Higgs-boson phenomenology:
from discovery to precision studies

Laura Reina

MASS 2014, Odense, May 20, 2014
Outline

• Higgs-boson physics, from discovery to precision studies: an overview.

• Nature of current and future theoretical studies, with emphasis on:
 → accurate description of signal (new physics) and background (SM):
 theory cannot be the limiting factor;
 → new ideas to enhance signal vs background (ex: boosted regimes, spin
 correlations);
 → systematic parametrization of BSM effects: looking for indirect effects.

• Looking forward and getting ready for more LHC physics.
Overview

If Run I of the LHC has brought us one of the most exciting times of the last several decades with

\rightarrow the Higgs-boson discovery

... an equally exciting time may await us in Run II, looking for

\rightarrow anomalies w.r.t. SM-Higgs couplings
\rightarrow direct signals of new physics

Unprecedented experimental means and expertise matched by the results of decades of theoretical efforts to provide the most accurate description of collider data

\rightarrow has been a winning synergy in Higgs-boson discovery
\rightarrow will be essential for Higgs-boson precision studies

as shown by LHC-Run I results.
Theoretical predictions for the LHC

Higher-order terms in QCD/EW essential to:

- stability and predictivity of theoretical results, since less sensitivity to unphysical renormalization/factorization scales;
- more realistic modelling of parton level since higher parton multiplicity (distributions, jets, ...);
- first step towards matching with resummed calculations and parton shower Monte Carlo programs.
• **NLO QCD**, challenges have largely been met:
 → traditional approach (FD’s) made more efficient to handle high multiplicity;
 → new techniques based on unitarity methods and recursion relations offers a powerful alternative, particularly suited for automation;
 → interface with parton shower MC well advanced (MC@NLO, POWHEG, Sherpa);
 → automation mostly achieved (aMC@NLO, BlackHat, GoSam, ...).

• **NLO EW and EW+QCD**: corrections known for most processes relevant for Run I of the LHC.

• **NNLO QCD**: conquered or under way for a variety of $2 \rightarrow 2$ processes (e.g. $pp \rightarrow Q\bar{Q}$, and $pp \rightarrow H + j$). Essential when:
 → processes involve multiple scales, leading to large logarithms of the ratio(s) of scales;
 → new parton level subprocesses first appear at NLO;
 → new dynamics first appear at NLO.
• N3LO results for $2 \to 1$ processes ($gg \to H$ in $m_t \to \infty$ limit)

• Developed systematic resummation techniques for multiscale processes to account for:
 → large corrections from dominant kinematic regions (soft/collinear);
 → large corrections induced by exclusive cuts/vetos.

• PDF: constant development, NNLO is now the state of the art. Enormous effort to optimize PDF sets for LHC physics.
More than a proof of concept: Higgs discovery and beyond

(LHC Higgs Cross Sections Working Group, arXiv:1101.0593,1201.3084 and 1307.1347)

- all channels combined in a coherent way;
- all orders of calculated higher orders corrections included consistently (tested with all existing calculations);
- theory errors (scales, PDF, α_s, ...) combined according to a common recipe.
The exclusion/discovery process would have been different, if at all possible, had we not had the most important inclusive corrections under control.

Ex.: large impact of QCD corrections on $gg \rightarrow H$ (determine expected SM signal).

Harlander, Kilgore, Anastasiou, Melnikov, Ravindran, Smith, van Neerven, 2002-2003
Signal strength now measured in several channels:

- Observed both bosonic and fermionic decays (both ATLAS and CMS)
- Each measurement is the result of several analyses, where specific kinematics cuts/vetos have been applied.
- Notice how the theoretical errors are about to become the limiting uncertainty.
From signal strength to couplings

The experiments measure signal strengths and can only fit the product:

\[\mu_p^i = \mu_p \cdot \mu_{BR}^i \]

where \(\mu_p = \sigma_p / \sigma_p^{SM} \) (production) and \(\mu_{BR}^i = BR_i / BR_i^{SM} \) (decay) (n.w.a.)

Taking one decay mode at a time one can go one step further and fit the ratio per channel:

\[\frac{\mu_{VBF+VH}^i}{\mu_{ggF+ttH}^i} = \frac{\mu_{VBF+VH}}{\mu_{ggF+ttH}} \]

under the assumption

\[\mu_{VBF+VH} \simeq g_{VVH}^2 \]
\[\mu_{ggF+ttH} \simeq g_{ttH}^2 \]
Relation to couplings only under specific assumptions

Define the normalized couplings κ such that:

$$\mu^i_p = \sigma_p \cdot BR_i = \sigma_p^{SM} \cdot BR_i^{SM} \cdot \frac{\kappa_p \cdot \kappa_i}{\kappa_H}$$

where $\kappa_H = \Gamma_H / \Gamma_H^{SM}$.

