
1. The Lagrangians are

\[L = \frac{1}{2} m \left(\frac{d\vec{r}}{dt} \right)^2 - U , \]
\[L' = \frac{1}{2} m' \left(\frac{d\vec{r}}{dt'} \right)^2 - U' \]

After substituting \(t' = t \sqrt{m'/m} \) in \(L' \) the Lagrangians agree and the same paths are obtained for

\[t'/t = \sqrt{m'/m} . \]

2. The Lagrangians are

\[L = \frac{1}{2} m \left(\frac{d\vec{r}}{dt} \right)^2 - U , \]
\[L' = \frac{1}{2} m \left(\frac{d\vec{r}}{dt'} \right)^2 - U'' \]

Assume \(U' = \alpha U \). After substituting \(t' = t/\sqrt{\alpha} \) we obtain

\[L' = \alpha L . \]

Therefore the same paths are obtained for

\[t'/t = \alpha^{-1/2} = \sqrt{U/U'} . \]