Multivariate Analysis
A Unified Perspective

Harrison B. Prosper
Florida State University

Advanced Statistical Techniques in Particle Physics
Durham, UK, 20 March 2002
Outline

• Introduction
• Some Multivariate Methods
 • Fisher Linear Discriminant (FLD)
 • Principal Component Analysis (PCA)
 • Independent Component Analysis (ICA)
 • Self Organizing Map (SOM)
 • Random Grid Search (RGS)
 • Probability Density Estimation (PDE)
 • Artificial Neural Network (ANN)
 • Support Vector Machine (SVM)
• Comments
• Summary
Introduction – i

• Multivariate analysis is hard!
 • Our mathematical intuition based on analysis in one dimension often fails rather badly for spaces of very high dimension.

• One should distinguish the problem to be solved from the algorithm to solve it.

• Typically, the problems to be solved, when viewed with sufficient detachment, are relatively few in number whereas algorithms to solve them are invented every day.
Introduction – ii

• So why bother with multivariate analysis?
• Because:

 • The variables we use to describe events are usually statistically dependent.

 • Therefore, the N-d density of the variables contains more information than is contained in the set of 1-d marginal densities $f_i(x_i)$.

 • This extra information may be useful
\(p\bar{p} \rightarrow t\bar{t} \rightarrow l + \text{jets} \)

Dzero 1995
Top Discovery
Introduction - iii

• Problems that may benefit from multivariate analysis:
 • Signal to background discrimination
 • Variable selection (e.g., to give maximum signal/background discrimination)
 • Dimensionality reduction of the feature space
 • Finding regions of interest in the data
 • Simplifying optimization (by $f : \mathbb{R}^N \rightarrow U^1$)
 • Model comparison
 • Measuring stuff (e.g., $\tan\beta$ in SUSY)
Fisher Linear Discriminant

• Purpose
 • Signal/background discrimination

\[
\log \frac{g(x | \mu_1, \Sigma)}{g(x | \mu_2, \Sigma)} \rightarrow \chi^2(\mu_2) - \chi^2(\mu_1) \\
\rightarrow w \cdot x + b
\]

g is a Gaussian
Principal Component Analysis

- Purpose
 - Reduce dimensionality of data

1\text{st} principal axis
\[w_1 = \arg \max \sum_{i=1}^{K} d_i^2(w) \]

2\text{nd} principal axis
\[w_2 = \arg \max \sum_{i=1}^{K} [w \cdot (\bar{x}_i - w_1 d_i(w_1))]^2 \]
PCA algorithm in practice

- Transform from $X = (x_1,..x_N)^T$ to $U = (u_1,..u_N)^T$ in which lowest order correlations are absent.
 - Compute $\text{Cov}(X)$
 - Compute its eigenvalues λ_i and eigenvectors v_i
 - Construct matrix $T = \text{Col}(v_i)^T$
 - $U = TX$
- Typically, one eliminates u_i with smallest amount of variation
Independent Component Analysis

• Purpose
 • Find statistically independent variables.
 • Dimensionality reduction

• Basic Idea
 • Assume \(\mathbf{X} = (x_1, \ldots, x_N)^T \) is a linear sum \(\mathbf{X} = \mathbf{A}\mathbf{S} \) of independent sources \(\mathbf{S} = (s_1, \ldots, s_N)^T \). Both \(\mathbf{A} \), the mixing matrix, and \(\mathbf{S} \) are unknown.
 • Find a de-mixing matrix \(\mathbf{T} \) such that the components of \(\mathbf{U} = \mathbf{T}\mathbf{X} \) are statistically independent
ICA-Algorithm

Given two densities $f(U)$ and $g(U)$ one measure of their “closeness” is the Kullback-Leibler divergence

$$K(f \mid g) \equiv \int f(U) \log \left(\frac{f(U)}{g(U)} \right) dU \geq 0$$

which is zero if, and only if, $f(U) = g(U)$.