One can then consider different scenarios of increasing complexity:

- $\kappa_V = \kappa_W = \kappa_Z$ and $\kappa_f = \kappa_t = \kappa_b = \kappa_\tau$
- κ_Z, $\lambda_{WZ} = \kappa_W / \kappa_Z$, and κ_f
- κ_t, $\lambda_{du} = \kappa_d / \kappa_u$, and κ_V
- \ldots

with $\kappa_{g,\gamma,H} = \kappa_{g,\gamma,H}(\kappa_f, \kappa_V, \ldots)$, or just independent effective parameters.

Ultimately to be rephrased in terms of effective BSM interactions:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_i \frac{1}{\Lambda_{d_i-4}} c_i \mathcal{O}_i$$

already implemented in public codes:
eHDECAY \rightarrow Contino et al. \rightarrow for H decays
SUSYFit \rightarrow Ciuchini et al. \rightarrow as part of global EW fit.
Example: \((\kappa_V, \kappa_f)\) fit

\[
\kappa_V = 1.15 \pm 0.08
\]
\[
\kappa_f = 0.99^{+0.17}_{-0.15}
\]

\[
\kappa_V = [0.81, 0.97]
\]
\[
\kappa_f = [0.71, 1.11]
\]

with less constraining bounds obtained in other scenarios.
First measurement of $t\bar{t}H$ production

ATLAS preliminary

Data

- SR+CR background fit
- SM signal ($m_H = 126.8\text{ GeV}$)
- SR-only background fit

Leptonic channel

ATLAS preliminary

$\gamma\gamma\to H, H t$

Data 2012 $\sqrt{s} = 8\text{ TeV}$

$\int L dt = 20.3\text{ fb}^{-1}$

$\frac{\sigma}{\sigma_{SM}}$ at $m_H = 125.7\text{ GeV}$

Combination

Same-Sign 2l

CMS Preliminary

$\sqrt{s} = 7\text{ TeV}, L = 5.0\text{ fb}^{-1}$; $\sqrt{s} = 8\text{ TeV}, L = 19.5\text{ fb}^{-1}$

CMS Preliminary

$\sqrt{s} = 8\text{ TeV}, L = 19.5\text{ fb}^{-1}$

κ_V

- $\Delta\ln L$

κ_V

$m_H = 125.7\text{ GeV}/c^2$
How can we still improve theoretical predictions?

The main outstanding issue is now the measurement of couplings, looking for deviations from the SM-Higgs paradigm:

- different production channels need to be disentangled (via cuts/vetos)
 - from each other
 - from background
- exclusive modes need to be calculable with sufficient accuracy and flexibility:
 - provide accurate interface to specific decay channels;
 - investigate need for resummation of induced large logarithmic effects in selection process (via cuts/vetos);
 - investigate accurate matching between various selection channels (e.g.: \(H + N \) jets, \(N = 0, 1, 2, \ldots \));
- large fixed-order corrections still need to be investigated;
- assumptions need to be revisited (e.g. \(m_t \to \infty \) in \(gg \to H \))

Some important developments presented in the following
$gg \rightarrow H$ beyond NNLO, including Higgs decays

Resummation of multiple soft-gluon emission at small transverse momentum

- HqT → no decay
- HRes → includes $H \rightarrow WW, ZZ, \gamma\gamma$

(de Florian, Ferrera, Grazzini, Tommasini, 2012-13)
$gg \to H$ beyond existing NNLO calculation

- Studied impact of HQ mass in $gg \to H$ (going beyond $m_t \to \infty$) (Grazzini, Sargsyan, arXiv:1306.4581)

- N^3LO inclusive cross section computed in soft limit \to threshold production (Anastasiou, Duhr, Dulat, Furlan, Gerhmann, Herzog, Mistlberger, arXiv:1403.4616)
$H + j$, including NNLO QCD corrections

(Boughezal, Caola, Melnikov, Petriello, Schulze, arXiv:1302.6216)

- large K factors: $\sigma_{NLO}/\sigma_{LO} = 1.6$ and $\sigma_{NN:P}/\sigma_{NLO} = 1.3$
- scale dependence significantly reduced to $\simeq 4\%$

