(1) Consider light passing from medium 1 into medium 2. Use Fermat’s principle to derive Snell’s law between the velocities of light, \(v_1 \) and \(v_2 \), in two media and the angles of refraction, \(\theta_1 \) and \(\theta_2 \) (a figure will be given in class). Due in class (8 points).

(2) Method of 2D projections for spherical coordinates. Each of the following tasks counts one point. Follow the instructions given in class (no other methods).

1. Write \(x, y \) in cylindrical coordinates \(\rho, \phi \).
2. Write \(dx^2 + dy^2 \) in cylindrical coordinates.
3. Write cylindrical coordinates \(\rho, z \) in spherical coordinates \(r, \theta \).
4. Write \(d\rho^2 + dz^2 \) in spherical coordinates.
5. Write \(dx^2 + dy^2 + dz^2 \) in spherical coordinates.
6. Write \(v^2 \), the velocity squared, in cartesian coordinates.
7. Write \(v^2 \), in cylindrical coordinates.
8. Write \(v^2 \), in spherical coordinates.

Due in class (up to 8 points).

(3) Read Landau-Lifshitz up to page 10 and the Handout, the first nine pages of “The Principle of Least Action” from Chapter 19 of “The Feynman Lectures on Physics”, Vol. II. Prepare questions about anything you do not understand. Due August 31 before class.

(4) What do you remember from Intermediate Mechanics I. Write down the most important results (not more than two pages in average-sized letters). Due August 31 before class (up to 8 points, depending on whether you hit the most important points or not).

(5) Consider a particle of mass \(m = 1 \), moving from \(x_1 = 0 \) at time \(t_1 = 0 \) to \(x_2 = 1 \) at time \(t_2 = \pi/2 \), under the influence of a one-dimensional harmonic potential of the form \(V(x) = x^2/2 \). Due September 7 before class (10 points).

1. Using Newton’s equations of motion, obtain the time-dependent motion of the system; \(i.e., \) solve for \(x(t) \). Compute the action for this exact path.
2. Using an approximate linear path of the form \(x(t) = a + bt \), compute the action for this path and compare it with the value obtained before. Hint: Make sure that the path is consistent with the boundary conditions.
3. Assume that the action result of (2.) is in units \(J \cdot s \) and express it in multiples of \(\hbar = 1.05 \times 10^{-34} J \cdot s \).