Problem 1

Consider the problem of the vibrational modes in a solid satisfying the following dispersion relation,

\[\omega(k) = A|k|^s \equiv Ak^s, \]

where \(A \) and \(s \) are positive constants, \(\omega \) is the angular frequency, and \(k \) the wave number of the mode. Assume that there are \(N \) atoms in the solid so that the total number of modes is equal to \(3N \).

1.a) Compute the Debey wave number \(k_D \). Does \(k_D \) depend on the assumed dispersion relation? What about the Debey frequency \(\omega_D \)?

1.b) Show that the specific heat of the solid at low temperatures is proportional to \(T^{3/s} \). Note that while \(s = 1 \) corresponds to the case of elastic waves in a lattice (phonons), \(s = 2 \) applies to spin waves (magnons) propagating in a ferromagnetic system.

1.c) Compute the specific heat of the solid at high temperatures and compare your result to the law of Dulong and Petit (classical result, i.e. \(C_V = 3Nk_B \)).

Problem 2

In the one-dimensional Ising model \(N \) localized spins are fixed to the different sites of an evenly spaced one-dimensional lattice that is placed in a constant magnetic field \(B \). The spins, which are limited to only two values \((s_i = \pm 1) \), interact with the magnetic field and with each other through a classical spin-spin interaction. The Ising Hamiltonian for such a system is given by,

\[H = -\mu B \sum_{i=1}^{N} \frac{1}{2}(s_i + s_{i+1}) - J \sum_{i=1}^{N} s_i s_{i+1}. \]

Here \(\mu \) denotes the strength of the spin coupling to the external magnetic field and \(J > 0 \) is the ferromagnetic coupling constant. Note that the lattice is assumed to be periodic so that the \((N + 1)\)th spin is equal to the first one. i.e. \(s_{N+1} \equiv s_1 \).
2.a) Show that the partition function of the system may be written as the trace of the Nth power of a (2×2) matrix. That is,

$$Z(N, T, B) = \text{Tr} \left(\hat{Z}^N \right),$$

where the matrix elements of the (2×2) transfer matrix \hat{Z} are given by,

$$\langle s_1 | \hat{Z} | s_2 \rangle \equiv \exp \left(\beta \mu B (s_1 + s_2)/2 + \beta J s_1 s_2 \right).$$

2.b) Use the fact that the trace of a matrix is independent of the choice of basis to show that $Z(N, T, B)$ may be written as,

$$Z(N, T, B) = \lambda_+^N + \lambda_-^N,$$

where λ_+ and λ_- are the larger and smaller eigenvalues of \hat{Z}, respectively.

2.c) Show that in the thermodynamic ($N \to \infty$) limit the Helmholtz free energy of the system may be written as,

$$\frac{1}{N} F(N, T, B) = -k_B T \ln \lambda_+ = -J - k_B T \ln \left[\cosh(\beta \mu B) + \sqrt{\sinh^2(\beta \mu B) + e^{-4\beta J}} \right].$$

2.d) Compute the average magnetization M of the system, i.e. the number of spins up (N_+) relative to the number of spins down (N_-), using the relation,

$$M = -\left(\frac{\partial F}{\partial B} \right)_{N,T},$$

and study its leading behavior in the limit of $\beta \mu B \ll 1$ and $\beta \mu B \gg 1$. Conclude that there is no spontaneous magnetization by showing that $M \to 0$ as $B \to 0$ for all temperatures.