We set

$$g(U) = \prod_i f_i(u_i)$$

and minimize $K(f \mid g)$ (now called the mutual information) with respect to the de-mixing matrix T.
Self Organizing Map

• Purpose
 • Find regions of interest in data; that is, clusters.
 • Summarize data

• Basic Idea (Kohonen, 1988)
 • Map each of K feature vectors $\mathbf{X} = (x_1, \ldots, x_N)^T$ into one of M regions of interest defined by the vector \mathbf{w}_m so that all \mathbf{X} mapped to a given \mathbf{w}_m are closer to it than to all remaining \mathbf{w}_m.
 • Basically, perform a coarse-graining of the feature space.
Grid Search

Purpose: Signal/Background discrimination

Apply cuts at each grid point

\[x > x_i \]
\[y > y_i \]

We refer to \((x_i, y_i)\) as a cut-point

Number of cut-points ~ \(N_{\text{bin}}^{\text{Ndim}}\)
Random Grid Search

Take each point of the signal class as a cut-point

$x > x_i$

$y > y_i$

\[\frac{N_{\text{cut}}}{N_{\text{tot}}} = \frac{\text{# events after cuts}}{\text{# events before cuts}} \]

$N_{\text{tot}} = \# \text{ events before cuts}$

$N_{\text{cut}} = \# \text{ events after cuts}$

Fraction = $N_{\text{cut}}/N_{\text{tot}}$

H.B.P. et al, Proceedings, CHEP 1995
Probability Density Estimation

• Purpose
 • Signal/background discrimination
 • Parameter estimation

• Basic Idea
 • Parzen Estimation (1960s)

\[p(x) = \frac{1}{N} \sum_{n} \frac{1}{h^d} \varphi \left(\frac{x - x_n}{h} \right) \quad 1 \leq n \leq N \]

• Mixtures

\[p(x) = \sum_{j} \varphi(x \mid j)q(j) \quad j \ll N \]
Artificial Neural Networks

• Purpose
 • Signal/background discrimination
 • Parameter estimation
 • Function estimation
 • Density estimation

• Basic Idea
 • Encode mapping (Kolmogorov, 1950s).
 \[f : U^N \rightarrow U^M \quad f(x) = F[\phi_1, \ldots, \phi_K] \]
 • Using a set of 1-D functions.
Feedforward Networks

\[a_i = \sum_{j=1}^{2} w_{ij} x_j + \theta_i \rightarrow f(a_i) \]

\[n(x, w) = f\left(\sum_{i=1}^{5} w_i f(a_i) + \theta \right) \]
ANN- Algorithm

Minimize the *empirical risk function* with respect to ω

$$R(\omega) = \frac{1}{N} \sum_{i} [t_i - n(x_i, \omega)]^2$$

Solution (for large N)

$$n(x, \omega) \rightarrow \int t(x) p(t \mid x) dt$$

If $t(x) = k\delta[1-I(x)]$, where $I(x) = 1$ if x is of class k, 0 otherwise

$$n(x, \omega) \rightarrow p(k \mid x) = p(x \mid k) p(k) / \sum_k p(x \mid k) p(k)$$

Support Vector Machines

• Purpose
 • Signal/background discrimination

• Basic Idea
 • Data that are non-separable in N-dimensions have a higher chance of being separable if mapped into a space of higher dimension
 \[\varphi : \mathbb{R}^N \rightarrow \mathbb{R}^{\text{Huge}} \]
 • Use a linear discriminant to partition the high dimensional feature space.
 \[D(x) = w \cdot \varphi(x) + b \]
SVM – Kernel Trick

Or how to cope with a possibly infinite number of parameters!

$$\varphi : (x_1, x_2) \rightarrow (z_1, z_2, z_3)$$

$$D(x) = w \cdot \varphi(x) + b$$

$$D(x) = \sum_{j} \alpha_i y_i [\varphi(x) \cdot \varphi(x)] + b$$

Try different $K(x, x_j) \equiv \varphi(x) \cdot \varphi(x_j)$ because mapping unknown!
Every classification task tries to solve the same fundamental problem, which is:

- After adequately pre-processing the data
- ...find a good, and practical, approximation to the Bayes decision rule: Given X, if $P(S|X) > P(B|X)$, choose hypothesis S otherwise choose B.

- If we knew the densities $p(X|S)$ and $p(X|B)$ and the priors $p(S)$ and $p(B)$ we could compute the Bayes Discriminant Function (BDF):
 - $D(X) = P(S|X)/P(B|X)$
The Fisher discriminant (FLD), random grid search (RGS), probability density estimation (PDE), neural network (ANN) and support vector machine (SVM) are simply different algorithms to approximate the Bayes discriminant function $D(X)$, or a function thereof.

It follows, therefore, that if a method is already close to the Bayes limit, then no other method, however sophisticated, can be expected to yield dramatic improvements.
Summary

• Multivariate analysis is hard, but useful if it is important to extract as much information from the data as possible.

• For classification problems, the common methods provide different approximations to the Bayes discriminant.

• There is considerably empirical evidence that, as yet, no uniformly most powerful method exists. Therefore, be wary of claims to the contrary!