The orbit of a particle of mass \(m \) moving in a central force field \(F(r) \) is a circle passing through the origin, namely

\[
r(\theta) = r_0 \cos(\theta) \quad \theta \in [-\pi/2, \pi/2],
\]

where \(r \) is the distance from the center of force, \(\theta \) is the angular displacement, and \(r_0 \) is the distance from the center of force at \(\theta = 0 \), i.e. the diameter of the circle.

(a) Using the equation of the orbit

\[
\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} = -\frac{mr^2}{l^2} F(r),
\]

where \(l \) is the magnitude of the conserved angular momentum, show that the central force \(F(r) \) varies like the inverse of the fifth power of \(r \) according to the law:

\[
F(r) = -\frac{2r_0^2l^2}{m} \frac{1}{r^5}.
\]

(b) Find the potential energy \(U(r) \) corresponding to \(F(r) \), write the total mechanical energy of the particle, and define the effective potential \(V_{\text{eff}}(r) \). Roughly sketch the shape of \(V_{\text{eff}}(r) \).

(c) Does this potential admit a circular orbit?