refer Chapter

51

2 – Section “Level_2”). All the channels are proposed to fit on to one Printed Circuit

Board (PCB).

 The design is successfully fitted in three FPLDs, but this amounts to 24 FPLDs

for the eight STC channels and additional FPLD for the Main Control module (refer

Chapter 2- Section “Main Control module”). Therefore 25 FPLDs should be fitted on to

one PCB. This is not a difficult task, but the size of the PCB required will be really large

and this is not suitable for the design. Thus a new approach has been examined to fit the

whole design in a single APEX20KE FPLDs.

The APEX20KE is one of the latest FPLDs offered by ALTERA. The synthesis

tool used for implementing the design in the APEX20KE is QUARTUS. The strip reader

module with bad channel memory, gain offset memory, test data memory and the monitor

space was successfully implemented in an APEX20KE. The results of this

implementation are shown in Table 5.6.

Table 5.6 Implementation of the Strip Reader module in APEX 20KE.

Device name EP20K300EBC652-1
Logic elements 2643/11520 (22%)
Pins 395/408 (96%)
Memory bits 49024 /147456 (33%)
ESBs 28/72 (38%)

The APEX20KE family has chips of high memory capacity and large number of logic

elements. The specifications of the largest FPLD available in this family are given in

Table 5.7.

52

Table 5.7 Specifications of EP20K1500E

(Largest FPLD in APEX20KE family) [1].

Voltages 2.5 V and 1.8 V
Maximum system gates 2,392,000

Typical gates 1,500,000
Logic Elements 51,840

ESBs 216
Maximum RAM bits 442,368

Maximum macro-cells 3,456
Maximum user I/O pins 808

53

Shree ganeshayan namaha

CHAPTER 6

CONCLUSIONS

 Recent technological advances have resulted in an increased number of gates in a

single FPLD. Thus, VHDL is playing a key role in FPLD design. Since VHDL is a

technology- and process-independent programming language, designers can work

without the constraints of working with a single vendor. VHDL is a standard hardware

description language accepted by IEEE, thus a design for a FPLD using one vendor’s

synthesis tool can easily be implemented in another vendor’s FPLD. It has helped the

designers to work on a high level of abstraction, enhancing the level of design

complexity. The synthesis tools help to minimize the design-size, and thus it is possible

to have complex and compact designs.

 This thesis describes the implementation of the main data path that

constitutes one channel of the STC card in the Level_2 of the D0 detector at Fermi

National Acceleration Laboratory. VHDL is used to describe the behavioral model of the

design and the design is implemented in FLEX10K FPLDs. First, the functional

correctness of the design was verified, and then timing studies were conducted on the

design. When implemented in the low-memory FLEX10K FPLD, the design requires

three FPLDs per channel of STC, and the timing requirements are not met.

54

The Strip Reader module was alone implemented in the APEX20K family by

ALTERA Corporation. This family has high density and large memory capacity. The

results obtained from the implementation were used to predict the resources required for

one channel of STC. The results show that three channels of STC can be implemented in

one EP20K1500E, which the largest device available in the APEX20K family. The new

design implementation will be able to meet the design requirements, as the propagation

delays on the signals will decrease, as there wont be many inter FPLD connections. In

addition the APEX20K FPLD family, the Virtex family by XILINX is also a good option

for use as the larger FPLD (refer Table 1.1).

	CHAPTER 1
	INTRODUCTION

	CHAPTER 2
	THE D0 DETECTOR AT FERMI NATIONAL ACCELERATION LABORATORY
	The D0 detector
	Level_1
	Level_2
	Level_3

	The electronics for main data path [18]
	Strip Reader
	Centroid Finder
	Hit Filter
	L3 buffer
	Main control module

	CHAPTER 3
	DETAILED DESCRIPTION OF THE MAIN DATA PATH
	Design features
	Design parameters
	Monitor space
	Miscellaneous memory
	Gain offset memory
	Test data LUT
	Road data LUT

	Strip Reader
	SMT Data Filter module
	SMT Test Select module
	Strip Reader Control module

	Centroid Finder
	Cluster Finder module
	Centroid Calculator module

	Hit Filter
	Hit Filter Control module
	Z- centroids module
	Comparator module
	Hit Register module
	Hit Format module
	Hit Readout module

	CHAPTER 4
	SIMULATION RESULTS OF THE VHDL MODEL AND COMPARISON WITH A MATLAB MODEL
	The VHDL Model
	SMT Data Filter
	Strip Reader Control
	Cluster Finder
	Centroid Calculator
	Hit Filter

	The MATLAB model
	Main design
	Read downloaded parameter
	SMT filter module
	Strip Reader
	Cluster Finder
	Centroid Calculator
	Hit Filter

	CHAPTER 5
	DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN DATA PATH
	The Hit Filter design approaches
	The different implementation schemes of the overall design
	Approach 1
	Approach 2
	Approach 3
	Approach 4

	Implementation of the design using Quartus software

	CHAPTER 6
	CONCLUSIONS