New: matching of resummed results in different jet bins: $H + 0$ jet (NNLO) and $H + 1$ jet (NLO)

(Boughezal, Liu, Petriello, Tackmann, Walsh, arXiv:1312.4535)
$t\bar{t}H$: towards more accurate theoretical predictions

NLO QCD corrections to $pp \rightarrow t\bar{t}H$ from:

used to estimate the theoretical uncertainties currently used in Higgs searches

→ Higgs Cross Section Working Group (HXSWG-$t\bar{t}H$)
 (First Yellow Report, arXiv:1101.059)

\[\begin{align*}
 m_H &\simeq 125 \text{ GeV}, \quad \sqrt{s} = 14 \text{ TeV} \\
 \delta\sigma_{NLO}^{scale}(\%) &\simeq [+5.9, -3.3] \\
 \delta\sigma_{NLO}^{PDF+\alpha_s} &\simeq \pm 8.9 \\
\text{where} & \quad \mu_0/2 < \mu < 2\mu_0 \\
\text{PDF:} & \quad \text{MSTW08, CTEQ6.6, NNPDF2.0}
\end{align*} \]
Matched at NLO to Parton Shower Monte Carlo generators

NLO calculation (by Dawson et al.) interfaced with Parton Shower Monte Carlo generators (PYTHIA/HERWIG) within

- POWHEG-BOX
- Sherpa

and successfully compared to PowHel (HELAC-NLO+POWHEG-BOX)

Gerzelli, Kardos, Trócsányi; Jäger, Hartanto, Reina, Wackeroth

for a standard choice of selection cuts, and assuming $H \rightarrow \gamma \gamma$ (all decays implemented through the PS MC, e.g. Pythia in following plots),

- $p_T^{jet} > 20$ GeV, $|y^{jet}| < 4.5$
- $p_T^l > 20$ GeV, $|y^l| < 2.5$
- $\Delta R_{l,jet} > 0.4$
(Garzelli, et al., arXiv:1405.1067)
(Garzelli, et al., arXiv:1405.1067)
Independent calculation from aMC@NLO, also successfully compared with PowHel (both $t\bar{t}H$ and $t\bar{t}A$)

\rightarrow Garzelli, Kardos, Trócsányi; Frederix
(HXSWG-$t\bar{t}H$, Yellow Report II, arXiv:1201.3084)
Background: $t\bar{t}b\bar{b}$

NLO QCD corrections to $pp \rightarrow t\bar{t}b\bar{b}$ calculated in:

→ Bevilacqua et al. (arXiv:0907.4723)
→ Bevilacqua et al. (arXiv:1403.2046): ratio $t\bar{t}b\bar{b}/t\bar{t}jj$

updated in the context of HXSWG-$t\bar{t}H$ ($\sqrt{s} = 7, 8$ GeV) (Yellow Report 3, arXiv:1307.1347)

Now interfaced with PS Monte Carlo (Sherpa) in the context of OPENLOOP+Sherpa

Powhel: ttH vs $ttbb$

HELAC-NLO calculation (Bevilacqua et al.) interfaced with PS Monte Carlo using POWHEG

\leftrightarrow Kardos, et al. (arXiv:1303.6291)

\leftrightarrow Garzelli, et al. (HXSWG, Yellow Report 3, arXiv:1307.1347)
New: study of spin correlation in $t\bar{t}H$

Spin-correlation effects can be used to distinguish scalar vs pseudoscalar associated production, i.e. SM from non-SM effects

\rightarrow Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

and can be very visible in decay product’s kinematic distributions,

\rightarrow Ellis, Hwang, Sakurai, Takeuchi, arXiv:1312.5736

and even more can be used to improve the separation of signal (ttH) and some irreducible backgrounds (e.g. $t\bar{t}\gamma\gamma$)

\rightarrow Biswah, Frederix, Gabrielli, Mele, arXiv:1403.1790
Summary and Outlook

• After the discovery of a SM-like Higgs boson during Run I of the LHC, precision studies of its couplings could bring very important indirect evidence of non SM physics. It’s a unique time!

• The close interaction between theory and experiment and the comparable level of accuracy reached on both sides has been instrumental to the discovery.

• Precision studies needs this process to continue and to be broadened to include new techniques and ideas.

• The field is moving fast and this will have positive repercussions on a broad spectrum of LHC-Run II physics.