
2. Problem 2.32 of Marion and Thornton’s book.

3. Problem 2.9 of Marion and Thornton’s book. Assume that the resisting force is of the form \(F_r = -mkv \). After having completed points (a) and (b) in Problem 2.9:

 (c) Compare the times found in (a) and (b) analytically, and explain why the time in (b) is always smaller than the time in (a).

 (d) Take the limits \(k \to 0 \) and \(k \to \infty \) in the expression for the time obtained in (b) and explain your results.

4. A gun is fired straight up. Assuming that the air drag on the bullet varies quadratically with speed (i.e. \(F_r = -mkv^2 \) for a motion vertically upward or \(F_r = mkv^2 \) for a motion vertically downward, when you measure the vertical coordinate positive upward), show that the speed varies with height according to the equations:

 \[
 v^2 = (v_t^2 + v_0^2) e^{-2kx} - v_t^2 \quad \text{ (upward motion) ,}
 \]

 \[
 v^2 = v_t^2 - v_t^2 e^{2kx} \quad \text{ (downward motion) ,}
 \]

 where \(x \) is the vertical displacement, \(g \) is the gravitational acceleration, \(v_0 \) is the initial speed with which the bullet is fired, and \(v_t = \sqrt{g/k} \) is the terminal speed of the bullet. (Hints: in order to find the speed as a function of the position, i.e. \(v = v(x) \), observe that the equation of motion can also be written as:

 \[
 m\frac{dv}{dt} = m\frac{dv}{dx}\frac{dx}{dt} = m v\frac{dv}{dx} = F_{\text{net}} ,
 \]

 where \(F_{\text{net}} \) is the sum of all the forces acting on the bullet. Moreover, observe that the equation of motion is slightly different for the upward and the downward motions: since the retarding force is proportional to the square of the velocity, you need to carefully switch the sign of \(F_r \) when the bullet moves upward or downward.)

5. Use the result is Problem 4 to show that, when the bullet hits the ground on its return, the speed \(v_f \) will be given by

 \[
 v_f = \frac{v_t v_0}{\sqrt{v_t^2 + v_0^2}} ,
 \]

 where \(v_0 \) and \(v_t \) have been defined in Problem 4.