Problem 1

Consider the problem of an isolated particle of mass \(m \) moving freely in a one-dimensional box of size \(L \). Such a particle satisfies the following one-dimensional Schrödinger equation:

\[
-\frac{\hbar^2}{2m} \frac{d^2 \varphi(x)}{dx^2} = \epsilon \varphi(x) , \quad \text{with} \quad \varphi(0) = \varphi(L) = 0 .
\]

1.a) Obtain the eigenvalues and the normalized eigenvectors of the Schrödinger equation.

Now consider an isolated system of 4 non-interacting particles of mass \(m \) placed in such one-dimensional box. The energy of the system equals \(E = 63\epsilon_0 \), where \(\epsilon_0 = \frac{\hbar^2 \pi^2}{2mL^2} \), is the lowest eigenvalue of the Schrödinger equation. Find the entropy of the system for the following cases:

1.b) a system of 4 distinguishable spinless particles;

1.c) a system of 4 indistinguishable spinless bosons;

1.d) a system of 4 indistinguishable spin-1/2 fermions.

Problem 2

Consider a system of \(N \) localized particles moving under the influence of a quantum, one-dimensional, harmonic-oscillator potential of frequency \(\omega \). The energy of the system is given by

\[
E = \frac{1}{2} N\hbar\omega + M\hbar\omega ,
\]

where \(M \) is the total number of quanta in the system. That is,

\[
M = \sum_{i=1}^{N} n_i ,
\]

with \(n_i = 0, 1, 2, \ldots \) representing the number of quanta in the \(i_{th} \) harmonic oscillator.

2.a) Compute the number of microstates \(\Gamma \) as a function of \(N \) and \(M \).
2.b) Using Stirling’s approximation, compute the entropy of the system as a function of \(N \) and \(M \).

2.c) Compute the temperature \(T \) of the system as a function of \(N \) and \(M \). Are there any values of \(N \) and \(M \) for which the temperature \(T \) becomes negative?

2.d) Compute the specific heat \(C_V \) of the system as a function of \(N \) and \(T \). Note that in order to do so, you will need to express the total energy of the system as a function of \(N \) and \(T \).

2.e) Compute the low- \((k_B T \ll \hbar \omega) \) and high-temperature \((k_B T \gg \hbar \omega) \) limits of the specific heat, and make a simple plot of its behavior as a function of temperature.

Problem 3

Problem 1.4 of Pathria’s book.