1 Graded problems

1. 1.a) For a one-dimensional system with Hamiltonian

\[H = \frac{p^2}{2} - \frac{1}{2q^2}, \]

show that there is a constant of motion given by

\[D = \frac{pq}{2} - Ht. \]

1.b) As a generalization of part 1.a), show that for a motion in a plane with the Hamiltonian

\[H = |p|^n - ar^{-n}, \]

where \(p \) is the vector of the momenta conjugate to the Cartesian coordinates, there is a constant of motion given by

\[D = \frac{p \cdot r}{n} - Ht. \]

1.c) The transformation \(Q = \lambda q, \ p = \lambda P \) is obviously canonical. However, the same transformation with \(t \) time dilatation, \(Q = \lambda q, \ p = \lambda P, \ t' = \lambda^2 t \), is not. Show that, however, the equations of motion for \(q \) and \(p \) for the Hamiltonian in part 1.a) are invariant under this transformation. The constant of motion \(D \) is said to be associated with this invariance.

2. Given a system with Hamiltonian

\[H = \frac{1}{2} \left(\frac{1}{q^2} + p^2 q^4 \right), \]

2.a) find the equation of motion for \(q \);

2.b) find a canonical transformation that reduces \(H \) to the Hamiltonian of a harmonic oscillator. Show that the solution for the transformed variables is such that the equation of motion found in part 2.a) is satisfied.

3. 3.a) Show that the transformation

\[Q = p + iaq, \ P = \frac{p - iaq}{2ia}, \]

with \(a \) a real constant, is canonical and find a generating function.

3.b) Use the transformation to solve the linear harmonic oscillator problem.